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Abstract

In this paper, we analyze the critical transmitting range for connectivity in

wireless ad hoc networks. More speci�cally, we consider the following problem:

assume n nodes, each capable of communicating with nodes within a radius of r,

are randomly and uniformly distributed in a d-dimensional region with a side of

length l; how large must the transmitting range r be to ensure that the resulting

network is connected with high probability? First, we consider this problem for

stationary networks, and we provide tight upper and lower bounds on the critical

transmitting range for one-dimensional networks, and non-tight bounds for two and

three-dimensional networks. Due to the presence of the geometric parameter l in

the model, our results can be applied to dense as well as sparse ad hoc networks,

contrary to existing theoretical results that apply only to dense networks. We

also investigate several related questions through extensive simulations. First, we

evaluate the relationship between the critical transmitting range and the minimum

transmitting range that ensures formation of a connected component containing a

large fraction (e.g. 90%) of the nodes. Then, we consider the mobile version of the
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problem, in which nodes are allowed to move during a time interval and the value

of r ensuring connectedness for a given fraction of the interval must be determined.

These results yield insight into how mobility a�ects connectivity and they also reveal

useful trade-o�s between communication capability and energy consumption.

Index Terms: wireless ad hoc networks, sparse ad hoc networks, sensor networks,

energy consumption, topology control, critical transmitting range.

1 Introduction

Wireless ad hoc networks are networks where multiple nodes, each possessing a wireless

transceiver, form a network amongst themselves via peer-to-peer communication. An ad

hoc network can be used to exchange information between the nodes and to allow nodes

to communicate with remote sites that they otherwise would not have the capability to

reach. Wireless ad hoc networks are usually multi-hop networks because, as opposed to

wireless LAN environments, messages typically require multiple hops before reaching a

gateway into the wired network infrastructure.

Sensor networks are a particular class of wireless ad hoc networks in which there are

many nodes, each containing application-speci�c sensors, a wireless transceiver, and a

simple processor. Potential applications of sensor networks abound, e.g. monitoring of

ocean temperature to enable more accurate weather prediction, detection of forest �res

occurring in remote areas, and rapid propagation of traÆc information from vehicle to

vehicle, just to name a few [10, 27, 32, 34, 35].

While the results in this paper apply to wireless ad hoc networks in general, certain

aspects of the formulation are speci�cally targeted to sensor networks. For example,

we assume the initial placement of nodes is random, which could result when sensors are

distributed over a region from a moving vehicle such as an airplane. We are also concerned,

in part, with minimizing energy consumption, which, although being an important issue in

wireless ad hoc networks in general, is vital in sensor networks. Sensor nodes are typically

battery-powered and, because replacing or recharging batteries is often very diÆcult or

impossible, reducing energy consumption is the only way to extend network lifetime.

Due to the relatively recent emergence of ad hoc networks, many fundamental ques-
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tions remain unanswered. We address one of those questions, namely: what are the

conditions that must hold to ensure that a deployed network is connected initially and

remains connected as nodes migrate? We address this question, and a number of related

ones, in probabilistic terms, i.e. we evaluate the probabilities of various events related

to network connectedness. More speci�cally, we assume that n nodes are independently

and uniformly distributed in a deployment region R = [0; l]d, with d= 1; 2; 3, and that

all the nodes have the same transmitting range r. The goal is to determine the critical

transmitting range for connectivity, i.e. the minimum value of r, which generates com-

munication graphs that are connected with high probability (w.h.p.)1. Determining the

critical transmitting range for connectivity is essential to minimize energy consumption

since transmitting power is proportional to the square (or, depending on environmental

conditions, to a higher power) of the transmitting range.

The question of how many nodes are necessary to ensure connectedness w.h.p. for a

given transmitting range (which is the reverse of the question above) is very important

for planning and design of sensor networks. In fact, in sensor networks, the individual

unit should cost as little as possible, and inexpensive transceivers, which might not allow

the transmitting range to be adjusted, are likely to be used [28].

Overall, the results presented in this paper are useful guidelines in the design of wireless

ad hoc and sensor networks: given the value of l (which is known, at least with a certain

approximation, to the network designer) and n (or r), we can set the transmitting range

r to the minimum value (or, disperse the minimum number n of nodes) that ensures

connectedness w.h.p.

In many applications of wireless ad hoc networks, the nodes are mobile. This com-

plicates analysis of network characteristics because the network topology is constantly

changing in this situation. In this work, we consider networks both with and without

mobility. We present analytical results that apply to networks without mobility and con-

�ne ourselves to simulation results for networks with mobility, due to the intractability of

analysis with existing mathematical methods.

The �rst analytical result in this paper concerns one-dimensional networks (i.e., nodes

1A formal de�nition of the term with high probability will be given in Section 4.
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are placed along a line of length l). We show that the communication graph that results

when all the nodes have the same transmitting range r is connected w.h.p. if rn�2l ln l,

while it is not connected w.h.p. if rn < (1 � �)l ln l, for some constant 0 < � < 1. This

closes a gap between lower and upper bounds on the product rn that were established

in earlier versions of the paper [30, 31]. Next, we consider two and three-dimensional

networks. We generalize the suÆcient condition for connectedness w.h.p. to the two and

three-dimensional case, while we give a necessary condition for connectedness w.h.p. that

is weaker than in the one-dimensional case.

Besides analytical results, in this paper we present a considerable body of simulation

results. These results demonstrate convincingly that signi�cant reductions of transmitting

range (and therefore signi�cant reductions in energy consumption as well) can be achieved

by either connecting a large percentage (but not all) of the nodes for stationary networks

or allowing temporary disconnections for mobile networks. The results also show that

mobility comes with a cost in terms of transmitting range and energy consumption, i.e.

the transmitting range required to maintain connectedness continuously during a long

simulation in a highly mobile network is approximately 10% higher than that required

to achieve connectedness in a stationary network of the same size and having the same

number of nodes. However, simulations in which di�erent mobility parameters were varied

demonstrate that, for surprisingly large ranges of some parameter values, mobile networks

are e�ectively stationary as far as the connectedness property is concerned, meaning that

the transmitting range necessary for continuous connectedness is essentially identical to

that necessary for connectedness in a similar stationary network.

2 Related work

Until recently, only a few papers considered the probabilistic modeling of the communi-

cation graph properties of wireless ad hoc networks.

The main diÆculty that arises in this context is that the well-established model of

random graph theory [3, 20] cannot be used. In fact, a fundamental assumption in this

model is that the probability of edge occurrences in the graph are independent, which is
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not the case in wireless ad hoc networks. As an example, consider three nodes u; v; w such

that Æ(u; v)<Æ(u; w), where Æ(x; y) denotes the distance between x and y. With common

wireless technologies that use omni-directional antennas, if u has a link to w, then it has

also a link to v. Hence, the occurrences of edges (u; v) and (u; w) are correlated.

A more recent theory, which is still in development, is the theory of geometric random

graphs (GRG). In the theory of GRG, a set of n points is distributed according to some

density in a d-dimensional region R, and some property of the resulting node placement

is investigated. For example, the longest nearest neighbor link, the longest edge of the

Euclidean Minimum Spanning Tree (MST), and the total cost of the MST have been

investigated. For a survey of GRG, the reader is referred to [8].

Some of these GRG results can be applied in the study of connectivity in ad hoc

networks. For example, consider a set N of points distributed in the deployment region.

It is known that the longest edge of the MST built on N equals the critical transmitting

range for connectivity [23]. Hence, results concerning the asymptotic distribution of the

longest MST edge [22, 23] can be used to characterize the critical transmitting range, as

has been done in [21].

Another notable result of the theory of GRG is that, under the assumption of uni-

formly distributed points, the longest nearest neighbor link and the longest MST edge

have the same value (asymptotically as n ! 1). In terms of the resulting communica-

tion graph, this means that connectivity occurs (asymptotically) when the last isolated

node disappears from the graph. This observation can be generalized to the case of k-

connectivity: when the minimum node degree becomes k, the graph becomes k-connected

[24]. This result, which has been used in [1] to characterize the k-connectivity of dense ad

hoc networks, reveals an interesting analogy with non-geometric random graphs, which

display the same behavior.

Although interesting, the theory of GRG can be used only to derive results concern-

ing dense ad hoc networks. In fact, a standard assumption in this theory is that the

deployment region R is �xed, and the asymptotic behavior of r as n grows to in�nity is

investigated, i.e. the node density is assumed to grow to in�nity. A similar limitation

applies to the model of Gupta and Kumar [12]. In their case, R is the disk of unit area,
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and the authors show that if the units' transmitting range is set to r=

q
log n+c(n)

�n
, then

the resulting network is connected w.h.p. if and only if c(n)!1. This result is ob-

tained making use of the theory of continuum percolation [19], which is also used in [9]

to investigate the connectivity of hybrid ad hoc networks.

Given the discussion above, the applicability of existing theoretical results concerning

connectivity in ad hoc networks to realistic scenarios could be impaired. In fact, it is

known that real wireless networks cannot be too dense, due to the problem of spatial

reuse: when a node is transmitting, all the nodes within its transmitting range must be

silent, in order not to corrupt the transmission. If the node density is very high, many

nodes must remain silent when a node is transmitting, and the overall network capacity

is compromised [13].

In order to circumvent this problem, we add the size of the deployment region as a

parameter of the model, and characterize the critical transmitting range as the size goes to

in�nity. The critical coverage range2, which is closely related to the critical transmitting

range, has been investigated in [25] for the case of nodes distributed in a square with

side of length l according to a Poisson process of �xed density. The critical transmitting

range for Poisson distributed points in a line of length l is derived in [26]. However, these

results are also diÆcult to apply in real scenarios, since in a Poisson process the actual

number of deployed nodes is a random variable itself. Hence, only the expected number

of deployed nodes can be controlled.

In this paper, we consider a model similar to that of [25, 26], but under the assumption

that a �xed number n of nodes are uniformly distributed in the deployment region R =

[0; l]d. Further, we consider also the case of a three-dimensional deployment region. In

our analysis, the node density n
ld
might either converge to 0, or to a constant c > 0, or

diverge as the size of the deployment region grows to in�nity, depending on the relative

values of r, n and l. Thus, our results can be applied both to dense, as well as sparse, ad

hoc networks.

To conclude this section, we mention a more general connectivity problem for ad hoc

2Network coverage is de�ned as follows: every node covers a circular area of radius rc, and

the monitored area R is covered if every point of R is at distance at most rc from at least one

node. The goal is to �nd the critical value of rc that ensures coverage w.h.p.
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networks, called the range assignment problem. In this version of the problem, nodes

are not all forced to have the same transmitting range, and the goal is to �nd a range

assignment that generates a (strongly) connected communication graph while minimizing

some measure of energy consumption. The solution of the range assignment problem can

be seen as the optimal result of the execution of a topology control protocol.3 Thus,

the investigation of the range assignment problem gives hints on the best possible energy

savings achievable by any topology control protocol. It has been shown that determining

an optimal range assignment is solvable in polynomial time in the one-dimensional case,

while it is NP-hard (i.e., computationally infeasible) in the two and three-dimensional

cases [5, 15]. A constrained version of this problem has been investigated in [2, 4].

3 Preliminaries

A d-dimensional mobile wireless ad hoc network is represented by a pair Md = (N;P ),

where N is the set of nodes, with jN j = n, and P :N � T ! [0; l]d, for some l>0, is the

placement function. The placement function assigns to every element of N and to any

time t2T a set of coordinates in the d-dimensional cube of side l, representing the node's

physical position at time t. The choice of limiting the admissible physical placement of

nodes to a bounded region of Rd of the form [0; l]d, for some l>0, is realistic and will ease

the probabilistic analysis of Section 4. If the physical node placement does not vary with

time, the network is said to be stationary, and function P can be represented simply as

P :N ! [0; l]d.

A range assignment for a d-dimensional network Md = (N;P ) is a function RA :

N ! (0; rmax] that assigns to every element of N a value in (0; rmax], representing its

transmitting range. Parameter rmax is called the maximum transmitting range of the

nodes in the network and depends on the features of the radio transceivers equipping the

mobile nodes. We assume that all the nodes are equipped with transceivers having the

same features; hence, we have a single value of rmax for all the nodes in the network.

3A topology control protocol is an algorithm in which nodes adjust their transmit-

ting ranges in order to achieve a desired topological property, e.g. connectedness, while

reducing energy consumption.
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In this paper, we are mostly concerned with range assignments in which all the nodes

have the same transmitting range r, called homogeneous range assignments. With this

assumption, the communication graph of Md induced at time t, denoted GM(t), is de�ned

as GM(t) =(N;E(t)), where the edge (u; v)2E(t) if and only if v is at distance at most

r from u at time t. If (u; v)2E(t), node v is said to be a neighbor of u at time t. GM(t)

corresponds to a point graph as de�ned in [33]. Although quite simplistic, the point graph

model is widely used in the analysis of ad hoc networks. If the radio coverage area is not

regular, as it is likely to be the case in real life scenarios, the results presented in this

paper are still useful, since the transmitting range can be thought of as the radius of the

largest circular sub-area of the actual area of coverage. In this case, there could exist

nodes that are connected in reality that would not be connected considering the circular

region; thus, the actual probability of connectedness could be higher compared to our

results.

In the next section, we consider probabilistic solutions to the following problem for

stationary ad hoc networks:

De�nition 1 (Minimum Transmitting Range (MTR)). Suppose n nodes are placed

in R = [0; l]d; what is the minimum value of r such that the resulting communication

graph is connected?

Observe that, when dealing with the magnitude of l, the choice of unit is important.

In the following, we assume that r and l are measured using the same arbitrary unit,

which is therefore canceled out when discussing the relative sizes of r and l.

Given the number of nodes, minimizing r while maintaining a connected network

is of primary importance if energy consumption is to be reduced. In fact, the energy

consumed by a node for communication is directly dependent on its transmitting range.

Furthermore, a small value of r reduces the interferences between node transmissions, thus

increasing the network capacity [13]. Observe that we could just as easily have stated the

problem as one of �nding the minimum number of nodes to ensure connectedness given

a �xed transmitting range. In fact, our solutions typically specify requirements on the

product of n and r
d that ensures connectedness. These solutions can, therefore, be used

to solve either MTR, as speci�ed above, or the alternate formulation where the number

of nodes is the primary concern.
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It should be observed that the solution to MTR depends on the information we have

about the physical node placement. If the node placement is known in advance, the

minimum value of r ensuring connectedness can be easily determined (it is the longest

edge of the MST). Unfortunately, in many realistic scenarios of ad hoc networks the

node placement cannot be known in advance, for example because nodes are spread from

a moving vehicle (airplane, ship or spacecraft). If nodes' positions are not known, the

minimum value of r ensuring connectedness in all possible cases is r � l
p
d , which

accounts for the fact that nodes could be concentrated at opposite corners of the placement

region. However, this scenario is very unlikely in most realistic situations. For this

reason, we study MTR under the assumption that nodes are distributed independently

and uniformly at random in the placement region.

In the following, we will use the standard notation regarding the asymptotic behavior

of functions, which we recall. Let f and g be functions of the same parameter x. We

have:

{ f(x)=O(g(x)) if there exist constants C and x0 such that f(x)�C � g(x) for any
x�x0;

{ f(x)=
(g(x)) if g(x)=O(f(x));

{ f(x)=�(g(x)) if f(x)=O(g(x)) and f(x)=
(g(x));

{ f(x)=o(g(x)) if
f(x)

g(x)
! 0 as x!1;

{ f(x)�g(x) or g(x)�f(x) if f(x)=o(g(x)).

In the next section, we will improve the results of [30, 31] for the one-dimensional

case by means of a more accurate analysis of the conditions leading to disconnected

communication graphs. The analysis will use some results of the occupancy theory [16],

which are presented next.

The occupancy problem can be described as follows: assume we have C cells, and n

balls to be thrown independently in the cells. The allocation of balls into cells can be

characterized by means of random variables describing some property of the cells. The

occupancy theory is aimed at determining the probability distribution of such variables as
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n and C grow to in�nity (i.e., the limit distribution). The most studied random variable

is the number of empty cells after all the balls have been thrown, which will be denoted

�(n; C) in the following.

Under the assumption that the probability for any particular ball to fall into the i-th

cell is 1=C for i = 1; : : : ; C (uniform allocation), the following results have been proved4:

{ P (�(n; C) = 0) =
PC

i=0

�
C

i

�
(�1)i

�
1� i

C

�n

{ E[�(n; C)] = C
�
1� 1

C

�n

{ V ar[�(n; C)] = C(C � 1)
�
1� 2

C

�n
+ C

�
1� 1

C

�n � C
2
�
1� 1

C

�2n
,

where E[�(n; C)] and V ar[�(n; C)] denote the expected value and the variance of �(n; C),

respectively. The asymptotic behaviors of P (�(n; C) = k), E[�(n; C)] and V ar[�(n; C)]

depend on the relative magnitudes of n and C as they grow to in�nity. The following

theorems have been proved:

Theorem 1. For every n and C, E[�(n; C)]�Ce
��
, where � = n=C. Furthermore, if

n; C!1 in such a way that �=o(C), then:

{ E[�(n; C)]=Ce
�� � �

2
e
�� +O

�
�(�+1)e��

C

�

{ V ar[�(n; C)]=Ce
�� (1� (1 + �)e��) +O

�
�(1 + �)e��

�
e
�� + 1

C

��
.

Theorem 2. If n=�(C logC), the limit distribution of the random variable �(n; C) is

the Poisson distribution of parameter �, where �=limn;C!1E[�(n; C)].

4 The critical transmitting range in stationary net-

works

Consider the probability space (
l;Fl; Pl), where 
l = [0; l]d, with d= 1; 2; 3, Fl is the

family of all closed subsets of 
l, and Pl is a probability distribution on 
l. In this paper,

we assume that Pl is the uniform distribution on 
l. Under this setting, nodes in N

can be modeled as independent random variables taking value (according to the uniform

distribution) in [0; l]d, which will be denoted Z1; : : : ; Zn.

4All the results presented in this section are taken from [16].
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We say that an event Vk, describing a property of a random structure depending on

a parameter k, holds w.h.p., if P (Vk)! 1 as k!1. In the following we consider the

asymptotic behavior of the event CONNl on the random structures (
l;Fl; Pl) as l!1.

Informally speaking, event CONNl corresponds to all the values of the random variables

Z1; : : : ; Zn for which the communication graph is connected.

4.1 The one-dimensional case

The following upper and lower bounds on the magnitude of rn ensuring connectedness

w.h.p. have been derived in [31].

Theorem 3. Suppose n nodes are placed in R= [0; l] according to the uniform distribu-

tion. If rn2�(l log l), then the communication graph is connected w.h.p., while it is not

connected w.h.p. if rn2O(l).

Observe that the gap between the upper and lower bounds provided by Theorem 3

is considerable (in the order of log l). Furthermore, Theorem 3 gives only asymptotic

results, and gives no clue, for instance, on the actual multiplicative factor needed to

ensure connectedness w.h.p. Thus, its usefulness in a realistic setting is limited. In this

section, we derive a more precise characterization of the critical transmitting range in

one-dimensional networks, providing explicit values to the multiplicative constants.

We start with the following theorem, which gives a more precise suÆcient condition

for connectedness w.h.p. than that provided by Theorem 3.

Theorem 4. Assume that n nodes, each with transmitting range r, are distributed uni-

formly and independently at random in R = [0; l] and assume that rn = kl ln l for some

constant k>0. Further, assume that r= r(l)� l and n=n(l)�1. If k>2, or k=2 and

r=r(l)�1, then liml!1 P (CONNl)=1.

Proof. See Appendix.

Observe that the conditions on the magnitude of r=r(l) and n=n(l) in the statement

of Theorem 4 are not restrictive. In fact, if r=
(l), then every node is able to transmit

directly to most of the other nodes, and connectedness is ensured independently of n.

The condition n=n(l) � 1 is a straightforward consequence of the �rst condition, since

otherwise the probability of connectedness would be negligible.
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Note that the value of k established in Theorem 4 is the same as that obtained in [26]

when nodes are distributed with Poisson density �, where � = n=l. Hence, the suÆcient

conditions for connectivity w.h.p. in the cases of Poisson and uniformly distributed nodes

are the same.

Let us now consider the necessary condition for connectedness w.h.p. The bound of

Theorem 3 is obtained by analyzing the probability of existence of an isolated node. In

fact, the existence of an isolated node implies that the resulting communication graph

(which is a point graph [33]) is disconnected. However, the class of disconnected point

graphs is much larger than the class of point graphs containing at least one isolated node.

For this reason, the bounds established in [31] are not tight. In [31], it is conjectured

that the upper bound stated in Theorem 3 is actually tight. In what follows, we prove

that this conjecture is true. The result derives from a more accurate approximation of

the class of disconnected point graphs, which is based on occupancy theory.

In order to derive the lower bound, we consider the following subdivision of the place-

ment region into cells. We assume that a line of length l is subdivided into C = l=r

segments of equal length r. With this subdivision, if there exists an empty cell ci sep-

arating two cells ci�1; ci+1 that each contains at least one node, then the nodes in ci�1

are unable to communicate to those in ci+1, and the resulting communication graph is

disconnected (see Figure 1). The following lemma, whose immediate proof is omitted,

establishes a suÆcient condition for the communication graph to be disconnected.

Lemma 1. Assume that n nodes are placed in [0; l], and that the line is divided into

C = l=r segments of equal length r. Assign to every cell ci, for i=0; : : : ; C � 1, a bit bi,

denoting the presence of at least one node in the cell. Without loss of generality, assume

bi=0 if ci is empty, and bi=1 otherwise. Let B= fb0 : : : bC�1g be the string obtained by

concatenating the bits bi, for i=0; : : : ; C�1. If B contains a substring of the form f10�1g,
where 0� denotes that one or more 0s may occur, then the resulting communication graph

is disconnected.

r

� l

Figure 1: Node placement generating a disconnected communication graph.

Observe that the condition stated in Lemma 1 is suÆcient but not necessary to produce
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a disconnected graph. In fact, there exist node placements such that B does not contain

any substring of the form f10�1g, but the resulting communication graph is disconnected.

Let us denote with DISCONNl and E
10�1
l the events corresponding to all the values

of the random variables Z1; : : : ; Zn such that the resulting communication graph is dis-

connected, or a substring of the form f10�1g occurs in B, respectively. The subscript l

indicates that we are considering these events in the case that the length of the line is

l. Since CONNl = 
l �DISCONNl and E
10�1
l � DISCONNl, it is immediate that a

necessary condition for connectedness w.h.p. is that liml!1 P (E10�1
l )=0.

In order to evaluate liml!1 P (E10�1
l ), we decompose the event E10�1

l by conditioning

on the disjoint events f�(n; C)=hg, for h=0; : : : ; C; i.e.,

P (E10�1
l )=

CX
h=0

P
�
E

10�1
l jf�(n; C) = hg

�
� P (�(n; C) = h) :

Observe that when l grows to in�nity P (E10�1
l ) is de�ned as the sum of an in�nite

number of non-negative terms t1; t2; : : : . Clearly, if there exists at least one term t�h such

that liml!1 t�h = � > 0, then liml!1 P (E10�1
l ) � � > 0. In what follows, we prove that

if rn = (1 � �)l ln l and r = �(l�), for some 0 < � < 1, then liml!1 t�h = � > 0, where

�h= dE[�(n; C)]e. Thus, in these conditions the communication graph is not connected

w.h.p.

We start with a lemma that characterizes the asymptotic behavior of P
�
E

10�1
l jf�(n; C) = hg

�
as l goes to in�nity.

Lemma 2. If 0<h�C and r=r(l)� l, then liml!1 P
�
E

10�1
l jf�(n; C) = hg

�
=1.

Proof. See Appendix

Let us set �h = dE[�(n; C)]e. By Lemma 2, if 0 < �h� C and liml!1 P (�(n; C) =

�h)=� > 0, then the communication graph is not connected w.h.p. The following lemma

establishes the asymptotic value of P (�(n; C) = �h) in the hypothesis that rn=(1� �)l ln l

and r=�(l�), for some 0<�<1.

Lemma 3. Assume that n nodes, each with transmitting range r, are distributed uniformly

and independently at random in R = [0; l], and assume that rn=(1� �)l ln l and r=�(l�),

for some 0<�<1. Then liml!1 P (�(n; C) = �h)=�>0.
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Proof. See Appendix.

We are now ready to state the necessary condition for connectedness w.h.p.

Theorem 5. Assume that n nodes, each with transmitting range r, are distributed uni-

formly and independently at random in R = [0; l], and assume that rn= (1 � �)l ln l for

some 0<�<1. If r=r(l)2�(l�), then the communication graph is not connected w.h.p.

Proof. The proof follows immediately by lemmas 2 and 3, and by observing that in the

hypotheses of the theorem we have �h=dE[�(n; C)]e� l�

r
�C, r� l

�� l and n=n(l)�1.

Observe that Theorem 5 holds only when r=r(l) is �(l�), for some 0<�<1. Although

this expression covers a wide range of functions for r, many other interesting functions

(for instance, functions including logarithmic terms) are not considered. When r is not

of the form �(l�), the following weaker result holds [30].

Theorem 6. Assume that n nodes, each with transmitting range r, are distributed uni-

formly and independently at random in R = [0; l] and assume that r = r(l) � l and

n=n(l)�1. If rn� l ln l, then the communication graph is not connected w.h.p.

We summarize the analysis above in the following theorem, which is the main result

of this section.

Theorem 7. Assume that n nodes, each with transmitting range r, are distributed uni-

formly and independently at random in R = [0; l] and assume that rn = kl ln l for some

constant k > 0. Further, assume that r = r(l)� l and n = n(l)� 1. If k > 2, or k = 2

and r = r(l)� 1, then the communication graph is connected w.h.p. If k � (1 � �) and

r=r(l)2�(l�) for some 0<�<1, then the communication graph is not connected w.h.p. If

r is not of the form �(l�) but rn� l ln l, then the communication graph is not connected

w.h.p.

In words, Theorem 7 states that setting k � 2 guarantees connectedness w.h.p., while

a value of k smaller than 1 implies that the communication graph is not connected w.h.p.

Hence, the asymptotic behavior of P (CONNl) for 1�k<2 is not known. This result is

somewhat weaker than that presented in [26] for the case of Poisson distributed nodes,

where it is shown that if k < 2 the graph is disconnected w.h.p. This more accurate result

derives from the nature of the Poisson distribution, whose asymptotic behavior can be

analyzed more easily with respect to the case of uniformly distributed nodes.
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The result stated in Theorem 7, for random distribution of nodes, can be compared to

the transmitting ranges necessary with worst-case and best-case placements. Consider the

case where the number of nodes is linear with the length of the line, l. In the worst-case,

nodes are clustered at either end of the line and the transmitting range must be 
(l)

for the network to be connected. In the best-case placement, nodes are equally spaced

at intervals of l=n, meaning that a constant transmitting range is suÆcient. Theorem

7's result yields a transmitting range of 
(log l) with random placement. Thus, there is

a substantial reduction in transmitting range from the worst-case, but also a signi�cant

increase compared to the best-case.

4.2 The two and three-dimensional cases

In this section we provide necessary and suÆcient conditions for connectedness w.h.p. in

the cases of two and three-dimensional networks.

We start with the following theorem, which is a direct generalization of Theorem 4.

Theorem 8. Assume that n nodes, each with transmitting range r, are distributed uni-

formly and independently at random in R = [0; l]d, for d= 2; 3, and assume that r
d
n=

kl
d ln l for some constant k>0, with r=r(l)� l and n=n(l)�1. If k> d�kd, or k=d �kd

and r=r(l)�1, then the communication graph is connected w.h.p., where kd = 2ddd=2.

Proof. The proof is similar to that of Theorem 4. In this case, the deployment region R

is subdivided into non-overlapping d-dimensional cells of side r

2
p
d
.

Unfortunately, generalizing the necessary condition of Theorem 5 to the two and three-

dimensional case is not straightforward. In fact, in these cases the conditions for the

graph to be disconnected are more diÆcult to analyze. For instance, a \hole" in one

dimension (as in the case of the E10�1
l event of the previous section) is not suÆcient to

cause disconnectedness, because there could exist paths that \go around the hole" using

other dimensions, thereby maintaining connectivity. Thus, we are only able to state the

following weaker necessary condition for connectedness, which is obtained by analyzing

the probability of an isolated node.

Theorem 9. Suppose n nodes are placed in R = [0; l]d, with d = 2; 3, according to the

uniform distribution. Further, assume that r= r(l)� l and n=n(l)� 1. If r
d
n2O(ld),

then the communication graph is not connected w.h.p.
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Proof. See Appendix.

5 Simulation results for stationary networks

In this section we present results of the simulation of stationary ad hoc networks. The

goals of the simulations were:

{ to validate the quality of the analytical results of the previous section;

{ to investigate stronger necessary conditions for connectedness w.h.p. in the two and

three-dimensional cases

{ to investigate the relationship between the critical transmitting range and the min-

imum transmitting range, which ensures (w.h.p.) the formation of a connected

component that includes a large fraction (e.g., 90%) of the nodes.

The simulator distributes n nodes in [0; l]d according to the uniform distribution, then

generates the communication graph assuming that all nodes have the same transmitting

range r. Parameters n, l, d and r are given as input to the simulator, along with the

number ]iter of iterations to run. The simulator returns the percentage of connected

graphs generated and the average number of neighbors of a node (i.e., the average degree

of the communication graph). The average is evaluated over all iterations, including those

that yielded a disconnected graph.

5.1 Validating the theoretical analysis

The �rst set of simulations was aimed at validating the theoretical results of Section 4.

In the case of one-dimensional networks, Theorem 7 states that if rn = kl ln l, then

the communication graph is connected w.h.p. if k� 2, and it is not connected w.h.p. if

k� (1 � �), for some 0<�< 1, where r= r(l)2�(l�). In order to validate this result we

have performed several simulations. In each simulation, we set r= l
� for �=0:5; 0:75 and

0.9, and we varied l from 256 to 16777216 (16M).

First, we have veri�ed the suÆcient condition for connectedness, setting n to 2l(1��) ln l,

and performing experiments for increasing values of l. For every value of l, the percentage
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Figure 2: Percentage of connected graphs for increasing values of l. Parameters r and n

were set to l� and (1� �)l(1��) ln l, respectively.

of connected networks generated was always 100%. To verify the necessary condition, we

set n to (1 � �)l(1��) ln l and repeated the simulations. The results are shown in Figure

2. Also in this case, the \quality" of Theorem 7 was con�rmed: for every value of �, the

percentage of connected graphs decreases as l increases.

It should be emphasized that the necessary condition of Theorem 7 holds for very

di�erent \regimes" of r and n, depending on the value of �: when � is close to 0, r grows

very slowly and n grows very fast as l increases; when � is close to 1, the situation is

reversed. Table 1 illustrates some of these regimes by showing the values of r, n, and l

for Figure 2, which was generated using medium to high values of �. Due to limitations

on the size of n in the simulator, we were able to validate the theorem only for � � 0:5.

� = 0:5 � = 0:75 � = 0:9

l r n r n r n

256 16 44 64 6 147 1

1K 32 111 181 10 512 1

4K 64 266 512 17 1783 2

16K 128 621 1448 27 6208 3

64K 256 1420 4K 44 21619 3

256K 512 3194 11585 71 75281 4

1M 1K 7098 32K 111 256K 6

Table 1: Values of r and n for increasing values of l.

For two and three-dimensional networks, we �rst veri�ed the \quality" of Theorem

9, which states that, if the order of magnitude of the product rdn is at most ld, then
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Figure 3: Percentage of connected graphs for increasing values of l. Parameter n was set

to
p
l. Parameter r was set to 2l3=4 for d=2, and 1:5l5=6 for d=3.

the communication graph is not connected w.h.p. To this end, we have simulated several

\disconnected scenarios" for increasing values of l. Namely, we considered values of l

ranging from 256 to 1048576 (1M) and, for every value of l, we chose r and n in such a

way that rdn = l
d and we ran 250 simulations. Two choices for n were considered: n=

p
l

and n= l=(log2 l)
2, thus obtaining values of n ranging from 16 to 1024 and from 4 to 2621,

respectively5.

The results of these simulations fully agreed with the theoretical result of Theorem

9: the percentages of connected graphs generated were always quite low, and tend to

decrease as l increases. These results are not shown because the percentage of connected

graphs was quite close to 0 for all simulation runs. We have also considered the impact

of a multiplicative factor to the product r
d
n on the percentages of connected graphs

generated. In particular, we set n=
p
l and r=2l3=4 for d=2 (thus, r2n=4l2), and n=

p
l

and r = 1:5l5=6 for d= 3 (thus, r3n= 3:375l3). Although showing higher percentages of

connected graphs with respect to the previous simulations, the asymptotic behavior was

con�rmed: as l increases, the percentage of connected graphs decreases (see Figure 3).

In the second experiment, we have investigated whether better lower bounds on the

critical transmitting range can be experimentally achieved. We ran simulations for values

5In the latter case, the simulation for n=4 was not considered, due to its scarce signi�cance.
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Figure 4: Percentage of connected graphs for increasing values of l in two-dimensional

networks. Parameters n and r were set to
p
l and kl

3=4
p
log2 l, respectively.

of l ranging from 256 to 4194304 (4M), with values of n ranging from 16 to 2048 and from

4 to 8666. The larger value of l (and, consequently, of n) was needed in order to better

investigate the asymptotic behavior. For every simulation, we set r in such a way that

r
d
n= l

d log2 l. With these values, 100% of the graphs were connected for all simulation

runs. We also set the transmitting range to r
0 = kr, for values of k ranging from 0.5 to

0.9 in steps of 0.1. As shown in Figures 4 and 5, the results showed that a ld log2 l bound

is suÆcient to ensure increasing percentages of connected graphs. Note that, for d = 3

(Figure 5), when the multiplicative constant on r gets small (k=0:5), the percentages of

connected graphs are low but the asymptotic trend is still increasing.

Our results provide precise values of the product of n and r
d that will generate con-

nected graphs w.h.p. Among other uses, a network designer can employ this information

to determine how large a transmitting range or how many nodes are required for a speci�c

application. Table 2 reports, for d = 2 and �xed l, the speci�c values of n and r that

yield a percentage of connected graphs above 99% (the value of the transmitting range

is expressed as a fraction of l). These data can be directly applied in the network design

process and can give a feel for the relative magnitude of transmitting range necessary for

di�erent values of n.

It is also useful to give a feeling for how large is the gap between transmitting ranges
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Figure 5: Percentage of connected graphs for increasing values of l in three-dimensional

networks. Parameters n and r were set to
p
l and kl

5=6 3

p
log2 l, respectively.

that provide connectedness w.h.p. and those that do not. For example, when d = 2,

l=65536 and n=256, we have that a value of the transmitting range equal to 2l3=4=8192

is not suÆcient to generate graphs which are connected w.h.p.: only 89% of the graphs

generated are connected (see Figure 3). Conversely, a value of r equal to 0:6l3=4
p
log2 l=

9830 provides 99% of connected graphs, and, by Theorem 8, guarantees connectedness

w.h.p.

To summarize, the results of our simulations of two and three-dimensional networks

provide strong evidence to support the conjecture that a value of rdn in the order of ld log l

is necessary and suÆcient to provide connectedness w.h.p.

n r n r

10 0.57748 75 0.24694

20 0.44280 80 0.24194

25 0.40287 90 0.23191

30 0.37059 100 0.22217

40 0.32423 250 0.15756

50 0.29684 500 0.13127

60 0.27637 750 0.11923

70 0.25557 1000 0.11516

Table 2: Values of the transmitting range r (expressed as a fraction of l) ensuring con-

nectedness w.h.p.
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total number of nodes. The x-axis reports the ratio r=�r. Parameters in this experiment

were l=16384, n=
p
l=128, �r=1430 for d=1, 3800 for d=2 and 6500 for d=3.

5.2 Connectedness vs. energy cost

In this set of simulations we investigated the minimum transmitting range that, w.h.p.,

ensures either a connected communication graph or the formation of a connected com-

ponent that includes a large fraction (e.g., 90%) of the nodes. The rationale for this

investigation is to see whether weaker requirements on graph connectedness may achieve

considerable reductions of the transmitting range (i.e., of the energy cost).

We ran 250 iterations for every simulation. First, we set l=16384, n=
p
l=128, and,

for every dimension, we experimentally determined the minimum value �r of the transmit-

ting range yielding 100% of connected graphs. These values are 1430 for d=1, 3800 for

d=2 and 6500 for d=3. Starting from �r, we decreased the value of the transmitting range

r until r=�r=2, and we evaluated the average size of the largest connected component. The

result of this experiment is shown in Figure 6. A similar experiment, which con�rmed the

behavior displayed in Figure 6, was conducted setting l=1048576 and n=1024. As can

be seen, in two and three-dimensional networks, connectedness can be traded o� with en-

ergy cost: as r decreases, the size of the largest connected component decreases smoothly.

When r= �r=2, the average size of the largest component in two-dimensional networks is

0:81n when l=16384 and 0:94n when l=1048576, while in three-dimensional networks we

have 0:67n and 0:87n, respectively. Two and three-dimensional networks display similar
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behaviors for values of r as low as 0:6�r, while a somewhat higher connectedness for two-

dimensional networks arises for lower values of r. This tradeo� has potential primarily

in two- and three-dimensional networks because most disconnections in the d = 1 case

split the network into at least two moderately-sized components, thereby eliminating the

possibility of having a single component with a very large fraction of the nodes. For this

reason, we con�ne our results in this section to d=2; 3.

The phenomenon outlined by our experimental analysis is coherent with a theoretical

result from the theory of GRG (which, we recall, can be applied only to dense ad hoc net-

works) concerning two and three-dimensional networks, namely that connectivity occurs

(asymptotically) when the last isolated node disappears from the graph [24]. The results

of our simulations clearly show that when the graph is disconnected but r is close to �r,

there exists a very large connected component (the giant component in random graph ter-

minology); thus, in this regime disconnection is caused by few isolated nodes. This seems

to indicate that, also in case of sparse two and three-dimensional networks, connectivity

occurs (asymptotically) when the last isolated node disappears from the communication

graph.

We also evaluated the ratio between �r and the minimum value r0 of the transmitting

range such that the average size of the largest connected component is at least 0:9n,
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for values of l ranging from 256 to 1048576 (1M). The number of nodes was set to
p
l.

The result of this experiment is shown in Figure 7. Two and three-dimensional networks

display similar behaviors: as l increases, the ratio r
0
=�r tends to \converge" to 0.5. The

�gure also displays the fraction of connected graphs when r = r
0. As can be seen, this

fraction drops to zero as l increases. Thus, for a large value of l, halving �r produces

disconnected graphs w.h.p. but the average size of the largest connected component

is approximately 0:9n. This means that considerable energy savings can be achieved if

connecting 90% of the nodes is acceptable. For many applications, substantially increasing

the energy in order to connect the remaining 10% of the nodes is not worthwhile.

6 The critical transmitting range in mobile networks

In this section, we consider the mobile version of MTR, which can be formulated as

follows:

De�nition 2 (Minimum Transmitting Range Mobile (MTRM)). Suppose n nodes

are placed in R=[0; l]d, and assume that nodes are allowed to move during a time interval

[0; T ]. What is the minimum value of r such that the resulting communication graph is

connected during some fraction, f , of the interval?

A formal analysis of MTRM is much more complicated than that of MTR and is be-

yond the scope of this paper. In this section, we study MTRM by means of extensive

simulations. The goal is to study the relationship between the value of r ensuring con-

nected graphs in the stationary case (denoted rstationary) and the values of the transmitting

range ensuring connected graphs during some fraction of the operational time.

In this paper, we focus on the transmitting ranges needed to ensure connectedness

during 100%, 90% and 10% of the simulation time (denoted r100, r90 and r10, respectively).

These values are chosen as indicative of three di�erent dependability scenarios that the

ad hoc network must satisfy. In the �rst case, the network is used for safety-critical or

life-critical applications (e.g., systems to detect physical intrusions in a home or business).

In the second case, temporary network disconnections can be tolerated, especially if this

is counterbalanced by a signi�cant decrease of the energy consumption with respect to the

case of continuous connectedness. In the latter case, the network stays disconnected most
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of the time, but temporary connection periods can be used to exchange data among nodes.

This could be the case of wireless sensor networks used for environmental monitoring.

We also consider the value of the transmitting range ensuring that the average size

of the largest connected component is a given fraction of the total number of nodes in

the network. Table 3 summarizes the values of the transmitting range considered in our

simulations. The rationale for this investigation is that the network designer could be

interested in maintaining only a certain fraction of the nodes connected, if this would

result in signi�cant energy savings. Further, considering that in many scenarios (e.g.

wireless sensor networks) the cost of a node is very low, it could also be the case that

dispersing twice as many nodes as needed and setting the transmitting ranges in such a

way that half of the nodes remain connected is a feasible and cost-e�ective solution.

In all the simulations reported herein, we set d=2, as the two-dimensional setting is

an appropriate model for many applications of wireless ad hoc networks.

rstationary t.r. ensuring connectedness in the stationary case

r100 t.r. ensuring connectedness during 100% of sim. time

r90 t.r. ensuring connectedness during 90% of sim. time

r10 t.r. ensuring connectedness during 10% of sim. time

r0 largest t.r. yielding no connected graphs

rl90 t.r. ensuring avg. size of largest conn. comp. is 0:9n

rl75 t.r. ensuring avg. size of largest conn. comp. is 0:75n

rl50 t.r. ensuring avg. size of largest conn. comp. is 0:5n

Table 3: Values of the transmitting range considered in our simulations.

6.1 Mobility models

To generate the results of this section, we extended the simulator used in the previous

section for the stationary case by implementing two mobility models. The initial com-

munication graph is generated as in the stationary case. Then, the nodes start moving

according to the selected mobility model (all the nodes use the same mobility model). For

each mobility step, the simulator checks for graph connectedness and, in case the graph is

not connected, evaluates the size of the largest connected component. At the end of the

simulation, the percentage of connected graphs, the minimum and the average size of the

largest connected component (averaged over the runs that yield a disconnected graph)
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are reported.

The �rst mobility model implemented in the simulator is the classical random waypoint

model [14], and is used to model intentional movement: every node chooses uniformly at

random a destination in [0; l]2, and moves toward it along a straight line with a velocity

chosen uniformly at random in the interval [vmin; vmax]. When it reaches the destination,

it remains stationary for a prede�ned pause time tpause, and then it starts moving again

according to the same rule. In the simulator, tpause is expressed as the number of mobility

steps for which the node must remain stationary, and velocity is normalized with respect

to the mobility step. We have also included a further parameter in the model, namely the

probability pstationary that a node remains stationary during the entire simulation time.

Hence, only (1� pstationary)n nodes (on the average) will move. Introducing pstationary in

the model accounts for those situations in which some nodes are not able to move. For

example, this could be the case when sensors are spread from a moving vehicle, and some

of them remain entangled, say, in a bush or tree. This can also model a situation where

two types of nodes are used, one type that is stationary and another type that is mobile.

The second mobility model resembles Brownian (i.e., non-intentional) motion. Mobil-

ity is modeled using parameters pstationary, ppause and m. Parameter pstationary is de�ned as

above. Parameter ppause is the probability that a node remains stationary at a given step.

This parameter accounts for heterogeneous mobility patterns, in which nodes may move

at di�erent times. Intuitively, the higher is the value of ppause, the more heterogeneous

is the mobility pattern. However, values of ppause close to 1 result in an almost station-

ary network. If a node is moving at step i, its position in step i+1 is chosen uniformly

at random in the square of side m centered at the current node location. If the chosen

position is out of the boundaries of the deployment region, a new position is generated

until a location inside R is found. Parameter m models, to a certain extent, the velocity

of the nodes: the larger m is, the more likely it is that a node moves far away from its

position in the previous step.
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Figure 8: Values of the ratio rx=rstationary (y-axis) for increasing values l in the random

waypoint model.

6.2 Simulation results for increasing system size

In the �rst set of simulations, we have investigated the value of the ratio of r100 (respec-

tively, of r90 and r10) to rstationary for values of l ranging from 256 to 16384. We also

considered the largest value r0 of the transmitting range that yields no connected graphs.

In both mobility models, n was set to
p
l. The value of rstationary is obtained from the

simulation results for the stationary case of the previous section, while those for r100, r90,

r10 and r0 are averaged over 50 simulations of 10000 steps of mobility each.

First, we considered the random waypoint model, with parameters set as follows:

pstationary = 0, vmin = 0:1, vmax = 0:01l, and tpause = 2000. This setting models a homo-

geneous mobility scenario in which all nodes are moving. The values of the ratios are

reported in Figure 8. Figure 9 reports the same graphic obtained for the Brownian-like

model, with pstationary = 0:1, ppause = 0:3 and m = 0:01l. This is a more heterogeneous

mobility scenario in which a small percentage of the nodes remain stationary.

The graphics show the same qualitative behavior: as l increases, the ratio of the

di�erent transmitting ranges for mobility to rstationary tends to increase, and this increasing

behavior is more pronounced for the case of r100. However, even when l is large, a
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Figure 9: Values of the ratio rx=rstationary (y-axis) for increasing values l (x-axis) in the

Brownian-like model.

modest increase to rstationary (about 21% in the random waypoint and about 25% in the

Brownian-like model) is suÆcient to ensure connectedness during the entire simulation

time. Comparing the results for the two mobility models, we can see somewhat higher

values of the ratios for the Brownian-like model, especially for the case of r100. This seems

to indicate that more homogeneous mobility patterns help in maintaining connectedness.

However, it is surprising that the results for the two mobility models are so similar. This

indicates that it is more the existence of mobility rather than the precise details of how

nodes move that is signi�cant, at least as far as network connectedness is concerned.

The graphics reported in Figures 8 and 9 also show that that r90 is far smaller than r100

(about 35-40% smaller) in both mobility models, independently of the system size. Hence,

substantial energy savings can be achieved under both models if temporary disconnections

can be tolerated. When the requirement for connectedness is only 10% of the operational

time, the decrease in the transmitting range is about 55-60%, enabling further energy

savings. However, if r is reduced to about 25% to 40% of rstationary, the network becomes

disconnected during the entire simulation time.

We have also investigated the average size of the largest connected component when

the transmitting range is set to r90, r10 and r0. Once again, the results of the simulations

27



0

0,2

0,4

0,6

0,8

1

256 1K 4K 16K

r 90

r 10

r 0

Figure 10: Average size of the largest connected component expressed as a fraction of n

(y-axis) for increasing values of l (x-axis) in the random waypoint model.

were almost independent of the mobility model used. For this reason, we only report

the results obtained with the random waypoint model (Figure 10). The graphic shows

that the ratio of the average size of the largest connected component to n increases as

l increases. When the transmitting range is set to r90 and l is suÆciently large, this

ratio is very close to 1 (about 0.98 in both mobility models). This means that during

the short time in which the network is disconnected, a vast majority of its nodes forms a

large connected component. Hence, on the average disconnection is caused by only a few

isolated nodes (as it was in the stationary case). This fact is con�rmed by the plot for r10:

even when the network is disconnected most of the time, a large connected component

(of average size about 0:9n for large values of l) still exists. However, if the transmitting

range is further decreased to r0, the size of the largest connected component drops to

about 0:5n.

We also considered the value of the transmitting range ensuring that the average size

of the largest connected component is at least 0:9n, 0:75n and 0:5n, respectively, during

the entire simulation. The corresponding values of the transmitting range are denoted

rl90, rl75 and rl50. The mobility parameters and n were set as above. The rationale for

this investigation is that the network designer could be interested in maintaining only a
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Figure 11: Values of the ratio of rl90, rl75 and rl50 to rstationary (x-axis) for increasing

values of l (y-axis) in the random waypoint model.

certain fraction of the nodes connected, if this would result in signi�cant energy savings.

The value of the ratio of rl90, rl75 and rl50 to rstationary for increasing values of l in the

random waypoint model is shown in Figure 11. Simulation results have shown that while

rl90=rstationary tends to decrease with increasing values of l, converging to about 0.52,

the ratios rl75=rstationary and rl50=rstationary are almost independent of l. In particular,

rl75=rstationary is about 0.46 and rl50=rstationary is about 0.4. Further, the relative di�erences

between the three ratios decrease for increasing value of l. This indicates that, while for

small networks (few nodes distributed in a relatively small region) the energy needed to

maintain 90% of the nodes connected is signi�cantly higher than that required to connect

50% of the nodes (rl50 is less than half of rl90 for l=256), for large networks the savings

are not as great if the requirement for connectivity is only 50% of the nodes (rl50 is 20%

smaller than rl90 for l=16384).

6.3 Simulation results for di�erent mobility parameters

A second set of simulations was done to investigate the e�ect of di�erent choices of the

mobility parameters on the value of r100. We considered the random waypoint model with

l=4096 and n=
p
l=64. The default values of the mobility parameters were set as above,

i.e. pstationary=0, vmin=0:1, vmax=0:01l, and tpause=2000. Then, we varied the value of
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Figure 12: Values of the ratio r100=rstationary (y-axis) for di�erent values of pstationary in

the random waypoint model.

one parameter, leaving the others unchanged.

Figure 12 reports the value of r100 for values of pstationary ranging from 0 (no stationary

nodes) to 1 (corresponding to the stationary case) in steps of 0.2. Simulation results

show a sharp drop of r100 in the interval 0.4-0.6: for pstationary = 0:4, r100 is about 10%

larger than rstationary, while for pstationary=0:6 and for larger values of pstationary we have

r100� rstationary. To investigate this drop more closely, we performed further simulations

by exploring the interval 0.4-0.6 in steps of 0.02. As shown in Figure 12, there is a distinct

threshold phenomenon: when the number of stationary nodes is about n=2 or higher, the

network can be regarded as practically stationary from a connectedness point of view. This

result is very interesting, since it seems to indicate that a certain number (albeit a rather

large fraction) of stationary nodes would signi�cantly increase network connectedness.

With more than n=2 mobile nodes, the network quickly becomes equivalent to one in

which all nodes are mobile.

The e�ect of tpause on r100 is shown in Figure 13. Increasing values of tpause tend

to decrease the value of r100, although the trend is not as pronounced as in the case of

pstationary. A threshold phenomenon seems to exist in the interval 4000-6000 in this case

also. However, further simulations in this interval have shown that, although the trend

can be observed, no sharp threshold actually exists. We believe that the rationale for
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this is the following: while the value of pstationary has a direct impact on the \quantity

of mobility" (which can be informally understood as the percentage of stationary nodes

with respect to the total number of nodes), the e�ect of the pause time is not so direct.

In fact, in the random waypoint model the \quantity of mobility" depends heavily on the

node destinations, which are chosen uniformly at random: even if the pause time is long

and the velocity is moderate, a node could be \mobile" for a long time if its destination is

very far from its initial location. So, an increased pause time tends to render the system

more stationary, but in a less direct way than pstationary.

We have also evaluated the impact of di�erent values of vmax on the value of r100. The

simulation results, which are not reported, have shown that r100 is almost independent

of the value of vmax: except for low velocities (vmax below 0:1l), r100 is slightly above

rstationary. This quite surprising result could be due to the apparently counterintuitive

fact that the \quantity of mobility" is only marginally in
uenced by the value of vmax,

and a larger value of vmax tends to decrease the \quantity of mobility". In fact, the larger

is vmax, the more likely it is that nodes arrive quickly at destination and remain stationary

for tpause=2000 steps.

31



7 Conclusions

In this paper we have analyzed the critical transmitting range for connectivity in both

stationary and mobile wireless ad hoc networks.

For stationary networks, we have provided both analytical and experimental results.

We have proved tight bounds on the critical transmitting range for the one-dimensional

case, and given less precise bounds in the case of two and three-dimensional networks. The

most notable aspect of our analysis is that, contrary to the case of existing theoretical re-

sults, it can be applied to both dense and sparse ad hoc networks. We have also presented

the results of extensive simulations, which have shown that a stronger necessary condi-

tion for connectedness w.h.p. than that proved in the paper is likely to hold in two and

three-dimensional networks. Furthermore, we have investigated the relationship between

the critical transmitting range and the minimum transmitting range that ensures the for-

mation of a connected component containing a large fraction (e.g., 90%) of the nodes.

The results of this investigation have shown that in two and three-dimensional networks,

network \connectedness" and energy cost can be traded o�: reducing the transmitting

range, we obtain progressively \less connected" graphs. This behavior is not displayed in

one-dimensional networks, where a modest decrease on the transmitting range over the

minimum required for connectedness w.h.p. can cause the formation of several connected

components of relatively small size.

We have also investigated the critical transmitting range in two-dimensional mobile

networks through extensive simulations. We have considered two mobility patterns (ran-

dom waypoint and Brownian-like) to model both intentional and non-intentional move-

ments. Simulation results have shown that considerable energy savings can be achieved

if temporary disconnections can be tolerated or if connectedness must be ensured only

for a large fraction of the nodes. Regarding the in
uence of mobility patterns, simulation

results have shown that connectedness is only marginally in
uenced by whether motion

is intentional or not, but it is rather related to the \quantity of mobility", which can be

informally de�ned as the percentage of stationary nodes with respect to the total number

of nodes. For example, when about n=2 nodes are static, the network can be regarded
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as stationary from a connectivity point of view. Further investigation in this direction is

needed, and is a matter of ongoing research.

Appendix

Proof of Theorem 4. Let [0; l] be subdivided into C = 2l
r
non-overlapping segments

(cells) of length r
2
. It is immediate that if every segment contains at least one node, then

the resulting communication graph is connected. Let �(n; C) be the random variable

denoting the number of empty cells. Since �(n; C) is a non-negative integer random

variable, then P (�(n; C) > 0) � E[�(n; C)], where E[�(n; C)] is the expected value of

�(n; C) ([20], pp. 10-11). We have [16]:

E[�(n; C)] = C

�
1� 1

C

�n

We want to investigate the asymptotic value of E[�(n; C)] as l!1, which, given the

hypotheses r = r(l)� l and n = n(l)� 1, is equivalent to the asymptote as C; n!1.

Taking the logarithm, we obtain:

lnE[�(n; C)] = lnC + n ln

�
1� 1

C

�
= ln

2l

r
+ n ln

�
1� r

2l

�
(1)

The Taylor series expansion of the ln part of the second term of Equation (1) yields:

ln
�
1� r

2l

�
= � r

2l
� r

2

8l2
� r

3

24l3
� � � � < � r

2l

Thus, we obtain the following upper bound:

lnE[�(n; C)] < ln
2l

r
� nr

2l
(2)

Substituting the expression rn=kl ln l into Inequality (2), we obtain:

lnE[�(n; C)] < ln
2l

r
� k ln l

2
= ln

2

rlk=2�1

If k > 2, or if k = 2 and r = r(l)� 1, then it is easily seen from this expression that

limn;C!1 lnE[�(n; C)] = �1. Therefore, limn;C!1E[�(n; C)] = 0 and liml!1 P (�(n; C)=

0) = 1. It follows that each cell contains at least one node w.h.p., which implies

liml!1 P (CONNl) = 1.
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Proof of Lemma 2. Consider the complementary event of E10�1
l , i.e. E1

l =
l�E10�1
l . It

can be easily seen that E1
l corresponds to all the values of the random variables Z1; : : : ; Zn

such that the 1-bits in B are consecutives. Given the hypothesis of independence of the

random variables Z1; : : : ; Zn, when exactly h cells out of C are empty (i.e., h bits in B

are 0), P (E1
l jf�(n; C) = hg) corresponds to the ratio of all con�gurations of (C � h)

consecutive 1-bits over all possible con�gurations of h 0-bits in C positions, i.e.:

P
�
E

1
l jf�(n; C) = hg

�
=
h+ 1�

C
h

� :

Since C = l=r and r� l, we have:

lim
l!1

P
�
E

10�1
l jf�(n; C) = hg

�
= 1� lim

l!1
P
�
E

1
l jf�(n; C) = hg

�
= 1� lim

C!1

h+ 1�
C

h

� :

We can rewrite the last limit as:

lim
C!1

h + 1�
C
h

� = lim
C!1

(h+ 1)!

C(C � 1) : : : (C � h+ 1)
:

Since h�C, we have:

lim
C!1

(h+ 1)!

C(C � 1) : : : (C � h + 1)
= lim

C!1

(h + 1)!

Ch
:

Taking the logarithm, we obtain:

lim
C!1

ln
(h+ 1)!

Ch
= lim

C!1
ln(h+ 1)!� h lnC = lim

C!1
h lnh� h lnC = lim

C!1
h(lnh� lnC) :

Since 0<h�C, we conclude that limC!1 h(lnh� lnC)=�1, hence:

lim
C!1

h+ 1�
C

h

� = 0 ;

and the lemma is proved.

Proof of Lemma 3. Proceeding as in the proof of Theorem 4 and observing that

rn=(1� �)l ln l and r=�(l�) implies n=n(l)�1, we obtain:

lnE[�0(n; C)] � ln
l
�

r
;

hence E[�0(n; C)]� l�

r
. Given the hypothesis r=�(l�), we have that liml!1E[�0(n; C)]=

c, for some constant c > 0. Since rn = (1 � �)l ln l for some 0 < � < 1, we are in the
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hypothesis of Theorem 2, and the limit distribution of the random variable �(n; C) is the

Poisson distribution of parameter �= liml!1E[�0(n; C)]=c (see Theorem 2). Hence,

lim
l!1

P (�(n; C) = �h)=
�
c

e

�c
� 1
c!
>0 :

Proof of Theorem 9. We report the proof for the case d=2. The proof for the case

d=3 is similar.

Consider the event ISOLATEDi, corresponding to all the values of the random variables

Z1; : : : ; Zn such that node i is isolated in the communication graph, for 1� i�n. It is im-

mediate that a necessary condition for connectedness w.h.p. is that liml!1 P (ISOLATEDi)=

0. Considering that node i is isolated if none of the remaining n � 1 nodes is within its

transmitting range, we have:

�
1� �r

2

l2

�n�1

�P (ISOLATEDi)�
�
1� �r

2

4l2

�n�1

;

where the upper and lower bounds account for the fact that node i is in the corner or

at distance at least r from the border of the deployment region, respectively. Hence, the

asymptotic behavior of P (ISOLATEDi) is given by liml!1

�
1� cr2

l2

�n
, for some constant

c>0. Taking the logarithm we have:

lim
l!1

ln

�
1� cr

2

l2

�n

= lim
l!1

n ln

�
1� cr

2

l2

�
:

Considering that r=r(l)� l and using the Taylor expasion, we can rewrite the last term

as liml!1� cr2n
l2

. Since r2n2O(l2), we have two cases:

{ r
2
n = �(l2); in this case, we have liml!1� cr2n

l2
=�c0, for some c0 > 0. It follows

that

liml!1 P (ISOLATEDi)= e
�c0

>0.

{ r
2
n = o(l2); in this case, we have liml!1� cr2n

l2
= 0. It follows that liml!1 P (ISOLATEDi)=

1.
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