An Implementation of Secure Two-Party
Computation for Smartphones with Application to
Privacy-Preserving Interest-Cast

Gianpiero Costantino, Fabio Martinelli, Paolo Santi, Dario Amoruso
IIT-CNR, Pisa, Italy
Email: name.surname @iit.cnr.it

Abstract—In this paper, we present an implementation of the
FairPlay framework for secure two-party function computation
on Android smartphones, which we call MobileFairPlay. Mobile-
FairPlay allows high-level programming of several secure two-
party protocols, including protocols for the Millionaire problem,
set intersection, computation of Jaccard similarity coefficient,
etc. All these functions are useful in the context of mobile social
networks and opportunistic networks, where parties are often
requested to exchange sensitive information (list of contacts,
interest profiles, etc.) to optimize network operation.

To demonstrate the feasibility of MobileFairPlay, we present an
application to privacy-preserving interest-casting in opportunistic
networks, implementing a recently proposed protocol. We tested
running times of the implemented protocol on several Android
phones, obtaining very reasonable (up to 5sec) running times.
These results clearly promote MobileFairPlay as a feasible
security framework for mobile environments.

I. INTRODUCTION

Nowadays, crowded places represent for people opportuni-
ties to share information deemed interesting. Besides sharing
information through traditional, web-based platforms and ap-
plications such as Facebook, Twitter, etc., availability of short
range radio interfaces in smartphones, tablet PCs, etc. allows
for information sharing through direct, opportunistic commu-
nication between individuals (typically, using the Bluetooth or
WiFi interface). By exploiting mobility of individuals, a piece
of relevant information (spanning from a simple advertisement
to private documents) can be spread in a geographical domain
(e.g., a shopping center, a neighborhood, or even a city) even
without connecting to the Internet.

This model of store-carry and forward data to others is
known as Opportunistic Networking (OppNets) in the liter-
ature. Several techniques have been proposed to optimize the
information forwarding process in OppNets, including recently
proposed approaches based on exploiting information on social
ties between individuals to optimize information diffusion [1],
[2], [3]- A common features of these approaches is that, before
taking a decision on whether sharing an information with an
encountered individual, users have to exchange some type of
sensitive information, such as history of past encounters [1],
[2], interest profiles [3], etc. Considering that the encountered
individual is in general a stranger, this exchange of sensitive
information (which occurs in plain text in the mentioned
approaches) is likely to be deemed unacceptable by the user

in real-world scenarios, where privacy concerns play a major
role. Thus, the problem of how to optimize the information
diffusion process in OppNets without (or only minimally)
disclosing sensitive information to the other party has become
very important recently.

To our best knowledge, only a few very recent papers
deal with the problem of privacy preservation in OppNets,
including our recent work on privacy-preserving interest-based
message forwarding [4]. Another interesting example is [5],
where the authors present a privacy-preserving friendship
recommendation system for mobile networks.

While some privacy-preserving approaches to information
diffusion and friendship recommendation have been proposed
very recently, to our best knowledge the problem of demon-
strating feasibility of a privacy-preserving approach in mobile
environments remains open to date. By “feasibility” here we
mean that the privacy-preserving approach can actually be
implemented in a mobile platform, and runs in an acceptable
time — a few seconds.

In this paper, we present for the first time a feasible
implementation of a cryptographic framework for Secure
Multi-Party computation (the FairPlay framework proposed
in [6]) on the Android mobile platform. Secure Multi-Party
computation is a very general framework that can be used for
privacy-preserving computation of a variety of functions where
different parts of the input belong to different users, such as
set intersection, comparison of two values, Jaccard similarity
coefficient (used, e.g., in [5]), etc. To show feasibility of a spe-
cific OppNet application, we consider the privacy-preserving
interest-cast approach that we recently proposed [4], and we
show that the protocol introduced therein can be executed
in a mobile environment with very reasonable running times
(a few seconds). In particular, the developed application:
1) find people in Alice’s neighborhood through a Bluetooth
scan operation, 2) connect to Bob and discover whether Bob
and Alice have similar interest profiles without disclosing
sensitive information, and 3) share messages between Alice’s
and Bob’s devices only if their profiles are similar. To our best
knowledge, the one presented in this paper is the first feasible
implementation of a privacy-preserving protocol for OppNets
in a mobile environment introduced in the literature.

II. RELATED WORK

The problem of implementing privacy-preserving applica-
tions in mobile environments has been addressed only in a
few recent works. In [7], the authors present an implementation
of Secure Multi-party functions for Android smartphones. The
applications running on the smartphones communicate through
the WiFi interface. While the work of [7] is similar in spirit to
ours, the reported running times are much higher than those
obtained in our study (ranging from 68sec to > 500sec as
compared to < 5sec in our study). Thus, differently from ours,
the approach presented in [7] cannot be considered feasible
according to the requirements on running time defined in
the Introduction. Furthermore, the approach of [7] leaves to
the application developer the hard work of translating the
desired function into a binary circuit, while ours is a high-level
approach in which the developer can easily encode the function
through the FairPlay specification language [6], and the hard
work of translating the function into boolean is performed
once by the FairPlay framework prior to the first application
execution (compilation phase).

In [8], De Cristofaro et al. introduce a Private Contact
Discovery primitive according to which two users can compute
their common contacts in a privacy-preserving manner. The
authors test the running time of their primitive on different
processors, including one used on smartphones. While the
reported running times for the smartphone processor seems
acceptable (< T7secs), it is not clear whether the reported
time refers to a complete, two party implementation of the
primitive, including the time requested to exchange data
through a short range radio interface (WiFi or Bluetooth), as
done in our study. Furthermore, the one reported in [8] is the
implementation of a single secure two-party function, while
the implementation of FairPlay on mobile Android devices
reported in this study allows the definition of a wide variety
of secure two-party functions.

We also briefly mention recently proposed approaches
aimed at designing privacy-preserving protocols in opportunis-
tic networks. In [5], the authors propose a technique to rec-
ommend friends in a mobile environment based on similarity
of contact lists, without disclosing private information to the
other party. The approach is based on a secure two-party
computation of the Jaccard similarity coefficient between the
two contact lists. In [4], we proposed a privacy-preserving
implementation of the interest-cast communication primitive
for opportunistic networks introduced in [3]. The approach
exploits a version of the well-known Yao’s protocol for solving
the Millionaire problem [9]. In both cases, the authors do not
present an actual implementation of the proposed protocols on
mobile devices to assess their feasibility. This is what we do
in this paper, in particular presenting an implementation of the
protocol of [4] on Android smartphones.

III. FAIRPLAY PROJECT

FairPlay [6] is a framework for secure two-party and multi-
party [10] computation that allows users to write and run

secure functions. In particular, the user writes high-level pro-
cedures that are compiled by FairPlay into optimized boolean
circuits. Since in mobile environments, and in OppNets in
particular, interactions are mostly pair-wise, in the following
we focus on the two-party version of FairPlay, which is
sufficient to our purposes.

We recall that in secure two-party computation we have
two parties (Alice and Bob), each holding some private data
x and y, respectively. The goal of secure two-party function
computation is allowing Alice and Bob to jointly compute the
outcome of a function f(x,y), without disclosing to the other
party the own input. The straightforward way to solve the
above problem would be to have a Trusted Third Tarty (TTP)
to which Alice and Bob securely send the data, and to have
the TTP compute f(x,y) and separately send the outcome to
Alice and Bob. The business in secure two-party computation
amounts to securely compute f(x,y) without the need of a
TTP.

FairPlay is shown in [6] to have strong security properties
in the context of two-party computation. The framework is
shown to be secure against a malicious party; in particular
1) a malicious party cannot learn more information about the
other party’s input than it can learn from a TTP that computes
the function; and ¢4) a malicious party cannot change the
output of the computed function. Notice that, as customary in
secure two-party computation, there is an asymmetry on the
provided security guarantees: in particular, there is no way
to prevent Alice from terminating the protocol prematurely,
and not sending the outcome of the computation to Bob. This
situation can be detected by Bob, but cannot be recovered
from.

FairPlay allows the user to specify a secure two-party com-
putation protocol using a high-level language called SFDL.
The SFDL code is then compiled into boolean circuits (for
both Alice and Bob), which are optimized with the purpose
of reducing their size as much as possible. The outcome
of this phase is a Java object. Notice that the compiling
phase is performed only once before the first execution of
the protocol. Secure two-party computation is then realized
by having Alice and Bob to exchange their (garbled) circuits
through an oblivious transfer protocol, so that both Alice and
Bob can eventually know the outcome of f(z,y) by evaluating
the respective garbled circuit. Communication between the two
parties is realized in FairPlay through establishing a TCP/IP
connection.

IV. MOBILEFAIRPLAY

Two main issues have to be addressed in porting FairPlay to
a mobile environment such as Android. First, the Java object
computed as outcome of the FairPlay compilation phase has
to be made compatible with the JavaVM used in the mobile
phone, which is usually slightly different from the standard
one. In particular, Android phones use the DalvikVM. The
first step in our porting process has then been translating
a Java object as produced by FairPlay into a .dex file
executable on the DalvikVM. Second, FairPlay uses TCP/IP

for communication between parties, which is not suitable for
setting up and operating a direct radio communication between
two smartphones. As customary in opportunistic networking,
we used instead the Bluetooth interface for communication
between the two parties. The TCP/IP protocol stack used in
FairPlay has then been substituted by the Bluetooth protocol
stack in MobileFairPlay. In particular, when Alice wants to
communicate with Bob, she hooks to the Bluetooth socket
of the smartphone (Bluetooth interface must be activated
before executing the secure multi-party protocol); a Bluetooth
connection request is then sent to Bob, and the communication
between the two parties can start once Bob has accepted
Alice’s connection request.

V. INTEREST-CASTING IN OPPNETS

Interest-casting has been recently proposed as a novel
forwarding strategy in OppNets [3]. In this section, we briefly
describe the principles underlying interest-casting, and the spe-
cific interest-casting application we have implemented using
MobileFairPlay.

According to [3], each user in an opportunistic network is
characterized by an interest profile, which is used to drive the
information dissemination process within the network. Notice
that similar forwarding protocols based on a notion of a user’s
“social profile” have been recently introduced in the literature
[11], [12]. User interests can be modeled as an m-dimensional
vector in a common m-dimensional interest space, where
the number m of interest is typically much smaller than the
number n of nodes in the network. More formally, the interest
profile of user A is defined as:

Iy =(a1,...,0m) ,

where a; € [1,max] is an integer representing A’s interest
in the i-th topic of the interest space. Note that interests are
expressed as integers in the range [1, max], with 1 representing
no interest and maxz (an arbitrary integer > 0) representing
maximum interest'.

Let S be a user denoted as the message source. According
to the definition of interest-casting, the message M generated
by S (which can be thought of as a piece of information node
S wants to share within the network) should be delivered to
all nodes in the set D(S,), where

D(S,y) ={U € Nl|sim(U,S) >~} ,

where sim(U, S) is a similarity metric used to express similar-
ity between a node U and S’s interest profiles, with relatively
higher similarity values representing relatively more similar
interests, and ~ is the relevance threshold (set by S). Set
D(S,) is called the set of relevant destinations, and in
principle it is not known in advance to node S. Instead, set
D(S,~) is implicitly defined by S’s interest profile, and by
the relevance threshold ~.

IThe notion of interest profile can be straightforwardly extended to rep-
resent also information about a user’s habits, such as living in a certain
neighborhood, working in a certain place, and so on. For details, see [3].

In the interest-cast implementation presented in the fol-
lowing, we consider the vector-component-wise (vecw) simi-
larity metric defined in [4], which we recall here. Let S =
(81y..-,8m) and U = (uq,...,un) be the interest profiles of
users S and U, respectively. We have:

1 ifvie{l,...,m}, Ju; —s;| <A
0 otherwise

vew(U, S, \) = {)
where A € [0,maz] is an integer parameter used to nar-
row/widen the scope of the interest-cast. More specifically,
by setting v = 1, we have that D(S, 1) corresponds to the set
of all nodes in the network if A = max, while D(S,1) = {S}
if A=0.

VI. PRIVACY-PRESERVING INTEREST-CASTING

The forwarding condition in the privacy-preserving version
of the interest-casting protocol proposed in [4] requires that
message M is copied from node U’s buffer to node Vs buffer
only if a similarity conditions between U and V profiles is
satisfied. More specifically, message exchange occurs only if
vew(U,V,A) = 1, for some A > 0. In order to preserve
privacy, in [4] it is proposed that, when node U (Alice) and V'
(Bob) meet, they compute an estimation vcw,. of the actual
vcw metric, computed using only a subset of the interest
dimensions (topic) in the profile. Notice that the following
property hold: vew(U,V,A) = 1 = vcw.(U,V,\) = 1, for
any number of topics used to compute vcw.. Unfortunately,
the reverse is not true, and it is indeed possible to have
vewe (U, V, A) = 1 even if vew(U,V, \) = 1 (False Positive).
FP events should be avoided, since when a FP occurs the piece
of information generated by S is delivered to an unintended
user, which might lead to disclosure of potentially sensitive
information, or simply generate undesired occupation of the
buffer at V. The occurrence of FP events can be reduced
by increasing the number k of topics used to compute vcw,
(clearly, Prob(FP) = 0 when k = m). However, the
more topics are used to compute vcw,., the more information
is leaked to the other party during the handshaking phase
preceding a possible message transfer (see [4] for details).
Furthermore, our study reveals that the larger k, the longer the
duration of the secure hand-shaking phase. In practice, then,
the value of k£ should be tuned by the application designer
to optimize the tradeoff between private information leakage,
false positive probability, and protocol running time.

In [4], we proposed to use secure two-party computation
to compute vew, (U, VA) without disclosing the own interest
profile to the other party, except for the information leakage
implied by the knowledge of the value of vcw. (U, V' \) at the
end of the protocol. More specifically, the protocol proposed in
[4] is based on a solution of the well-known “Millionaire Prob-
lem” introduced by Yao [9]. We recall that in the Millionaire
Problem, two users wants to know whom of them is the richer,
without revealing to the other party his/her own amount of
money. In particular, the problem is one of computing whether
condition z < y holds, where Alice knows only “x”, and Bob

knows only “y”. At the end of the protocol execution, Alice

knows only the outcome of the evaluation of condition = < vy,
without knowing y (similarly for Bob).

The protocol proposed in [4] for computing vcw is reported
in Figure 1, which refers to the case of a single topic used to
estimate vcw, (i.e., k = 1). Alice and Bob jointly estimate
condition | — j| < A, where ¢ represents Alice’s interest level
in the selected topic and j Bob’s interest level in the selected
topic. Once Alice and Bob has established similarity of their
interests, the data transfer can start. Notice that the similarity
condition can be tested by repeating the Millionaire’s protocol
twice with slightly different input values (see [4] for details).

Books Books

i o

Alice Bob

No Yes

Alice Bob

Fig. 1. Protocol flow to discover similarity in a topic (Books).

Notice that, in order to reduce impact of possible Sybil
attacks, in [4] it is proposed that the subset of topics used
to compute vcw, is randomly selected by Bob, and not by the
protocol initiator Alice.

VII. INTEREST-CASTING WITH MOBILEFAIRPLAY

In this section, we present the implementation of the basic
building block of a privacy-preserving interest-casting applica-
tion (secure hand-shaking between Alice and Bob to estimate
vcwe, and possible message exchange) realized through Mo-
bileFairPlay.

In the developed application, and a user can:

1) set up his own profile regarding different topics;

2) start a new connection with another user and checking
if they have similar interests;

3) wait for incoming connections.

Fig. 2 displays the main window of our application.

A. User profile

When the application is run for the first time, the preference
window is shown to the user, see Fig. 3. Then, he/she must
insert a value for each topic in the window. The possible
values that can be inserted are between 1 and 100, where
the lowest value means no interest, and the highest value,
maximum interest for a topic. Examples of topics in the profile
are: cars, books, movies, sports, television, games, and others.
Finally, the user sets the value of A required for computing

¥

Interest Cast APP

he app requires that the
bluetooth interface is enabled

About us

Preferences

2 ol B 14:34
Interest Cast APP

Motorbikes m
Technology m

Television

Travelling

Friendship
threshold

Fig. 3.

User’s profile window

similarity metric vcw,.. The value of A can be set by means
of a slide-bar, and accepts values between 0 and 10. When
a new incoming request from Alice comes, the metric vcw,
is computed using Bob’s A value (again, this is to reduce the
impact of Sybil attacks as noticed in [4]).

B. Privacy-preserving hand-shaking

This part represents the main section of our App. We con-
sider the case in which Alice is carrying on her smartphone,

and starts to discovers people around her. Alice decides to | // Bob’s array, one position is for the
connect to another device, which is owned by Bob. Our app threshold

manages both the discovery and connection phase with the |type BoblInput = int[5];

Bluetooth interface, hence Alice can covers a range of ten- | // Alice s output—array. One position for

twenty meters around her. Thus, while Bob is waiting for an each topic comparison
incoming connection, Alice tries to connect with Bob. After | type AliceOutput = Boolean[4];
that both devices have been paired, the App works as described | // Bob’s output—array. One position for
in Fig. 4. each topic comparison
type BobOutput = Boolean[4];
"? &Q type Output = struct {AliceOutput alice
A‘”:e Bob BobOutput bob};

type Input = struct {Alicelnput alice,
[Connection Established ——————— BobInput bob};

W //The function that implements the secure
forwarding condition

= Function Output output(Input input)

Secure Computation {

Forwarding Condition var int tmp :
‘@ .@ var int threshold;
var Key i;
[j // The threshold is initialised

[j [j threshold = input.bob[4];
—| Connection Ends Ii

// For all topics

Fig. 4. Protocol steps for (i =0 to int—1)

{
1) Topic/s selection: When Alice and Bob have been estab- |tmp = (input.bob[i] — input.alice[i]);

lished a new connection, Bob, who received the connection,

randomly selects different topics to verify the forwarding |//If tmp is less than 0, we negate tmp in

condition. As commented in the previous section, Bob can order to make it positive

select a variable number k of topics. In our application, we | if (tmp < 0)

considered to case of 1 and 4 topics (out of 15 possible topics)

used to compute vcw,. The purpose of using different values tmp = "tmp;

of k was mainly estimating the impact of k on the duration |}

of the privacy-preserving hand-shaking phase.
As soon as Alice receives the packet containing the topics | // if the difference is less than the

selected by Bob, they start verifying the forwarding condition threshold ,
in a secure manner. // the forwarding condition for the i—th
2) Secure Computation of the forwarding condition: This topic is verified

is part of the application is realized through MobileFairPlay. | if (tmp <= threshold)
The protocol proposed in [4] to compute vcw, is coded in {

SFDL. The source code is reported below. output.alice[i] = I;
output.bob[i] = I;

program InterestCast { else

// Number of topics {

const int = 4; output. alice[i] = 0;

// 4—Dbit integer as type output.bob[i] = 0;

type Key = Int<4>; }

// 8—bit integer as type

type int = Int <8>; 1}

// Alice’s array

type Alicelnput = int[4]; Listing 1. Secure Forwarding Condition written in SFDL

So, when the Bluetooth connection is established, Bob and
Alice are ready to run the secure function. Bob is the first
that runs the function and waits for Alice. She uses the
Bluetooth socket that has just established to connect with
Bob. At this point, they start to run the secure function
according to the secure steps implemented in MobileFairPlay.
During this execution, both Bob and Alice use their own
value of the selected topic, extracted from the interest profile,
to compute vcw.. However, these values are not sent to the
other participant in plain, but they are encoded in the garbled
Boolean circuits exchanged through MobileFairPlay. This way,
at the end of the hand-shaking phase Alice and Bob only
knows the result of jointly computing vcw,, without knowing
the specific interest values of the other party.

We recall that, during the execution of our secure function,
the value of A used is the one set by Bob in his own preference
window. So, at the end of the hand-shaking phase, the result is
positive (and file transfer can start) if and only if, for all topics
selected by Bob, the similarity condition is verified. Only in
this case, Bob accepts Alice as a person with similar interests,
and exchange files with her.

3) Files Transfer: Once the hand-shaking phase has estab-
lished that Alice and Bob have similar interests, Bob sends
his files to her. In fact, Bob stores in his smartphone a folder
containing the files which he received in the past from other
users with similar interests, or that he decided to share because
deemed of interest for other people.

Our developed application allows exchanging files of any
kind and any extension; in fact, raw bytes are exchanged
during the file exchange phase, allowing to transfer files of
arbitrary format. In our tests, we have successfully transfered
text files (. txt), pdf files, image files (. jpg), etc. A file can
represent a movies-advertisement regarding all cinemas in a
city, an advertisement of a rock music-concert, or any other
kind of information. We recall that the main idea of interest-
casting is that, since Bob and Alice share a similar interest,
the files that Bob has are likely to be of interest for Alice too.

VIII. COMPUTATIONAL-TIME EVALUATION

Here, we present the results —in terms of execution-time—
of two main studies, regarding:

« compilation of the SFDL code, and

o running of the secure function (hand-shaking phase).

The results were obtaining testing our application on five
different model of smartphones currently present in the market.
Table I reports the specification of the models considered in
our evaluation.

A. Compiling the secure function

The current version of the APP required that when it is run
for the first time, the application creates the boolean circuits
that are executed during the secure hand-shaking phase. The
time required to convert the function into boolean circuits
depends on the function that is written as SFDL. In this
analysis, we compare two functions: one that evaluates vcw,
based on a single topic, and the other one in which the

[Smartphone [Time (ms) |
Samsung Galaxy S2 382
Samsung S-plus 446
Samsung S 492
Lg Optimus Dual 449
Htc Desire 489
TABLE II

COMPILATION TIME REQUIRED FOR ONE TOPIC FUNCTION

[Smartphone [Time (ms) |
Samsung Galaxy S2 4471
Samsung S-plus 5347
Samsung S 6605
Lg Optimus Dual 5352
Htc Desire 6512
TABLE III

COMPILATION TIME REQUIRED FOR FOUR TOPICS FUNCTION

compared topics are four. The code given as input to the
MobileFairPlay compiler is that one in code listed in 1, which
refers to the case of four topics.

In Table II and III, the time that each device requires to
compile the secure function is shown. In the first case, the
circuits are quickly created. Instead, the time to convert the
function of four topics is higher. In this phase, the most
important requirement is the smartphone hardware. In fact,
those ones with higher frequency-clock gets a lower time for
the compilation. Notice that the compilation time displays
a super-linear increase with the number k of topics used
to evaluate vcwe, and it is quite high in the case of four
topics. However, these results do not impair the feasibility
of the developed interest-cast application, since compilation
is performed only once, during the first execution of the
application (it can be considered as part of the application
installation time).

B. Running the secure function (hand-shaking)

In this section we evaluate the time that Alice and Bob
need to run the secure function, i.e., the duration of the hand-
shaking phase.

3000

2500 - |

5 5
2000 - S

2 - R - -
o 1500 - X X X -

_E K2 SRS K2 K2
1000 88 S = S
500 s 355 SRR

oL KR L B | BEE S

Samsung S2 LG Optimus Dual HTC Desire Samsung S
Smartphones
Fig. 5. One topic: Bob running time of the secure function

[Smartphone [CPU [RAM [Bluetooth Ver. [Android O.S.]
Samsung Galaxy S2 Dual-core 1228 MHz 1 GB 3.0 2.3.6
Samsung S-plus Single-core 1443 MHz | 512 MB 3.0 235
Samsung S Single-core 1024 MHz | 512 MB 3.0 233
Lg Optimus Dual Dual-core 1024 MHz 512 MB 2.1 234
Htc Desire Single-core 1024 MHz | 576 MB 2.1 223
TABLE I

SMARTPHONES USED FOR TESTING THE INTEREST-CAST APPLICATION

Fig. 5 shows the time needed to run the secure function in
the case of one topic comparison. This time includes the time
needed to exchange the garbled boolean circuits through the
Bluetooth interface, and to compute the output of vcw,. The
results are obtained considering the case in which the role of
Alice is kept constant. In fact, while Bob is run four times
with four different smartphones, Alice is instead always run
on the Samsung Galaxy Plus.

Fig. 6 considers the opposite case. Now, the role of Bob is
kept on the Samsung Galaxy Plus, while Alice is run on the
other devices. As expected, we observe that in both cases the
higher the computational power of the smartphone, the lower
the time required to execute the secure function evaluation.
Furthermore, we notice that by varying the role of Alice, the
computational power of the smartphone has a stronger effect
on the running time. This is because in the case of two party
computation, Alice runs the heavier role, and she benefits more
of a powerful smartphone.

3000

2500 |- RRRERRTE: R]

2000 -

1500 -

Time (ms)

1000 -

500 -

: :) :
Samsung S2 LG Optimus Dual HTC Desire Samsung S

Smartphones

Fig. 6. One topic: Alice Running Time of the secure function

We then proceeded to test the secure function in the case of
four topics comparison. In Fig. 7 Alice is run on the Samsung
Galaxy Plus, while Bob uses a different smartphone each time.
Even in this case, the behavior is similar to the previous case.
As expected, the best result is obtained with the most powerful
device. Figure 8 reports running times when Bob is run on the
Samsung Galaxy Plus, while Alice uses different smartphones.
It is interesting to observe that, while a clearer benefit of Alice
using a more powerful device is still perceivable, the relative
advantage provided by a powerful smartphone is smaller than
in the case of single topic computation. This is due to the fact
that with four topics the exchanged garbled Boolean circuits

are larger, and the time required to exchange the circuits
over the Bluetooth link (which is largely independent of the
smartphone CPUs) tends to dominate the overall running time.
Finally, we observe that, differently from the compilation time,
the duration of the secure function computation (hand-shaking)
is sub-linear with the number k of topics used to compute
vcw,. For instance, considering the case of Alice running
on Samsung Galaxy Plus and Bob running on Samsung
Galaxy S2, we have a running time of 2.1sec with one topic,
and of 3.7sec with four topics. These results are then very
encouraging for the scalability of the designed interest-casting
application to larger interest profiles.

5000
4000 |- : .
g 00 g L = S
[
g : : : : :
= s = =
1000 - : : : : : 1
= L = =
0 g . g g . g g g g
Samsung S2 LG Optimus Dual HTC Desire Samsung S
Smartphones
Fig. 7. Four topics: Bob Running Time of the secure function
5000
4000 | S ﬁ& ﬁ& 1
—~ 3000 - o
) RRRRIXX, XRXXXXX!
= 2000 - Q%\ Q%\ 1
1000 | @zgg« Qé%/* i
Samsung S2 LG Optimus Dual HTC Desire Samsung S
Smartphones
Fig. 8. Four topics: Alice Running Time of the secure function

Summarizing, our results clearly show that protocols be-
longing to the class of Secure Two-Party Computation nowa-

days can be efficiently executed on mobile devices. Although
the running time required is not negligible, it always turned
to be below Hsec for any pair of smartphones considered in
our study. We can expect running times to become even lower
as computational and communication power of smartphones
increase.

IX. CONCLUSION

In this work, we have presented for the first time a frame-
work, derived from project FairPlay [6] and which we call
MobileFairPlay, for secure two-party function computation in
mobile environments based on the Android operating system.
MobileFairPlay inherits the nice features of FairPlay, such as
ease of use (high-level protocol programming) and efficiency,
and port them in a mobile environment.

To assess the effectiveness of MobileFairPlay, we have im-
plemented and extensively tested a privacy preserving interest-
cast application for opportunistic networks. Our tests, per-
formed using five different smartphones, have revealed that
MobileFairPlay is a feasible framework for mobile environ-
ments: the running time of our application resulted always
below 5sec, independently of the smartphones used by the
two parties involved in secure function computation.

For future work, we plan to implement other secure two-
party functions using MobileFairPlay and to test them, in
order to further assess MobileFairPlay as a framework for
efficient secure two-party execution in mobile environments.
We also plan to extend MobileFairPlay to support other mobile
platforms, such as iOS and Symbian.

REFERENCES

[1] E. Daly and M. Haahr, “Social network analysis for routing in discon-
nected delay-tolerant manets,” in ACM MobiHoc, 2007.

[2] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forward-
ing in delay tolerant networks,” in ACM MobiHoc, 2008.

[3] A. Mei, G. Morabito, P. Santi, and J. Stefa, “Social-aware stateless
forwarding in pocket switched networks,” in IEEE Infocom, 2011.

[4] G. Costantino, F. Martinelli, and P. Santi, “Privacy-preserving interest-
casting in opportunistic networks,” in IEEE Wireless Communication
and Networking Conference (WCNC), 2012.

[5] E. Baglioni, L. Becchetti, L. Bergamini, U. Colesanti, L. Filipponi,
A. Vitaletti, and G. Persiano, “A lightweight privacy-preserving sms-
based recommendation system for mobile users,” in ACM RecSys, 2010.

[6] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella, “Fairplay—a secure
two-party computation system,” in Proceedings of the 13th conference
on USENIX Security Symposium - Volume 13, ser. SSYM’04. Berkeley,
CA, USA: USENIX Association, 2004, pp. 20-20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251375.1251395

[71 Y. Huang, P. Chapman, and D. Evans, “Privacy-preserving applications
on smartphones,” in Proceedings of the 6th USENIX conference
on Hot topics in security, ser. HotSec’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 4—4. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2028040.2028044

[8] E. De Cristofaro, M. Manulis, and B. Poettering, “Private discovery
of common social contacts,” in Proceedings of the 9th international
conference on Applied cryptography and network security, ser.
ACNS’11. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 147-165.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2025968.2025980

[9] C. Andrew and C. Yao, “Protocols for secure computations,” in 23rd
IEEE Symposium on FOCS, 1982, pp. 160 —164.

[10] A. Ben-David, N. Nisan, and B. Pinkas, “Fairplaymp: a system for
secure multi-party computation,” in Proceedings of the 15th ACM
conference on Computer and communications security, ser. CCS *08.
New York, NY, USA: ACM, 2008, pp. 257-266. [Online]. Available:
http://doi.acm.org/10.1145/1455770.1455804

[11] J. Wu and Y. Wang, “Social-feature based multi-path routing in delay
tolerant networks,” in /EEE Infocom, 2012.

[12] D. Eppstein, M. Goodrich, M. Loffler, D. Strash, and L. Trott, “Category-
based routing in social networks: Membership dimension and the small-
world phenomenon,” in IEEE Conf. on Computational Aspects in Social
Networks (CASoN), 2011.

