
Fine Grained Access Control with Trust and

Reputation Management for Globus⋆

M. Colombo, F. Martinelli, P. Mori, M. Petrocchi, and A. Vaccarelli

IIT-CNR, Pisa, Italy
{maurizio.colombo, fabio.martinelli, paolo.mori,

marinella.petrocchi, anna.vaccarelli}@iit.cnr.it

Abstract. We propose an integrated architecture, extending a frame-
work for fine grained access control of Grid computational services, with
an inference engine managing reputation and trust management creden-
tials. Also, we present the implementation of the proposed architecture,
with preliminary performance figures.

1 Introduction

Grid computing represents a large scale, on-demand, cooperative communication
and computation infrastructure. It can be considered as an aggregation of both
physical and logical resources, for a given purpose. It offers resources for sharing,
thus it requires a shift in the vision of usage control of the resources. Previous
security mechanisms are not flexible, being based on the assumption that who
use the resource is known a priori. Furthermore, technology may be not flexible
enough to allow a fine grained control. Our work tries to address this problem.

One very commonly used toolkit for Grid computing is Globus [2]. In particu-
lar, most of the work has been devoted to access control techniques for accessing
a service at the coarse grain level, e.g., see [10, 12].

In [1, 7], we started a fine grained run-time access control framework for
Grid services. It was based on a behavioral policy language that describes the
correct sequence of actions that the applications are allowed to perform on the
computational resource. Coarse grained access control, instead, only determines
whether a given user can execute a given application, but once the execution
right is granted, no further controls are performed during the execution.

In this work, we significantly enhance our fine grained run-time access control
framework, by integrating it with a powerful trust management framework, i.e.,
the Role-based Trust Management Language (RTML, [5, 14]).

Main contributions of this paper are: i) an implementation of the RTML
framework, embedded in our behavioral policy, to perform fine grained access
control and trust management in Grid; ii) an extension of the RTML framework

⋆ Work partially supported by the EU project IST-3-016004-IP-09 Sensoria (Soft-
ware Engineering for Service Oriented Overlay Computers), and by the EU STREP
project IST-033817 GridTrust (Trust and Security for Next Generation Grid). We
thank Ninghui Li for providing the Java parser for the RTML family of languages.

Globus

GRAM

JVM

computational resource

OS

PEP

Gmon

Java application

behavioural
PDP

system calls

intercepted system calls

permitted/denied

trust / reputation predicate

Credential
manager

Access rules

RTML
inference

engine

store

Trust / Reputation PDP

Grid user

request

Grid node

credentials

access rules

Fig. 1. Global architecture

to allow reputation management. We conceived its model and we integrated it
in the above implementation.

A previous attempt to integrate trust management with fine grained access
control in Grid can be found in [3]. The novelty of our approach is that we
exploit RTML to deal with both trust and reputation management. Also, some
examples may be found in literature in the area of reputation management for
Grid, e.g., see [11]. However, none of them is actually designed for fine grained
level. It is also worth noticing that the usual approach is trying to help the
user in selecting trusted services (e.g., [13]). Our point of view is the opposite,
because we are interested in protecting the service from the untrusted user.

The structure of the paper is as follows. Section 2 defines our integrated
architecture. Section 3 recalls our integrated policy language, consisting of a be-
havioral policy language together with a trust and reputation management one.
Section 4 describes the implementation. Finally, some performance experiments
are reported in Section 5.

2 Architecture

The system architecture resembles the one in [7], and it is shown in Figure 1.
It is designed to monitor the behaviour of Java applications executed on behalf
of Grid users on Grid computational services. A Grid user U submits a request
to execute a Java application A on a computational service S. The Globus Con-
tainer [2], that runs the service S, receives the request, verifies the identity of
U , and the Grid Resource Allocation and Management component (GRAM)
submits A to the local resource scheduler for the execution. During the execu-
tion of A, our monitoring component, Gmon, acts as policy enforcement point
(PEP), and intercepts any action that A tries to execute on the underlying com-

putational resource. Gmon actually executes the action only after evaluating a
certain predefined security policy (see Section 3). The evaluation of the secu-
rity policy is performed through the internal behavioral Policy Decision Point
(PDP) of Gmon only for what behavioral aspects are concerned. In particular,
Gmon checks whether the sequence of actions that the application is performing
matches the permitted behaviour defined by the policy.

In this paper we contribute by allowing the policy to evaluate also reputation
and trust attributes of U , on the basis of RTML, [5, 14], a family of languages
suitable to represent policies and credentials. To this aim, the original architec-
ture has been extended to include two specific components, dealing with trust
and reputation management. According to the policy, Gmon may invoke one of
these components, or both. Hence, Gmon behavioral policy languages may be
considered as policy orchestrators. To take their decisions, the reputation PDP
and the trust PDP exploit distinct credentials, since the reputation credential
include also a weight (see Section 3). They are however elaborated by the same
RTML-based inference engine, that we have extended for dealing with quantita-
tive notions. Actually, both the trust and the reputation management PDPs are
built around RTML. In particular, their main components are: i) the credential
manager, that stores the set of credentials related to each user, in order to prove
rights to access some specific resource; ii) the access rules store, that contains
the local access rules that have been defined by the resource provider; iii) the
RTML inference engine, that exploits the user credentials and the access rules
to determine whether the user is entitled or not to have the specific attribute
(or role) that has been requested by Gmon. In the case of reputation PDP, this
engine also computes the weight associated with the requested attribute.

When dealing with reputation credentials, the credential manager is concep-
tually divided into two sub-components (according to a scheme proposed by [6]):
i) Experience manager: it is in charge of recording direct experiences with users;
ii) Recommendation manager: it implements three functions: storing recom-
mendations from other providers, managing reputation of recommenders and
exchange recommendations with other providers.

3 Policy languages

Behavioral policy language. In the original framework, the security behav-
ioral policy, describes the permitted behaviour, i.e., the sequences of security
relevant actions that the Grid applications are allowed to execute on the Grid
computational service. The exploited language is described in [7].

Here, we describe an extended framework, where the policy can state that
some actions can be performed on the local resource only if the set of trust
relations that the user has established in previous experiences grants him a
given attribute in a given domain, probably the local one, or can state that
the reputation of the user for this attribute is greater of a given threshold. We
introduce two predicates, repmaxof() and trust(), to be used in the behavioral

policy. repmaxof() is used to check the reputation of the Grid user. The following
example:

[repmaxof(UniPi.files(USER),0.6)].open(x1,x2,x3,r)

states that the action open can be executed only if the reputation given by the
service provider UniPi to the Grid user USER for the attribute files is greater
than 0.6. User attributes have been introduced to assign distinct reputation to
the same user, depending on the action to be performed. As an example, the
attribute files refers to file accesses, the attribute sockets refers to network
accesses through sockets, and so on. UniPi.files(USER) is a RTML statement,
whose notation will be clarified in next subsections. The other predicate defined
in this paper is trust(). This predicate evaluates the trust relationships that
the user has collected in past experiences. The following example:

[trust(UniPi.guest(USER))].open(x1,x2,x3,r)

declares that the action open can be executed only if the service provider
UniPi grants to the Grid user USER the attribute guest. The predicate is sat-
isfied if the service provider UniPi grants the attribute guest to the Grid user
directly, or if the attribute is granted by a set of credentials properly combined.

Proper components of the architecture are in charge of evaluating these pred-
icates, and proper policies are needed, Our language may be considered as an
orchestrator of several policies. The interesting feature is that all these orches-
trated policies can be modelled as inference systems. This clearly does not pre-
vent to integrate other kind of policies, but defines a compact framework.

RTML with trust measures. RTML[14, 5] is a language defining creden-
tials through roles, i.e., authorities assign to someone roles, or attributes. Roles
may be parameterized, e.g., a basic credential of the form A.r(p) ← D means
that A assigns to D the role r with parameter p. In the following credential,
organization IIT assigns the role of IIT researcher to Paolo, whose distinguished
name adopted on the Grid is “CN=Paolo, OU=IIT, O=CNR, L=Pisa, C=IT”.

IIT.researcher(’CN=Paolo, OU=IIT, O=CNR, L=Pisa, C=IT’) ← Paolo

Enriching this language with trust means enhancing credentials in order to
express that a principal trusts someone for performing some functionality f , or
for giving a recommendation regarding a third party able to perform f . Thus,
credentials can specify the degree of the assignment or trust.

We recall the language in [8], enriching RTML with trust measures v.

– (simple member) A.r(p, v)← D. The role A.r(p) has weight v.
– (simple containment) A.r(p, v)←v2

A1.r1(p1, v1). According to A, all members
of role A1.r1(p1, v1) with weight v1 are members of role A.r(p, v) with weight
v = v1 ⊗ v2. v2 is a constant filtering A1’s authority with A’s authority.

– (linking containment) A.r(p) ← A.r1(p1).r2(p2). If B has role A1.r1(p1) with
weight v1 and D has role B.r2(p2) with weight v2, then D has role A.r(p) with
weight v = v1 ⊗ v2.

– (intersection) A.r(p) ← A1.r1(p1) ∩ A2.r2(p2). This statement defines that if D

has both roles A1.r1(p1) with weight v1 and A2.r2(p2) with weight v2, then D has
role A.r(p) with weight v = v1 ⊙ v2.

We do not explicitly express weights in the linking and intersection contain-
ment statements. Indeed, these statements combine basic credentials (the simple
member ones) and they determine how weights presented in the basic credentials
must be combined too.

Operators ⊗ and ⊙ combine the trust measures. Generally speaking, ⊗ com-
bines opinions along a path, i.e., A’s opinion for B is combined with B’s opinion
for C into one indirect opinion that A should have for C, based on what B thinks
about C. The latter, ⊙, combines opinions across paths, i.e., A’s indirect opin-
ion for X through path p1 is combined with A’s indirect opinion for X through
path p2 into one aggregate opinion that reconciles both. To work properly, these
operators must form an algebraic structure called a c-semiring, [9].

In our framework, reputation of a user can be calculated based on past experi-
ences of other services w.r.t. that user. The more the user has been well-behaved
with that service, the more the service will positively recommend interactions
with that user. Services emit two kinds of credentials. The first kind expresses
trust towards a functionality, e.g., towards good behaviours, and we denote them
by A.f(v) ← D, i.e., A trusts D for performing functionality f with degree v.
The others are credentials of recommendation, denoted as A.rf(v) ← D. They
express the fact that A trusts D as a recommender able to suggest someone for
performing f .

Recommendations can be transitive. Transitivity is encoded by a linking
containment of the form A.rf ← A.rf.rf . This statement says that if A defines
B to have property A.rf , and B defines D to have property B.rf , then A defines
D to have role A.rf , i.e., A trusts D as a recommender.

Intuitively, A will trust the recommended party. This can be encoded into
the following statement: A.f ← A.rf.f . This statement says that if B has role
A.rf and C has role B.f then C has role A.f . B, that has the role A.rf , is
the recommender, i.e., A trusts B for choosing someone that is trusted for
performing f . C, that has role B.f , is trusted to perform f by B. Hence, C

is indirectly trusted to perform f by A. This resembles somehow the simple
delegation statement of [4].

We can define a set of functionalities, i.e., a range of values for f , e.g., :

– A.files(p, v)← D. A trusts user D with degree v for operating on a file.
– A.socket(p, v)← D. A trusts user D with degree v for operating on a socket.

In the following, the parameter p will be used to denote the distinguished
name of the user, as specified into his Grid certificate.

3.1 Security Policy Example

We consider a security policy consisting of a behavioural policy, a trust man-
agement policy and a reputation management policy. The behavioural policy is
directly enforced by Gmon, and includes some predicates that, to be evaluated,
could require the usage of the other two policies. These are evaluated through the
trust PDP or by the reputation PDP that will exploit the credentials for trust

and reputation management. Since a Grid application interacts with the com-
putational resource through operative system calls, we assume that the security
relevant actions composing the policy are system calls. We give a simple example
of a behavioural policy that includes the trust and reputation evaluation.

l1: S1 := {file0.txt, file1.txt}
l2: S2 := {file2.txt, file3.txt}
l3: ([in(x1,S1), eq(x2, READ), trust(Unipi.guest(USER))].open(x1,x2,-,fd).
l4: i([eq(x5, fd)].read(x5, -, -, -)).
l5: [eq(x9, fd)].close(x9, -))
l6: par
l7: ([in(x10, S2), eq(x11, WRITE), repmaxof(Unipi.files(USER),0.8)].open(x10,x11,-,fd).
l8: i([eq(x14, fd)].write(x14, -, -, -)).
l9: [eq(x18, fd)].close(x18, -))

This policy defines two sets of files, S1 and S2 (lines l1 and l2). The first rule of
the policy (lines l3 - l5) defines the behaviour in reading files. Line l3 allows to ex-
ecute the open system call if the three predicates [in(x1,S1), eq(x2, READ),

trust(UniPi.guest(USER)] are satisfied. The first two predicates requires that
the file that the application wants to open belongs to the set S1 and that the file
is opened in READ mode. The third predicate, trust(UniPi.guest(USER)),
requires that the user holds the attribute guest in the UniPi domain. Hence,
only files that belong to the set S1 can be read in this system by users who
holds a specific attribute, guest, in the UniPi domain. The evaluation of the user
attributes is executed exploiting the trust management policy described in the
following. The other rule of the policy (lines l7 - l9) defines the allowed behaviour
of the applications in writing files. The main difference from the previous one
is that, it requires that the user reputation for the attribute file, i.e. for oper-
ating on files, is at least 0.8. The reputation of the user for the attribute file is
evaluated using the reputation policy described in the following of this section.

The trust management policy consists of a set of credentials. Some of them
define the attributes of a user for a given service provider. The first two creden-
tials give to the user Paolo the attribute of collab (i.e., collaborator) for the
service provider UniGe, and the attribute of researcher for the service provider
IIT. The parameter “CN=Paolo, OU=IIT, O=CNR, L=Pisa, ST=PI, C=IT”
is the distinguished name (DN) that appears in the identity certificate of Paolo.
The third credential, instead, assigns to Unige the attribute of university for
the MIUR authority. The other three credentials are different from the previ-
ous ones, because they allow to infer new attributes from the attributes that a
user already has. The fourth credential give the attribute guest for the service
provider UniPi to a user that already has the attribute of researcher for IIT and
the attribute of collaborator for UniPi. The fifth credential says that UniPi gives
the attribute university to all the subjects that already has the attribute univer-
sity for MIUR. The last credential, instead, says the UniPi gives the attribute
collaborator to the subjects that already has the attribute collaborator given by
subjects that have the attribute university for UniPi.

1) UniGe.collab(’CN=Paolo, OU=IIT, O=CNR, L=Pisa, ST=PI, C=IT’) ← Paolo.
2) IIT.researcher(’CN=Paolo, OU=IIT, O=CNR, L=Pisa, ST=PI, C=IT’) ← Paolo.

3) Miur.university(’CN=University of Genoa, OU=Security Lab, O=CS Department,
L=Genoa, ST=GE, C=IT’) ← UniGe.

4) UniPi.guest(name) ← IIT.researcher(name) ∩ UniPi.collab(name).
5) UniPi.university(uname) ← Miur.university(uname).
6) UniPi.collab(name) ← UniPi.university(uname).collab(name).

The following is the reputation management policy. The first two credentials
say, respectively, that UniGe gives to Paolo the attribute files with reputation
0.7 and that IIT gives to Paolo the attribute files with reputation 0.8. The third
credential says that UniPi accepts recommendations for the attribute files from
UniGe. Hence, if a user has a credential that gives him the attribute files in
UniGe, than the third credential of the policy gives him the attribute files also
in UniPi (according to the fifth credential). The fourth credential states that
UniPi accepts recommendations for the attribute files from IIT too. Results in
combining these credentials are that: 1) Paolo has been recommended for files
from UniGe, with weight 1 ⊗ 0.7. This is a consequence of combining the first,
third and fifth credentials; 2) Paolo has been recommended for files from IIT,
with weight 1 ⊗ 0.8. This results from the second, fourth and fifth credentials.
Thus, Paolo can present one of the two, according to some requested threshold.

1) UniGe.files(’CN=Paolo, OU=IIT, O=CNR, L=Pisa, ST=PI, C=IT’, 0.7) ← Paolo.
2) IIT.files(’CN=Paolo, OU=IIT, O=CNR, L=Pisa, ST=PI, C=IT’, 0.8) ← Paolo.
3) UniPi.rfiles(’CN=UniversityGenoa, OU=Miur, O=Unige, L=Genoa, ST=GE,
C=IT’, 1) ← UniGe.
4) UniPi.rfiles(’CN - InstituteInformaticsTelematics, OU=IIT, O=CNR, L=Pisa,
ST=PI, C=IT’,1) ← IIT.
5) UniPi.files(userName) ← UniPi.rfiles(recName).files(userName)

4 Implementation

This section describes the ongoing implementation of our framework. It focuses
on the integration of the reputation management system with the Grid compu-
tational resource monitoring system of [7]. We use the Java language, suitable
for developing Grid applications, for the platform independence addressing the
Grid interoperability problem. In our architecture, Gmon is both PEP and PDP
for decisions concerning the behaviour of the applications. To evaluate the user
reputation, instead, Gmon exploits another component, the Reputation PDP,
that is invoked each time the policy requires to evaluate the user reputation to
allow the current action. Gmon and the Reputation PDP runs on the same com-
putational resource. Since the former is developed in C, while the latter in Java,
the Reputation PDP is invoked by Gmon through the Java Native Interface.
The Reputation PDP Java class has two main methods: initialization and
isPermitted. The initialization method is invoked by Gmon in the initial-
ization phase, with a set of parameters that indicates the Credential Repository
where to retrieve credentials and certificates. The method isPermitted is in-
voked by Gmon during the execution of the Java application each time the
security policy requires to evaluate the user reputation for a given attribute.

The Credential Manager manages the Credential Repository. The Recom-
mendation Manager, that is part of the Credential Manager, is in charge of
collecting Grid users credentials from a set of Grid providers that act also as
user recommenders. The Recommendation Manager also updates the Creden-
tial Repository periodically. Instead, the Experience Manager, that is part of
the Credential Manager too, stores the credentials that have been created on
this node. Credentials are written using RTML. The RTML code is embedded
in X509 Certificates. The Reputation PDP verifies the credentials signature, ex-
tracts the related XML code and is passes it to the RTML framework. The RTML
framework has been implemented by Ninghui Li et al. [5], and it consists of a
credential Parser and Engine. The Parser is a DOM-based parser, it parsers the
received credentials and the access rules keeping the information into a complex
data structure, the CredentialStore. The RTEngine implements the algorithm
described in 4.1 and, once invoked, it uses the CredentialStores to evaluate the
credentials and the access rules. Its output is a new CredentialStore contain-
ing the set of credentials physically owned by the user and the ones virtually
owned, which are granted by the evaluation. The new set of credentials repre-
sents the trust of the Grid user on the node. Each secure action has a credential
associated to it which represents the reputation required for the execution. The
method isPermitted evaluates all the credentials in the user CredentialStore
to verify if one of them satisfies the requirements for the action, i.e., if one of
the virtual credentials is compatible with the one associated to the action and
its level of reputation (weight) is greater then the one requested.

When the application finishes to execute, or it is interrupted for a policy vi-
olation, Gmon communicates to the Experience Manager about this execution.
The Experience Manager issues to the current Grid user a new X509 Certificate
embedding the RTML code representing credentials associated to the correctly
executed actions These credentials could be used by the Reputation PDP the
next time the same Grid user executes an application on this computational
resource. Also, these are exploited by the Recommendation Manager to recom-
mend this user to other Grid service providers.

4.1 An implementation of RTML with trust measures

The algorithm calculates a minimal set of simple member credentials, starting
from two sets of available credentials, simple and not simple credentials. Without
considering trust measures, the algorithm basically builds the resulting set by
iteratively applying the inference rules for each kind of credential. If the inferred
credential does not belong yet to the set of computed basic credentials, then it is
added to this set. The procedure is iterated until no new credentials are found.
If the algorithm is applied to a finite set of credentials, it correctly terminates.

Adding weights is possible. In this case the algorithm is a variant of the Floyd
algorithm for calculating minimal/maximal weighted paths among all the nodes
in a graph. Indeed, A.r(v) ← C states that between A and C there is an arc
labelled r and with measure v. We consider order ≤w, defined as v1 ≤w v2 iff
v1 ⊙ v2 = v2. Then, the algorithm computes the maximal weighted path (w.r.t.
≤w) in the graph. We remind that in c-semiring ⊗ is an inclusive operation.

 0
unmonitored monitored

file size: 1KB

 ti
m

e
(m

ill
is

ec
s)

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0
unmonitored monitored

file size: 100KB

 ti
m

e
(s

ec
s)

 1

 2

 3

 4

Fig. 2. Experimental Results

Trust Calculations (basic creds, rules)= {
Results:=basic creds; Changed := true;
While(Changed) {

Changed:=false;
For each credential A.r ←v2

A1.r1 in rules and for each credential
A.r1(v1)← C in basic creds

if A.r ← C not in basic creds, or A.r(v)← C in basic creds with
not v1 ⊗ v2 ≤w v

then {remove from basic creds all the creds like A.r ← C;
insert A.r(v1 ⊗ v2)← C in basic creds; Changed:=true};

For each credential A.r ← A.r1.r2 in rules and for each credential
A.r1(v1)← B, B.r2(v2)← C in basic creds

if A.r ← C not in basic creds, or A.r(v)← C in basic creds with
not v1 ⊗ v2 ≤w v

then {remove from basic creds all the creds like A.r ← C;
insert A.r(v1 ⊗ v2)← C in basic creds; Changed:=true};

For each credential A.r ← A1.r1 ∩A2.r2 in rules and for each credential
A1.r1(v1)← C, A.r2(v2)← C in basic creds

if A.r ← C not in basic creds, or A.r(v)← C in basic creds with
not v1 ⊙ v2 ≤w v

then {remove from basic creds all the creds like A.r ← C;
insert A.r(v1 ⊙ v2)← C in basic creds; Changed:=true}; }

5 Performance experimentation

This section evaluates the overhead introduced by our authorisation framework.
We performed some experiments to measure the execution time of a test applica-
tion with and without our framework. We used the security policy of Section 3.1,
and a very simple application, that opens a file, writes a set of data, and closes
the file. Concerning performances, this is the worst case, because this applica-
tion does not perform any computation, each performed action is monitored by
our framework and, consequently, it introduces overhead. Figure 2 reports the
execution time and the overhead for writing files of 1Kbyte and 100Kbytes.

The overhead measured writing a file of 1Kb is about 13% of the computa-
tional time: 2% is due to the credential evaluation, while 11% is due to check

the behavioural policy. Instead, in the second experiment, the overall overhead is
11% of the total execution time, and it is mainly due to the behavioural controls.
The overhead introduced by our framework depends on several factors. One of
this factor is the security policy, because simpler security policies take less time to
be evaluated. Another factor that determines the impact of the introduced over-
head is the application. Actually, if the application is computational-intensive,
i.e., it executes mainly computation, interacting a few times with the underlying
resource, the overhead for monitoring refers to large computation times, and it
is typically negligible. Otherwise, if the application mainly performs interactions
with the resource, like in the above example, the overhead for monitoring them
heavily impacts on the final execution time.

6 Conclusions

In this paper, we have enriched our framework for fine-grained access control on
the Grid, by adding a RTML-based inference engine, managing trust and repu-
tation credentials. We plan to evaluate the performances of the overall system,
by considering more complex case studies.

References

1. F. Baiardi, F. Martinelli, P. Mori, and A. Vaccarelli. Improving grid services
security with fine grain policies. In OTM Workshops, pages 123–134, 2004.

2. I. Foster. Globus toolkit version 4: Software for service-oriented systems. In IFIP
NPC, pages 2–13. Springer, 2005.

3. H. Koshutanski, F. Martinelli, P. Mori, L. Borz, and A. Vaccarelli. A fine grained
and x.509 based access control system for globus. In OTM, pages 1336–1350.
Springer, 2006.

4. N. Li et al. Rtml: A role-based trust-management markup language. Technical
report, CERIAS 03, 2004.

5. N. Li, J.C. Mitchell, and W. H. Winsborough. Design of a role-based trust man-
agement framework. In S&P, pages 114–130. IEEE, 2002.

6. J. Liu and V. Issarny. Enhanced reputation mechanism for mobile ad hoc networks.
In iTrust, pages 48–62, 2004.

7. F. Martinelli, P. Mori, and A. Vaccarelli. Towards continuous usage control on
grid computational services. In ICAS/ICNS, page 82, 2005.

8. F. Martinelli and M. Petrocchi. On relating and integrating two trust management
frameworks. In VODCA, pages 191–205, 2007.

9. G. Rote. Path problems in graphs. Computing Supplementum, 7:155–189, 1990.
10. R.O. Sinnott, A.J. Stell, D.W. Chadwick, and O.J. Otenko. Experiences of applying

advanced grid authorisation infrastructures. In Advances in Grid Computing, pages
265–274. Springer, 2005.

11. J.D. Sonnek and J.BF Weissman. A quantitative comparison of reputation systems
in the grid. In Gris Computing, 2005.

12. M. Thompson, A. Essiari, K. Keahey, V. Welch, and S. Lang S. Fine-grained
authorization for job and resource management using akenti and the globus tookit.
In CHEP, 2003.

13. J. Weng, C. Miao, and A. A robust reputation system for the grid. In CCGRID,
pages 548–551. IEEE, 2006.

14. W. H. Winsborough and J.C. Mitchell. Distributed credential chain discovery in
trust management. JCS, 11(1):35–86, 2003.

