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Abstract—1In this paper, we study the fundamental properties
of broadcasting in multi-hop wireless networks. Previous studies
have shown that, as long as broadcast capacity is concerned,
asymptotically optimal broadcasting is possible in wireless multi-
hop networks under very general conditions. However, none of
the existing work on broadcast capacity has considered latency
in message delivery, which is simply assumed to be finite (but not
explicitly bounded). In this paper, we address the issue of investi-
gating the fundamental properties of broadcast communications
for what concerns both capacity and latency using a realistic,
SINR-based interference model. In particular, we introduce a
novel topological notion of network connectivity, and show that,
if the network satisfies this property, asymptotically optimal
broadcast capacity and latency can be achieved simultaneously.
This is in sharp contrast to similar results obtained for the case of
unicast transmissions, where strictly bounded latency in message
delivery can be achieved only at the expense of asymptotically
reducing network capacity. Thus, the results presented in this
paper show that scalable broadcasting in multi-hop wireless
networks is, in principle, possible.

I. INTRODUCTION

Investigation of fundamental properties of wireless multi-
hop networks has received considerable attention in the re-
search community, since it can help understanding what can
and cannot be done in such networks. In their seminal work
[7], Gupta and Kumar investigate the asymptotic capacity of
a wireless multi-hop network for unicast transmissions, and
show that network capacity does not scale: as the number
n of network nodes increases, the per-node available ca-
pacity decreases as O(1/+/n) in arbitrary networks, and as
O(1/+/nlogn) in random networks. This lack of scaling of
network capacity is due to the relay burden on intermediate
nodes caused by the multi-hop nature of communications:
i.e., due to limited transmission range, a packet must travel
several hops in order to reach the destination, and thus a
single transmission results in a series of relay re-transmissions
interfering both with other packets on the same flow, and
with packets on different flows. For this reason, we say that
unicast transmissions in a wireless multi-hop network are relay
limited. However, if unbounded delays on message delivery
can be tolerated, optimal network capacity scaling (i.e., © (W)
per-node capacity, where W is the channel capacity) is achiev-
able at least in mobile environments [6], under the additional
assumption of unlimited buffer capacity on the nodes.

Since these seminal works, many authors have tried to gain
a better understanding of the fundamental tradeoffs between
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network capacity and latency in packet delivery [1], [10], [14],
[15]. For instance, in [10] Neely and Modiano proved that
A< @(%), where ) is the average per-node throughput and D
is the average packet delay, which implies that (W) per-node
throughput can be achieved only by allowing relatively high
(O(n)) packet delay. More recently, Ozgur et al. [11] argued
that Q(W) per-node capacity can indeed be achieved also in a
static network with strictly bounded latency using cooperative
communication. However, this result is quite controversial,
since it implicitly assumes availability of an arbitrarily large
number of independent information channels between group
of nodes. Franceschetti et al. [4] have shown that the actual
number of independent channels across two regions in a two-
dimensional domain is indeed upper bounded by O(y/n),
which implies a O((logn)?/y/n) per-node capacity in case
of random networks. Thus, to the best of our knowledge,
unicast communications in wireless multi-hop networks are
relay limited, and per-node capacity must be traded off with
packet delivery latency.

Investigation of fundamental properties of broadcast com-
munications has received attention from the research com-
munity only very recently. In [16], Zheng investigated the
broadcast capacity for the case of random networks with single
broadcast source under the generalized physical interference
model, and presented a broadcast scheme providing a capacity
within a constant factor from optimal. The authors of [9]
considered a more general network model, in which arbitrary
node positions are allowed, and an arbitrary subset of the
network nodes is assumed to generate broadcast packets. The
results of [9] confirms the findings of [16], i.e., that the
(aggregate) broadcast capacity is within a constant factor from
the optimal capacity. More recently, the same authors have
proved in [8] that the same result holds using more realistic
interference models, namely the physical and the generalized
physical interference model. However, none of the existing
work on broadcast capacity has investigated the latency in
message delivery. More specifically, in the network models
used in [8], [9], [16] it is assumed that broadcast packets
are eventually received by all network nodes, but no explicit
nor implicit upper bound on delivery time is given. Zheng in
[16] also investigated the information diffusion rate, which
is closely related to latency, and provides matching upper
and lower bounds for this quantity. However, the broadcast
schemes used for lower bounding broadcast capacity and



information diffusion rate are different, and the problem of
finding an optimal broadcasting scheme for both capacity and
information diffusion rate in the model of [16] remains open.

The above discussion highlights that the fundamental ques-
tion of whether asymptotically optimal capacity and latency
can be achieved simultaneously in case of broadcast commu-
nication remains, to the best of our knowledge, open.

In this paper, we give a positive answer to this question by
showing that, at least under certain, quite general, assumptions
on node deployment, asymptotically optimal capacity and
latency can indeed be achieved simultaneously. To derive this
result, we introduce a novel topological notion of network con-
nectivity which we call backward connectivity, and show that
asymptotically optimal broadcast capacity and latency can be
achieved simultaneously if the network is backward connected.
Our result is proved using the realistic physical interference
model of [7], and under the assumption of constant number
of broadcast sources. Thus, in sharp contrast with the case of
unicast transmission, our result suggests that broadcasting is
not relay limited, and scalable broadcasting in wireless multi-
hop networks is, in principle, possible.

We stress that latency is a fundamental parameter of broad-
cast communication, at least in some scenarios such as mul-
timedia and real-time applications. For instance, if a wireless
multi-hop network is used for communication of multimedia
information among members of a disaster rescue team.

The problem of latency optimal broadcasting (with no
consideration on broadcast capacity, though) is studied, for
instance, in [5].

II. NETWORK MODEL AND PRELIMINARIES

We consider a wireless network composed of n wireless
nodes distributed in a two-dimensional domain. We assume
nodes communicate through a shared wireless channel of a
certain, constant capacity W, and that the nodes transmission
power is fixed to some value P. Correct message reception
at a receiver node is subject to a SINR-based criterion, also
known as physical interference model [T]. More specifically, a
packet sent by node u is correctly received at a node v (with
rate W) if and only if
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where N is the background noise, (3 is the capture threshold, 7°
is the set of nodes transmitting concurrently with node u, and
P,(z) is the received power at node v of the signal transmitted
by node z.

We also make the standard assumption that radio signal
propagation obeys the log-distance path loss model [12],
according to which the received signal strength at distance d
from the transmitter (for sufficiently large d, say, d > 1) equals
P - d=“, where « is the path loss exponent. In the following,
we make the standard assumption that « > 2, which is often
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the case in practice. We then have! P,(z) = P - d(x,v)™?,

>3,

'To simplify notation, in the following we assume that the product of the
transmitter and receiver antenna gain is 1.

where d(z,v) is the Euclidean distance between nodes v and

x, and the SINR value at node v can be rewritten as follows
d(u,v)™®
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For given values of P, (3, a, and N, we define the
transmission range 7,4, of a node as the maximum distance
up to which a receiver can successfully receive a message
in absence of interference. From the definition of physical
interference model, we have 1., = /P/(8N).

The maximal communication graph is a graph Gy =
(V, Eaq) representing all possible communication links in the
network, i.e., (undirected) edge (u,v) € & if and only if
d(u7 U) S TTVL(L(L"

Given an arbitrary broadcast source node s in a network
with n nodes, we define the broadcast capacity of the network
as the maximum possible rate A\(n) at which the source can
generate packets such that all generated packets are received
by all nodes in V — {s} within a certain time 7},q,, With
Tonax < o0. In case of multiple broadcast source nodes,
A(n) refers to the maximum aggregate rate at which source
nodes can generate packets such that all generated packets
are correctly received by the other nodes. The broadcast
latency of the network is the minimal time 7'(n) such that
all nodes in V — {s} receives a packet generated by a source
node s at time ¢ within time ¢ + 7T'(n). It is clear that, in
order to have meaningful values of broadcast capacity and
latency, the maximal communication graph of a network must
be connected. Thus, the assumption of connected maximal
communication graph is made throughout this paper.

SINR(v) =

III. BACKWARD CONNECTED NETWORKS

In order to obtain non-trivial bounds for the broadcast
latency, some assumptions on network deployment must be
made. In fact, while broadcast capacity is somewhat indepen-
dent of the shape of the deployment region and node positions
as long as the maximal communication graph is connected
(see, e.g., [8]), broadcast latency depends on the distance
between the broadcast source and the farthest node, which,
in turn, depends on how nodes are deployed in the plane.

In the following we introduce the notion of backward
connectivity, which is sufficient to obtain asymptotically op-
timal upper bounds to broadcast latency. Before introducing
backward connectivity, we define a square lattice of the plane,
and introduce the notion of cell distance between an arbitrary
pair of network nodes.

Definition 1 (Cell graph): Assume the plane is partitioned
into a lattice of square cells of side [, with [ = ggb&%, for some
constant h > 1, and let vy, ..., v, denote the positions of the
n network nodes in the plane. The cell graph of the network is
the graph CG = (C, EC), with a vertex corresponding to each
cell ¢ such that c N CH(V) # 0, with CH (V) denoting the
convex hull of points vy, . .., v,, and undirected edge (z,y) €
EC if and only if cells z,y are adjacent (horizontal, vertical,
and diagonal adjacency).

Definition 2 (Cell distance): Let cell(x) denotes the cell to
which node = € V belongs to. The cell distance cd(u,v)
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Fig. 1. The notion of backward connectivity.

between nodes u, v € V is defined as the hop distance between
the corresponding vertexes cell(u) and cell(v) in the cell
graph.

Claim 1: Let u be an arbitrary node located in cell cell(u);
all the nodes located in the 8 cells adjacent to cell(u) are
within distance 7,4, from wu.

In the following, we use the term communication graph
(or, simply, graph) to refer to an arbitrary subgraph G =
(V, ) of the maximal communication graph Gj;. Intuitively
speaking, a communication graph represents the set of links
used by a certain communication scheme, which does not
necessarily include all possible links in the network. Unless
otherwise stated, in the following (u, v) € £ denotes a directed
transmission link between node wu (the sender, or transmitter,
node) and node v (the receiver node).

Definition 3 (Backward connectivity): Let G = (V,€) be
an arbitrary communication graph. Graph G is backward
connected with respect to node s € V if and only if, for any
node v € V — {s}, there exists at least one path P connecting
s and v in G such that for all nodes w in P — {v}, we have
cd(s,w) < cd(s,v).

The notion of backward connectivity is pictorially explained
in Figure 1: the network on the left is not backward connected
w.r.t. 52, since the only path connecting s and v contains nodes
whose cell distance to s is greater than cd(s,v) —1 = 1. On
the contrary, the network on the right is backward connected,
since the rightward path connects s to v through a node
whose cell distance to s is less than cd(s,v). As we shall
see, the notion of backward connectivity is fundamental to
ensure an asymptotically optimal progress of broadcast packets
generated at s towards nodes in V—{s}, i.e., optimal broadcast
latency. Note also that the notion of backward connectivity is
a monotonic graph property.

A communication graph G = (V,€) is said to satisfy the
cell adjacency property if and only if set £ is a superset of the
set of links (u, v) with nodes u, v belonging to either adjacent
(horizontal, vertical, and diagonal adjacency) cells or to the
same cell. In other words, the cell adjacency property implies
that all links whose endpoints lie in the same or adjacent cells
are part of the communication graph.

Given the above property, the following claims are trivial
to show:

2When the actual node s w.rt. a graph G is backward connected is not
relevant, we will simply say that G is “backward connected”.

Claim 2: If every cell in the cell graph corresponding to
a certain communication graph G = (V, &) satisfying cell
adjacency contains at least one node, then graph G is backward
connected w.r.t. any node v € V.

Claim 3: 1f every empty cell in the cell graph correspond-
ing to a certain communication graph G = (V, &) satisfying
cell adjacency is adjacent only to non-empty cells, then graph
G is backward connected w.r.t. any node v € V.

Note that the number and patterns of empty cells depends
on the the step [ of the square lattice used to partition the
plane. Intuitively speaking, fixed arbitrary positions for the
network nodes, the larger the step [ of the square lattice, the
less likely it is to have empty cells. On the other hand, the
larger the value of [, the smaller the cell distance between
arbitrary nodes tends to be, hindering existence of “back-
ward connected” paths in the communication graph. We have
verified through simulations with random node deployment
(not reported for lack of space) that, even for low density
scenarios, the vast majority (above 98%) of networks such
that the maxpower communication graph is connected are also
backward connected.

To ease presentation, in the following we consider a network
to be backward connected w.r.t. a certain node s if there exists

at least one square lattice partitioning of side [ =

Tmax

_ 2hV/2°
where h is a constant greater than 1, such that the network is

backward connected w.r.t. node s for that specific lattice. This
specific square lattice (or one of them, in case the network
is backward connected for more than one square lattices) is
assumed to be used in the derivation of optimal broadcast
capacity and latency bounds.

We conclude this section with the proof that a relevant
network deployment scenario, known as homogeneous net-
works in the literature, satisfies backward connectivity w.r.t.
any node u. More specifically, we consider the following node
deployment scenario:
al. a number n of nodes is distributed uniformly at random

in a square region of side (r'maz/7) - v/n/logn, where j
is a properly defined constant.
In the above setting, the critical transmission range for con-
nectivity ctr(n), i.e., the minimal value of the transmission
range such that the resulting network topology is connected
w.h.p.? (this is a necessary condition for having meaningful
notions of broadcast capacity and latency) is [3], [8]:

ctr(n) = ¢ (r;)Q

i.e., it is a constant fraction of the maximum transmission
range. In other words, we are considering a situation in which
node density (defined here as the average number of nodes
within transmission range) is minimal (up to a constant factor
7) for obtaining network connectivity w.h.p..

Let us now assume the deployment region is divided into
C = 8h._n_ non-overlapping square cells of side | = Imez

j logn . 2hV2 7
where h > 1 is an arbitrary constant.

n logn _ r’f}'L(L.’L’

9
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3In this paper, w.h.p. means with probability approaching 1 as n — co.



We now prove a concentration result that shows that, under
the above conditions, all the cells contains at least one node
w.h.p., which, by Claim 2, implies backward connectivity w.r.t.
any node s under the assumption that the communication graph
satisfies cell adjacency.

Lemma 1: Assume n nodes are distributed uniformly at
random in a square region of side % . 1Ogn,
arbitrary constant j, and that the deployment region is divided
into C = 8. 1 pon-overlapping square cells of side

7 logn
= ;h—”\/% If y > 8h, then the minimally occupied cell contains
at least one node, w.h.p.

Proof: The proof is omitted for lack of space. See [13].

|

Corollary 1: Assume al; if a communication graph G
satisfies cell adjacency, then G is backward connected w.r.t.

any node s w.h.p.

for some

IV. TRIVIAL BOUNDS ON BROADCAST CAPACITY AND
LATENCY

The following upper bound on the broadcast capacity triv-
ially follows by observing that the maximum rate at which any
receiver can receive broadcast packets is W [8]. The bound
holds for an arbitrary network.

Claim 4: In any network with n nodes, we have A(n) < W.

Define D(n), the diameter of the network, as the maximum
Euclidean distance between any two network nodes u,v € V.
The lower bound on the broadcast latency immediately follows
by the definition of transmission range 7,4,. Also this bound
holds for an arbitrary network.

Claim 5: Given any network with n nodes, we have
T(n) > D)

— Tmazx

V. MATCHING CAPACITY AND LATENCY BOUNDS

In this section, we introduce a broadcast scheme for single
source broadcasting based on a k? coloring of a subset of
network nodes, which enjoys the following properties: ) the
broadcast source s generates new packets at rate 2 (%),
and 47) all generated packets are correctly received by all
nodes in V — {s} within time O (%) under the condition
that a properly defined communication graph G, is backward
connected w.r.t. source node s.

Note that, in order to have asymptotically optimal broadcast
capacity, the number of colors used by the broadcast scheme
must be a constant. On the other hand, we shall see that,
fixed a step [ of the square lattice used to partition the plane,
k' < k implies that communication graph Gy is a subgraph
of G,. Given that backward connectivity is a monotonic graph
property, Gx» C Gy implies that, from the point of view
of backward connectivity (which is a sufficient condition to
show asymptotically optimal broadcast latency), a relatively
large value of k is desirable. In other words, if we select a
relatively low value of k, it is relatively more likely that the
resulting communication graph Gy, is not backward connected,
and optimal latency in packet delivery cannot be ensured. On
the other hand, a very large value of k (say, k = f(n), where
f(n) is some unbounded increasing function of n) is likely to

Algorithm for a generic node v:

Let ¢ be the color of the current time slot

If v is a leader node, let j be the ID of the

last packet transmitted by node v

L.if color(v) =i then
if source(v) then transmit new packet
else if cellLeader(v) then

if buffer(v) is not empty then

. transmit packet and empty buffer
6.else // color(v) # i
7.if not source(v) then
8.  listen to the channel
9. if new packet arrive then
10. receive the packet
11. let ' be the ID of the received packet
12. if (cellLeader(v)) and (j' = j + 1) then
13. store packet in transmit buffer

RN

Fig. 2. The broadcasting scheme.

result in a backward connected communication graph, but it
is not optimal for what concern broadcast capacity.

In this section, we show how to address this tradeoff, by
showing that there exists a constant value k such that commu-
nication graph G, satisfies cell adjacency, which ensures that
backward connectivity of graph G can be guaranteed for the
relevant network deployments characterized in claims 2 and 3
and Corollary 1. More in general, our characterization shows
that asymptotically optimal broadcast capacity and latency is
achievable whenever communication graph Gy, is backward
connected w.r.t. the source node, which can occur also when
none of the conditions necessary for claims 2 and 3 and
Corollary 1 holds.

To prove our result we use the simple scheme reported in
Figure 2. We assume that the plane is partitioned into non-
overlapping square cells of side [, that each node v is aware
of the cell cell(v) to which it belongs, and that a TDMA
scheme is used at the MAC layer. Each node v in the network
is assigned with a color color(v) chosen among a set of k>
colors. Details of the coloring scheme, which is similar to the
ones used, e.g., in [8], [16], are given below. Time is divided
into periods composed of k2 transmission slots, one for each
color. We assume slot coloring is periodic with period k2, i.e.,
if slot 5 has color 4, then also slots j + 2k2, for any integer
z > 1, have color 7. All nodes have a single-packet transmit
buffer; i.e., when a new packet arrives, if the previous packet
has not yet been sent, the old packet is overwritten.

The source node s simply transmits a new packet each time
a slot of color color(s) occurs. Leader nodes are selected
arbitrarily in each populated cell. If a node v is selected as
cell leader, i.e., as the only node in cell(v) responsible for
forwarding packets, then v transmits a packet whenever a slot
of color color(v) occurs, subject to the condition that there is a
new packet to send in the buffer. Each non-source node listens
to the channel in the remaining k% — 1 slots of the period and,
in case a new packet is received and the node is a cell leader,
the new packet is stored in the buffer (possibly overwriting an
old packet). Note that new packets can be easily identified by
a sequential packet ID contained in the header of the packet.
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w sends packet p(i)
v receives packet p(i)

w sends packet p(i+1)
v receives packet p(i+1)

v sends packet p(i-1) v sends packet p(i)

Fig. 3. Transmission opportunities in consecutive periods.

Condition j' = j+ 1 at step 12. ensures that the broadcasting
scheme preserves packet ordering, i.e., single packet buffering
at the leader nodes is sufficient (see Theorem 1 for details).

The coloring scheme is as follows. We recall that we assume
a square lattice partitioning as described in Section III. The
cells have side [, and we assume that their bottom left corners
have coordinates (i1, -1) for 4, j € Z. The cells are colored
in a checkered fashion with k2 colors. Each color can be
identified by a pair (a,b), with a,b € {0,1,...k — 1}; then
the cell whose bottom left corner has coordinates (i-[, j-) has
color (i,7) (mod k). For each node v, color(v) is the color
of the cell it belongs to. In the following we assume, w.l.0.g.,
that k > 3.

Given a value of k, we define communication graph Gy, as
follows:

Definition 4 (graph Gj): Communication graph Gy in-
cludes all and only directed links (u, v) such that u is either the
source or a leader node, and the SINR value at node v relative
to the signal transmitted by node wu is at least 3, under the
assumption that all leader (or source) nodes of color color(u)
are transmitting simultaneously.

In other words, graph Gy contains all and only the links
that can be used to broadcast packets when the broadcasting
scheme in Figure 2 is used and the number of colors is k2.

We now prove some fundamental properties of the broad-
casting scheme in Figure 2:

Theorem 1: The broadcasting scheme defined in Figure 2
satisfies the following properties:

1) the source s generates broadcast packets with rate k2,

i1) let p(i) be the packet generated by node s during period
i; if communication graph G, is backward connected w.r.t. s,
packet p(i) is received by all nodes in V — {s} within time
O(22).

Proof: We recall that we are assuming a time-slotted
approach at the MAC layer, that time slots are colored using
E? colors, and that slot coloring is periodic with period k2.
Property i) is straightforward: the source node s generates a
new broadcast packet each time a slot with color color(s)
occurs, and thus gets ]%2 of the available channel capacity W.
To prove property i), we first show that a) any leader node
at cell distance §j > 0 from the source node s transmits
packet p(i) within period ¢ 4+ j. We proceed by induction on
7. The base case j = 0 (i.e., the transmitting node is the
source) is straightforward. Let us now consider the inductive
case. Let v be a leader node at cell distance 7 + 1 from the
source. By backward connectivity, there exists a path P in
the communication graph G}, such that all nodes in P — {v}

have cell distance at most j. Observe that, by definition of G,
path P is composed only of leader nodes. Assume w.l.o.g. that
path P has minimal hop-length among the paths satisfying the
condition for backward connectivity. Let w denote the only
node in P such that link (w,v) is in Gy. Since cd(w, s) < j,
by induction hypothesis node w transmits packet p(i) within
period i + j/, with j < j. Since edge (w,v) is in Gy, packet
p(i) is correctly received by node v during period i + j'.
Hence, when node v has its own transmission opportunity
during period 7 + 7' + 1 < i + j + 1, packet p(7) is in the
transmission buffer and is transmitted (see Figure 3). Note
that step 12. of the broadcasting scheme requires that node
v has transmitted packet p(i — 1) before being able to store
packet p(i) in the transmit buffer. This is actually the case,
since, by induction hypothesis, packet p(i — 1) is transmitted
by node v during period i + j'. We then conclude that node v
transmits packet p(i) within period ¢ 4+ j + 1, and property a)
is proved. The following property immediately follows from
property a) above and backward connectivity: b) packet p(i)
generated by source node s during period ¢ is received by
all nodes at cell distance < j from s by the end of period
i+ j — 1, for any j > 1. Property i) now follows from b),
by observing that the maximum (Euclidean) distance between
s and any other node in V — {s} is at most D(n), and that,
given that the square lattice step ! is within a constant factor
from 7,4, the cell distance between two nodes at Euclidean
distance d is O(—%—) = O(?(")) [

We now prove "the followfﬁ(g fundamental lemma, which
shows that there exists a constant value k of the number of
colors such that any packet sent by a node in our broadcast-
ing scheme is correctly received by all the nodes in the 8
surrounding cells. This implies that communication graph G,
satisfies cell adjacency, and backward connectivity of graph
Gy, is guaranteed in network deployments characterized in
claims 2 and 3 and Corollary 1.

Lemma 2: Assume a cell partitioning as defined in Section
0L If & > k = [2+2%+% (B¢(a — 1)he /(A — 1)) 7],
where ( is the Riemann’s zeta function, then every packet sent
by a node in the broadcasting scheme is correctly received by
all nodes in adjacent cells.

Proof: Proof omitted for lack of space. See [13]. |

Note that conditions ~ > 1 and o > 2 ensure that the
value of k is finite and, in accordance with the theoretical
findings of [8], the value of k is independent of node density,
but depends only on the step of the square lattice and on the
path-loss exponent.

By observing that the capacity and latency bounds provided
by our broadcasting scheme match the corresponding bounds
stated in Section IV when k& = k, we have the following
theorem, which is the main result of this paper:

Theorem 2: The broadcasting scheme defined in Figure
2 provides asymptotically optimal broadcast capacity and
latency under the assumption that graph Gy is backward
connected w.r.t. the source node s.

The scheme can be trivially extended to provide optimal
broadcast capacity and latency bounds in case of multiple



source nodes si,...,S,, where z is an arbitrary constant.
The idea is to separate the z concurrent broadcasts into non-
overlapping periods, i.e., to broadcast packets generated by
source s; during period 7,7 + 2,7+ 2z,..., for 1 <¢ < z. It
is immediate to see that the achieved aggregate broadcast rate
is unchanged, while packet latency is reduced by a constant
factor z, i.e., it remains asymptotically optimal. We can then
conclude this section with the following theorem:

Theorem 3: The broadcasting scheme defined in Figure
2 provides asymptotically optimal broadcast capacity and
latency in a network of n nodes with z sources si,...,S,,
where z > 1 is an arbitrary constant, under the assumption
that graph Gy is backward connected w.r.t. nodes s1,...,S,.

Observe that the above construction naturally brings a
tradeoff between broadcast capacity and latency when the
number of source nodes is a function of n. For instance, with
logn sources, we have asymptotically optimal capacity, but
latency which is within a O(logn) factor from optimal.

VI. DISCUSSION

The results presented in this paper have shown that, contrary
to what happens in case of unicast transmissions, broadcasting
in wireless multi-hop networks is not relay limited. This
discrepancy originates from the fact that a single wireless
communication is potentially correctly received by all nodes
within transmission range. While in case of unicast only one
of these potentially many receivers is actually interested in
the packet, and all the other nodes treat the incoming signal
as interference, in case of broadcast all potential receivers are
interested in receiving the packets.

The fact that unicast transmissions are relay, and not in-
terference, limited, is supported by well-known results (see,
e.g., Lemma 2, and similar results in [8], [9], [16]) that ©(n)
simultaneous successful transmissions can occur in a wireless
network, i.e., interference limits the degree of spatial reuse
at most by a constant factor. However, in case of unicast
communication these transmissions can be used to move
relatively few packets toward destination, due to the additional
relay burden on the nodes. It is not then surprising that, if the
relay burden is limited (e.g., only 1-hop flows occurring in the
network) asymptotically optimal per-node capacity (and, triv-
ially, latency) can be achieved also with unicast transmissions
[7]. Observe that lessening the relay burden through exploiting
node mobility is at the basis of Grossglauser and Tse’s result
[6] which, however, comes at the expense of increasing packet
latency. More recently, Ozgur et al. [11] have suggested using
cooperative transmissions to lessen the relay burden on the
nodes. However, this approach can be used to improve unicast
capacity up to a suboptimal factor, due to physical limitations
to the maximum number of independent information channels
crossing a two-dimensional domain [4]. Thus, the relay burden
in case of unicast communications cannot be reduced up to a
level where asymptotical optimal capacity and latency can be
achieved simultaneously. As shown in this paper, this is not
the case of broadcast communication.

VII. CONCLUSIONS

In this paper, we have investigated the fundamental question
of whether asymptotically optimal broadcast capacity and
latency can be simultaneously achieved in a wireless multi-hop
network. To answer this question, we have introduced a novel
topological notion of graph connectivity, called backward
connectivity, and shown that asymptotically optimal capacity
and latency can be achieved in a backward connected network.

Several issues are left open by this paper, such as investigat-
ing whether our result can be extended to the case of a non-
constant number of broadcast sources or to the generalized
physical interference model. Furthermore, a question of in-
terest is understanding whether backward connectivity, which
is a sufficient condition for having asymptotically optimal
broadcast latency, is also a necessary condition.
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