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Abstract

In this paper we study the following problem: we are given a certain
one- or two-dimensional region R to monitor and a requirement on the
degree of coverage (DoC) of R to meet by a network of deployed sensors.
The latter will be dropped by a moving vehicle, which can release sensors
at arbitrary points within R. The node spatial distribution when sensors
are dropped at a certain point is modeled by a certain probability density
function F . The network designer is allowed to choose an arbitrary set of
drop points, and to release an arbitrary number of sensors at each point.
Given this setting, we consider the problem of determining the best per-
forming strategy among a certain set of grid-like strategies that reflect the
(one- or two-dimensional) symmetry of the region to be monitored. The
best performing deployment strategy is such that (1) the DoC requirement
is fulfilled and (2) the total number of deployed nodes n is minimum. We
study this problem both analytically and through simulation, under the
assumption that F is the two-dimensional Normal distribution centered
at the drop point. The main contribution of this paper is an in-depth
study of the inter-relationships between environmental conditions, DoC
requirement, and cost of the deployment.
Keywords: wireless sensor networks, sensor dropping, deployment strat-
egy, network coverage, network connectivity

1 Introduction

Wireless Sensor Networks (WSNs) are expected to revolutionize the way natural
phenomena and human activities are monitored in the next few years. By con-
necting tiny, smart sensor nodes by means of wireless transceivers, large WSNs
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can be formed and used in several application scenarios: smart home environ-
ments, intrusion detection, tracking of animal movements/behaviors, large-scale
environmental monitoring, and so on [8, 12, 14, 15].

Typically, a WSN used is designed to provide a certain level of QoS, which
essentially measures the degree of spatio/temporal accuracy required by the
particular application1. In this paper, we focus on one such spatial measure,
termed the degree of coverage, which evaluates the percentage of a given region
sensed by a set of network-connected sensors. We will formally define this
concept in Section 3. While the degree of coverage is just one of the QoS
measures that one would like to consider (others are, e.g., delay, throughput and
packet loss rate), it is our opinion that the approach taken in this paper can be
suitably adopted to investigate other spatial and/or temporal parameters, such
as the exposure.

The degree of coverage (hereafter, DoC), as well as other QoS measures
provided by a sensor network, depends heavily on the infrastructure, i.e., on
the number and positions of the sensors used to monitor the area. Thus, a
fundamental step in the network planning stage is to define the node deploy-
ment strategy. The strategy used to deploy WSNs depends on the application
considered: when the environment is sufficiently known, not hazardous, and rel-
atively small, sensors can be placed manually in pre-determined positions. This
strategy provides full control on the node placement, allowing a careful choice
of the optimal network topology at the design stage. However, manual sensor
placement is impossible in many situations. In fact, the cost of sending human
or robot operators in the geographical region to be monitored can be enormous,
especially if the region is vast. In other cases, it can be physically impossible to
send the operator in the monitored area due to a highly hostile environment.

In situations where manual deployment is not feasible, a typical alternative
is to drop sensors from a moving vehicle, such as an airplane or a helicopter.
This deployment strategy results in a somewhat random node distribution, in
which the human operator can only control the sensor drop point(s). Since the
network designer has only a partial control on sensor positions, estimating the
expected DoC provided by the deployed network becomes a fundamental and
challenging task.

In this paper, we consider the following network planning problem. We are
given a certain region R, either one- or two-dimensional, to be monitored, and
a certain DoC requirement to be fulfilled (e.g., a certain percentage of the area
to be covered). Sensors are assumed to be dropped by a moving vehicle. The
spatial distribution of the sensors released at a certain drop point is accurately
modeled by a certain probability density function F . The network designer is
allowed to choose an arbitrary set of drop points within R, and to release an
arbitrary number of sensors at each point. Given this setting, we consider the
problem of determining the best drop strategy among a set of possible strategies,

1In many application scenarios, the WSN should be able to provide several levels of QoS
depending on the events currently going on in the monitored region. However, at the network
planning stage the WSN must be designed as if the most stringent QoS requirement were to
be met.
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i.e., the strategy such that the DoC requirement is met, and the total number
of deployed nodes n is minimized. We concentrate on classes of strategies that
take the symmetry of the region into account (i.e., they are center-symmetric),
in both the one- and two-dimensional setting. Further, we assume that F is the
two-dimensional (even if the region R to monitor is one-dimensional) Normal
distribution, and we investigate both analytically and through simulation the
(environmental) conditions under which a certain deployment strategy perform
better than the others. We also investigate through simulation for which range
of values of the dispersion factor (std of the Normal distribution at the release
points) partially controlled deployment of sensors turns out to be more effec-
tive (in terms of number of deployed sensors needed to achieve a certain DoC
requirement) than uncontrolled (random uniform) deployment.

The rest of this paper is organized as follows. In Section 2, we survey
related work and highlight our original contributions. In Section 3, we formally
define the network deployment problems considered in this paper. In Section 4,
we consider the problem of covering a certain one-dimensional region, while in
Section 5 we consider the two-dimensional setting. Finally, Section 6 concludes.

2 Related work and our contribution

Sensor network deployment strategies have been investigated in several recent
papers. A great deal of work has been devoted to study strategies for WSNs
used for intrusion detection. In [9], Meguerdichian et al. introduce the concept
of exposure of a WSN, which is a measure of how well an object, moving on an
arbitrary path within the monitored area, can be observed by the sensor network
over a period of time. The higher the exposure, the more likely it is to detect a
target moving in the sensor field. In the paper, the authors analyze the exposure
of several regular and random node deployments. The problem of computing
the exposure provided by an arbitrary WSN has also been addressed [10, 17].
The problem of optimal sensor placement for target location in a grid-like sensor
field has been investigated in [2]. The authors solve the problem using integer
linear programming. This clearly implies that computing the optimal sensor
placement is computationally infeasible for even moderate size networks.

Several authors have also investigated multi-step deployment strategies, which
are based on the idea of deploying groups of sensors incrementally, possibly us-
ing the information provided by the sensors already on the field to guide the
deployment of the next group of nodes. This idea has been exploited in par-
ticular in the context of multi-robot exploration. In this scenario, sensors are
mounted on mobile robots, and the goal of the robot team is to form a network
with certain characteristics. For instance, in [4] Howard et al. propose an in-
cremental deployment algorithm in which sensors (robots) are placed one at a
time, and the location of the next sensor is calculated based on the information
provided by the robots already on the field. Other proposals along this line of
research are [5, 19]. A weakness of this approach is that it can be applied only in
restricted application scenarios, and that node deployment is a time consuming
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process.
Another approach to multi-step node deployment suitable for clusterized

WSNs has been proposed in [23]. In this approach, sensors are initially randomly
deployed. After initial deployment, the sensors communicate their location and
ID to the cluster-head. Given this information, the cluster-head executes an al-
gorithm based on “virtual forces”, which computes a new position for every node
in the cluster. New positions are chosen in such a way that network coverage is
maximized and node movements are minimized. Once the new positions have
been computed and communicated to the nodes, a one-time movement is carried
out, and the sensors are re-deployed to these positions. Although interesting,
this approach is feasible only in a restricted set of application scenarios, since it
is based on very demanding assumptions (location-awareness and autonomous
sensor mobility).

A multi-step random deployment strategy is proposed also in [3]. The goal
of the designer is to deploy a WSN that guarantees a certain level of exposure
while minimizing the cost, which in turn depends on the number of deployed
nodes and on the number of sensor deployments. A maximum of M sensors can
be positioned on the field, but node positioning is a totally random process. The
basic idea is simple: only part of the available sensors are deployed first, and the
sensors report their position to the base station. Given node positions, the base
station computes the network exposure, and verifies whether the desired level
of exposure is achieved. If not, additional sensors are deployed, and the process
is repeated until either the level of coverage is satisfactory, or all the sensors
have been deployed. In the paper, the authors analyze the infrastructure cost
for varying number of sensors deployed in each step.

Contrary to the approaches discussed so far, the emphasis in [16] is on routing
protocols for sensor networks. In particular, the authors investigate the effect
of infrastructure decisions (number of sensors and deployment strategy) on the
performance of routing protocols such as DSR, DSDV and AODV. They consider
different deployment strategies (grid-like and random), and several performance
metrics. The main finding of the paper is that by simply deploying more sensors,
network performance can be harmed. Thus, the network infrastructure must be
carefully optimized to fulfill the application requirements.

Other papers focused on optimizing the performance of the WSN after de-
ployment. In particular, papers [18, 20, 22] present distributed coordination
algorithms for alternating nodes’ sleeping times in such a way that (1) the
coverage of the monitored region is guaranteed and (2) the network remains
connected. These approaches rely on the implicit assumption that node den-
sity is very high, and many nodes can be actually shut down without impairing
coverage/connectivity.

The study presented in this paper differs from previous work in several ways.
With respect to other studies, our model is less demanding on the sensors:
in particular, we do not assume location-awareness nor autonomous mobility.
Thus, our results can be applied in a wider range of scenarios. More importantly,
to the best of our knowledge, we are the first to addresses partially controlled
network deployment: the network designer can choose the drop points but,
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once the sensors are dropped, their exact location cannot be controlled (ran-
dom placement). This is in sharp contrast with the current literature, which
considers only totally controlled or completely uncontrolled deployment strate-
gies. While totally controlled deployment is feasible in some application sce-
narios, completely uncontrolled deployment seems overly pessimistic. We want
to stress that current investigations on random deployments are based on the
assumption of uniform node distribution [3, 16, 23], which seems to be little
representative of real world scenarios.

In our approach, we assume that nodes are concentrated around the drop
points according to a two-dimensional Normal distribution, where the amount of
this concentration is modeled by the parameters σx and σy of the distribution
(which we call the dispersion factors). Admittedly, assuming that nodes are
normally distributed around the drop points might be not realistic in some
situations. However, we believe that normal deviates are more adequate that
uniform ones to model real world conditions. In particular, the dispersion factors
are very important, since they provide a handle that can be used to account
for different environmental conditions. In turn, these conditions determine the
degree of control the network designer has on the final node deployment: the
higher the dispersion factors, the less control the designer has on the final node
positions.

In the two-dimensional case, we assumed σx = σy = σ. This allowed us
to ease the mathematical technicalities in the theoretical analysis reported in
Section 5.1. In general, assuming the same dispersion along the two axes can be
seen as a limitation, although we do not expect substantially different results
with respect to the ones obtained. In the one-dimensional case, however, the
dispersions along the x and y axes play a very different role. For this reason,
we investigated the more general case where σx and σy can be different.

For the one-dimensional setting, we present a theoretical analysis of two
deployment strategies in a restricted deployment problem, and formally show
that which one of the two strategies performs better depends on the dispersion
factor. We also estimate through extensive simulation the minimal node den-
sity necessary to fulfill a certain DoC requirement under various environmental
conditions. Finally, we consider the slightly different problem of guarantee-
ing barrier coverage, and estimate the number of sensor to be deployed for a
randomly moving intruder to get detected with a given target probability.

For the two-dimensional case, we first theoretically prove a result similar to
the one proved for the one-dimensional setting. More specifically, we are given
a region R and a division of R into square cells, and we consider dropping k
sensors at the center of each cell vs dropping 4k sensors at the unique common
point of four cells. Although the number and choices of drop points are virtually
infinite, the two scenarios considered are nonetheless very important, since they
are the minimum drop point strategies among those that satisfy a natural 2D
symmetry constraint. We investigate the probability that any of the four cells
receives at least one sensor as a function of σ. Similarly to what happens in
the one-dimensional case, we prove that there is a value σ̄ such that, for σ < σ̄
the 4 drops approach is better, while for σ > σ̄ the 1 drop solution is to be
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preferred. We also characterize, under both scenarios, the expected number of
sensors that must be dropped in order to have at least one sensor in each cell,
finding a matching tradeoff result. This is the first theoretical proof that the
optimal network deployment strategy depends on the environmental conditions.

We also perform an extensive simulation-based investigation of a class of
grid-based deployment strategies. The main finding of this investigation is that,
given a value of σ and a certain DoC requirement, the best drop strategy can be
identified among the set of candidate strategies. Furthermore, the results of our
simulations suggest that in many practical cases the best deployment strategy
depends only on the environmental conditions, and not on the desired DoC.
Finally, the results suggest that, for practical purposes, the ‘finer’ strategy (i.e.,
dropping sensors at the center of each cell considered for coverage purposes)
gives ‘close to optimal’ results independently of the environmental conditions
(dispersion factor).

Another observation which we can derive from the simulation results is that
the effect of an increased DoC on the infrastructure (number of sensors to de-
ploy) heavily depends on the environmental conditions: for small values of σ,
node deployment can be controlled quite carefully, and relatively few sensors
are sufficient to meet even very stringent DoC requirements. On the contrary,
when the dispersion factor is quite high, a relatively modest increase in the DoC
requirement results in a dramatic increase of the number of deployed nodes.

3 Preliminaries

We consider a scenario in which sensors are dropped from a moving vehicle, e.g.
an airplane or helicopter, and investigate the problem of monitoring both one-
and two-dimensional regions. As typical applications, we mention the detection
of moving vehicles along a road, or the monitoring of international borders to
detect intruders for the one-dimensional case, and environmental monitoring of
a vast geographical region or intrusion detection for the two-dimensional case.

In both the one- and two-dimensional case, the deployed network must satisfy
a DoC requirement, which specifies the accuracy of the monitoring provided by
the network. In particular, we define DoC as follows.

In case of a one-dimensional region R, we say that a point x ∈ R is covered
iff the closest sensor is within distance rs from x, where rs is the sensing range
of the nodes. We assume that all the nodes have the same sensing range. We
are given a one-dimensional region R of a certain length l, and the goal is to
cover at least a fraction q of R with a certain target probability p. This DoC
requirement is summarized as DoC(q, p) in the following.

The definition of DoC in the two-dimensional case is slightly different. Let
R be the two-dimensional geographical region to be monitored. R is divided
into a number of non-overlapping subregions (also called sensing cells, or cells
for short), which are used to determine the requirement on the sensing coverage
provided by the network. In particular, we consider a cell to be covered if at
least one sensor resides in the cell.
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To ease presentation of results, in the following we will make two simplifying
assumptions:

– R is a square region of side 1 Km;

– R is divided into equally-sized square cells of side s, for some parameter
s.

We remark that these assumptions are made only to simplify the presentation
of our results. In principle, the techniques presented in this paper can be applied
to arbitrary shapes of the deployment region and of the cells. However, the
shape of the deployment region can have a significant influence on the number
of sensors needed to achieve a certain DoC level, hence the results presented in
the following (especially for what concerns simulations) cannot be immediately
applied to different shapes of the deployment region or of the cells.

In our model, the value of s (and consequently, the total number of cells in R)
determines the sensing granularity required by the particular application. For
instance, if sensors are used to monitor temperature, a smaller value of s results
in a finer temperature field generated by the network. Thus, parameter s can be
seen as an alternative to the popular concept of sensing range which is used in
the one-dimensional case. The motivation for using sensing granularity instead
of sensing range to model network coverage lies in the fact that this choice
eases considerably both the theoretical and the simulation-based analysis of the
two-dimensional network deployment problem at hand.

A typical DoC requirement used in our analysis for the two-dimensional
case is: “Given a certain sensing granularity s, at least a fraction q of the cells
are covered with a target probability p”. For brevity, we denote this specific
requirement with DoC(s, q, p).

The following Theorem, whose immediate proof is omitted, states the rela-
tion between the sensing granularity s as defined here and the sensing range
rs.

Theorem 1. Assume R is divided into non-overlapping square sensing cells of
side s, and that the sensing range of the dropped sensors is rs. If at least a
fraction q of the cells are covered and rs ≥ s

√
2, then at least a fraction q of the

area of R is covered. �

In words, Theorems 1 states that, under the hypothesis that rs ≥ s
√

2,
DoC(s, q, p) is a stronger condition than requiring that at least the same fraction
of area is within the range of at least one sensor with probability p. Thus,
our results can be easily restated in terms of sensing range, instead of sensing
granularity.

It is also worth mentioning the relation between the notion of DoC and the
well-known notion of exposure [9]. We recall that exposure aims at measuring
the likelihood of an intruder following a certain path in the monitored area be-
ing detected by the WSN, and is computed by integrating the distance of the
intruder to the closest sensor along the path. Assume a certain DoC require-
ment is fulfilled by a WSN, e.g., that at least 90% of the cells contains at least
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one sensor with high probability. It is then easy to compute a lower-bound
to exposure by assuming the uncovered cells are located in the worst-possible
manner (i.e., they are all contiguous), and then compute the exposure of an
intruder traversing the uncovered region. This approach is likely to give a crude
underestimate of exposure. An average case approach would consider a ran-
dom pattern of uncovered cells (the amount of uncovered cells is given by the
DoC requirement), and compute the exposure of a ‘random’ path within the
monitored area.

Besides network coverage, we are also interested in ensuring network con-
nectivity, i.e. the ability of a node to communicate (possibly using multi-hop
paths) with any other node in the network. This property is fundamental in
order to guarantee that any sensor node can be used to acquire a global view
of the monitored area. This way, a mobile user connected to any of the sensor
nodes can obtain a complete view of R. In case the information generated by
the WSN must be sent to a fixed base station, we must also guarantee con-
nectivity between the base station and some of the network nodes. If the base
station is within R, the problem of connecting the WSN to the base station can
be reduced to the problem of ensuring connectivity in the original WSN with
one additional node. This node, which lies in a fixed position, mimics the base
station, and it could have a larger transmitting range with respect to sensor
nodes. If the base station lies on the boundary of R, the problem of connecting
the WSN to the base station can be easily solved by dropping few additional
sensors in the sub-region of R which is closest to the base station. For these
reasons, and for clarity of presentation, in this paper we focus our attention on
ensuring connectivity of the WSN only.

In the remainder of this paper we focus our attention on coverage only
for the following reasons. First of all, from a theoretical standpoint, coverage
implies connectivity under many circumstances. This occurs, for instance, if
the nodes’ transmitting range r satisfies r ≥ 2rs, the requested coverage is
100%, and the area being sensed is bounded and convex [18, 22]. In the next
section, we observe that this bound can be generalized to arbitrary coverage of
a one-dimensional region R. Also, the convexity requirement is not necessary
under special region partitionings like the square tessellation we adopt in this
paper for the two-dimensional case: in this setting, topological connectedness is
sufficient to ensure that coverage implies connectivity. Under a more practical
viewpoint, the simulation results presented in the following show that network
connectivity is ensured when the required percentage of the region to be covered
is large (this is true in both the one- and two-dimensional case), as it is typically
the case in practical situations. Thus, we will explicitly deal with network
connectivity only in our simulation study, where we adopt the following simple
(yet widely accepted) rule to generate the communication graph: there exists a
bi-directional wireless link between sensors u and v if and only the sensors are
at distance at most r, where r is the nodes’ transmitting range. We assume
that all the nodes have the same transmitting range.

Taking connectivity into account, our typical DoC requirement DoC(s, q, p)
(or DoC(q, p)) can be restated as follows: “Given a certain sensing granularity
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s (or sensing range rs), require that at least a fraction q of the cells are (or at
least a fraction q of R is) covered with a target probability p, and that all the
sensors that contribute to the coverage form a unique connected component”.

4 One-dimensional case

In this section we consider the following problem:

Definition 1 (1d Sensor Dropping Problem(1-SDP)). We are given a
one-dimensional region R of length l to cover, and a DoC requirement DoC(q, p).
We consider different shapes of R (straight line, and two types of curved lines).
Sensor nodes are dropped from a moving vehicle, and can be released at ar-
bitrary points in R. We assume that when sensors are dropped at a certain
point (x, y) ∈ R, their spatial distribution is accurately approximated by a two-
dimensional probability density function (pdf) F . Given this setting, which is
the minimum number of nodes to drop in order to fulfill DoC(q, p)?

Note that in the above definition the region R to be covered is one-dimensional,
but node dispersal is assumed to be two-dimensional. We believe that above
definition captures the salient features of application scenarios such us tracking
of vehicles moving on a road or monitoring of international borders, in which
the region R to be covered is essentially one dimensional, but node dispersal
cannot be confined within R.

We start by stating a generalization of the well-known result that coverage
implies network connectivity when r ≥ 2rs [18, 22]. We recall that the lat-
ter holds under the assumption that the region R to be monitored is entirely
covered.

Proposition 1. Let R be a straight line of length l. If at least a fraction q of
R is covered and r ≥ 2rs + (1− q)l, then the resulting network is connected.

Sketch. Let us consider an arbitrary node deployment such that at least a frac-
tion q of R is covered. It is easy to see that the longest uncovered segment in
R has length at most (1 − q)l. This implies that there is a region S, such as
the one depicted in Figure 1, that does not contain any node. The lower bound
on r results by computing the diameter of S, which corresponds to the distance
between points s and d. It is immediate to see that this distance is 2rs +(1−q)l,
and the proposition follows.

Proposition 1 can be used to set the nodes’ transmitting range depending on
the sensing range and the required coverage. For instance, if we have to monitor
a 1km road, the sensing range is 10m, and we have to cover at least 90% of the
road, then setting r = 120m guarantees that, if the coverage requirement is met,
then the resulting network is connected. However, Proposition 1 accounts for
the worst-case scenario, and a much lower setting of the transmitting range is
usually sufficient in practice (see Section 4.2).
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Figure 1: Illustration used in the proof of Proposition 1.

4.1 Theoretical analysis

In this section we consider a restricted version of 1-SDP under the simplifying
assumption that node dispersal is one-dimensional. More specifically, F is as-
sumed to be the one-dimensional Normal distribution centered at the drop point
and with std σ.

Analogously to the two-dimensional case which will be analyzed in the fol-
lowing, we assume that the region is partitioned into cells (segments) of the
same length, and that the DoC requirement is expressed in terms of covered
cells (cells containing at least one sensor). The goal of the analysis is to com-
pare two deployment strategies (dropping sensors at the center of each cell, or
at the intersection between two adjacent cells), and to determine under which
condition one strategy performs better than the other.

An analytical approximation of the coverage probability of a region R parti-
tioned into several adjacent cells can be obtained by using pairs of adjacent cells
as building blocks. In particular, we compare two experiments: (a) k sensors
are dropped at the center of each cell, and (b) 2k sensors are dropped at the
boundary between the two cells; i.e., the same number of sensors are dropped,
but with a different strategy.

Assuming for sake of clarity unit length cells, the probabilities that in case
(a) a sensor dropped at the center of one cell ends up in that cell (p0), in the
adjacent cell (p1), or in neither of them (q), are

p0 =
1√
2πσ

∫ 1
2

− 1
2

e−
x2

2σ2 dx , p1 =
1√
2πσ

∫ 3
2

1
2

e−
x2

2σ2 dx , q = 1− p0 − p1 ,

respectively. By properly combining these values it is possible to explicitly
compute (at least for small values of k) the probability Pa(k) that, dropping
k sensors at the center of each cell, both cells receive at least one sensor. For
example, Pa(1) = p2

0 + p2
1 and Pa(2) = p4

0 + 4p3
0(p1 + q) + 4p2

0(p1 + q)2 +
4p0p1(p1 + q)2 +p2

1(p1 +2q)2. For larger values of k the expression of Pa(k) can
be computed using a CAS such as MathematicaTM.
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Prob. >=4 cons. cells are covered, 12 dropped sensors 
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Figure 2: Probability that at least 4 consecutive cells are covered with at least
one cell. The total number of dropped sensors is 12.

Analogously, in case (b) the probability that a sensor dropped at the inter-
section point between two cells ends up in the left (or in the right) cell is

pl = pr =
1√
2πσ

∫ 1

0

e−
x2

2σ2 dx ,

while 1 − 2pl is the probability that the sensor falls outside the two cells. As
in case (a), a CAS has been used to explicitly obtain probability Pb(2k) that,
dropping 2k sensors at the intersection point between two cells, both cells receive
at least one sensor. In particular, Pb(2) = 2p2 and Pb(4) = 2p2(7p2 − 12p + 6).

As an example of how the value of σ can affect which one between strategies
(a) and (b) is better, we have considered a scenario made of 6 cells (3 pairs of
cells). Using the values computed above and standard techniques in probability
theory we have evaluated, as a function of σ, the probability that at least four
consecutive cells among the six receive at least one sensor when 2, 4 or 6 sensors
are dropped on each pair of cells according to (a) or (b). The results are shown
in figures 2–4. As seen from the figures, there exists a threshold value σ′ of σ
(around 0.5) such that for σ < σ′ strategy (a) is better than strategy (b), and the
opposite holds for σ > σ′. Figures 2–4 clearly show the effect of environmental
conditions (value of the dispersion factor σ) on the choice of the best sensor
deployment strategy.

4.2 Simulation study

We have studied 1-SDP also through extensive simulation. In our simulations,
we assumed that node dispersal is governed by the two-dimensional Normal
distribution centered at the drop point, with standard deviation σx (respectively,
σy) along the x (respectively, y) axis. The standard deviation along the x and
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Prob. >=4 cons. cells are covered, 24 dropped sensors 
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Figure 3: Probability that at least 4 consecutive cells are covered with at least
one cell. The total number of dropped sensors is 24.

y axis can be used to account for environmental conditions that influence node
dispersal, such as wind, velocity of the vehicle used to drop the sensors, and so
on.

The region to be covered is a line of length 1km, with three different shapes:
line segment, a 90◦ arc, and a 180◦ arc (see Figure 5). We have chosen these
shapes for investigation because we believe they are sufficiently representative
of the main “building blocks” composing the more complex shapes roads and
borders typically have.

The dropping strategy is as follows: when dropping n sensors, we compute
n equally spaced drop points along R, and we drop one sensor at each drop
point. We have also considered alternative dropping strategies, such as having
n/2 equally spaced drop points and dropping 2 sensors at each point (in case n
is even), having n/3 equally spaced drop points and dropping 3 sensors at each
point (in case n/3 is integer), and so on. When the expected node dispersal is
high, having fewer drop points might turn out to be a better choice (see below).

In our simulations the node sensing range is set to 10m, and the transmis-
sion range is set to 25m. Note that, according to Proposition 1, this value of
the transmitting range is sufficient to ensure connectivity when the requested
coverage is at least 99.5%. However, setting r = 25m turned out to be sufficient
to ensure connectivity in all our simulation experiments, where the requested
coverage was 80% or higher.

In the first set of experiments, we have evaluated how the minimum number
nmin of nodes to be deployed in order to fulfill DoC(q, 0.95) varies as q ranges
from .80 to .99. We recall that DoC(q, 0.95) means that we want to cover at least
a fraction q of R with probability at least 0.95. For a given DoC requirement,
we have considered an increasing number of deployed nodes n, and performed
1000 random experiments for each value of n, counting the ratio of experiments
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Figure 4: Probability that at least 4 consecutive cells are covered with at least
one cell. The total number of dropped sensors is 36.

that resulted in a successful configuration (i.e., when at least a fraction q of the
region is covered). For each value of n, we have considered different dropping
strategies as explained above. The returned value nmin is the minimum value
of n such that the DoC requirement is fulfilled (i.e., when at least 95% of the
experiments resulted in a successful configuration) for at least one dropping
strategy. The simulator also returns the optimal(s) dropping strategy(ies).

We have run experiments considering four possible configurations for the
values of σx and σy, corresponding to each standard deviation taking either a
low or a high value. The low value corresponds to setting the standard deviation
to rs = 10m, while the high value corresponds to setting the standard deviation
to 2rs. We recall that, using the Normal distribution, the probability of a sensor
landing within distance 2.5σ from the drop point is above 0.95. Thus, setting
σx = σy = rs corresponds to a low dispersion scenario, in which sensor nodes
land within a circle of radius 25m centered at the drop point with probability
above 0.95. Conversely, setting σx = σy = 2rs corresponds to a high dispersion
scenario, in which sensor nodes land within a circle of radius 50m centered
at the drop point with probability above 0.95. The landing regions (with 0.95
confidence) of sensors correspondent to the various settings of σx and σy used in
our experiments are shown in Figure 6. When clear from the context, we simply
write σx = 1 instead of σx = rs, and σx = 2 instead of σx = 2rs (similarly for
σy).

The results of this first set of experiments are reported in Figure 7 (line
segment), Figure 8 (90◦ arc), and Figure 9 (180◦ arc). In case of the straight
line, we have repeated the experiments with a 2km region, obtaining similar
results: essentially, nmin is doubled with respect to the results reported in
Figure 7.

From the results it is seen that the value of nmin as a function of q has similar
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Figure 5: 1-D regions considered in our simulations.

trends for the various shapes and dispersion settings considered in our experi-
ments: it increases slowly with q until a certain critical value q̄ is reached, after
which the increase becomes sharp. This means that, for values of q below q̄, a
relatively modest increase in the number of deployed nodes is sufficient to signif-
icantly increase coverage; beyond this critical value, coverage can be improved
only at the expense of a considerable increase in the number of deployed nodes.
For instance, in case of a straight line with high dispersion (σx = σy = 2), the
number of deployed nodes must be increased from about 600 to about 800 to
increase coverage from 95% to 98%; i.e., a 3% increase in coverage comes at the
expense of a 33% increase in the number of deployed nodes. On the other hand,
increasing the number of nodes from 400 to 600 is sufficient to increase coverage
from 80% to 95%; i.e., a 50% increase in the number of nodes results in a 15%
increase in coverage.

The value of q̄ depends on the dispersion factor: it ranges from about 95%
(low dispersion), to about 85% (high dispersion). As it could be expected, the
shape of R plays a role only when σx 6= σy: while the value of nmin for a certain
q with σx = 1 and σy = 2 is significantly higher than the same value with σx = 2
and σy = 1 in case of a straight line, the two curves almost coincide in case of
both the 90◦ and the 180◦ arc. This is due to the fact that symmetry plays a
fundamental role in case of the curved lines, and the dispersion on either the x
or y axis affects coverage similarly. Conversely, in a straight line the dispersion
along the y axis has a stronger effect on coverage: while dispersion along the x
axis might cause nodes to land forward or backward with respect to the drop
point, dispersion along the y axis might cause nodes to land too far from the
monitored region, thus having several nodes not contributing at all to coverage.
This explains why in case of a straight line the curve with σx = 1 and σy = 2 is
very close to the curve with σx = σy = 2.

Observe that the phenomenon described above is mitigated if the sensing
range is increased, since nodes which are further away from R can still contribute
to coverage. Indeed, we have observed the opposite phenomenon (i.e., the curve
with σx = 1 and σy = 2 is below the curve with σx = 2 and σy = 1) if rs

is chosen sufficiently high and the transmitting range is scaled properly (e.g.,
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Figure 6: Landing regions of sensors correspondent to the various setting of σx

and σy. The probability of landing within the region is 0.95.

rs = 50m and r = 120m): in this case, having a relatively high dispersion on
the y axis (σy = 20m) is not detrimental, since most of the nodes contribute
to coverage; also, nodes which do not contribute to coverage still contribute
to connectivity, acting as bridges for the nodes that actually cover R. It then
results that having a high dispersion along the x axis is more detrimental, since
network partitioning is more likely to occur.

σx = σy = 1 σx = 1, σy = 2 σx = 2, σy = 1 σx = σy = 2

80% cov. straight 2.71 3.56 3.24 4.04
90◦ arc 2.72 3.49 3.50 4.04
180◦ arc 2.68 3.54 3.42 4.00

95% cov. straight 2.95 5.61 3.44 5.92
90◦ arc 2.95 4.64 4.62 5.94
180◦ arc 2.95 4.60 4.65 5.92

99% cov. straight 4.58 9.20 5.12 9.79
90◦ arc 4.55 7.81 7.77 9.80
180◦ arc 4.56 7.65 8.05 9.79

Table 1: Minimal node densities for different coverage and dispersion factors.

Table 1 reports the minimal node density (expressed as number of sensor
to be dropped every 10m) necessary to fulfill a certain DoC requirement, with
different dispersion values. Note that the optimal density, which can be achieved
in case of manual node deployment, is 0.5 nodes/10m (given that rs = 10m). So,
the data reported in Table 1 dictate that, for instance, deploying a number of
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Figure 7: Minimum number of nodes to be deployed in order to fulfill
DoC(q, 0.95) with increasing values of q. R is a line segment.

nodes which is about 6 times the minimal number of nodes needed with manual
deployment is necessary to achieve 95% coverage in case of low dispersion. As
for the effect of the the shape of the deployment region, we observe that similar
sensor densities for the three shapes are needed when σx = σy, lower densities
in the case of curved shapes are needed when σx < σy, and the opposite holds
when σx > σy.

When considering the best dropping strategy(ies), i.e. the dropping strat-
egy(ies) used to successfully deploy nmin nodes, we have observed that dropping
one sensor at each drop point (i.e., having nmin equally spaced drop points) is
the more recurrent best strategy, especially when the dispersion is low. This
occurs independently of the shape of R. In many cases, different dropping
strategies resulted best performing: for instance, the best dropping strategies
when σx = σy = 1, q = 97, and R is a straight line are (1) dropping 2 sensors
at 168 equally spaced drop points, (2) dropping 6 sensors at 56 equally spaced
drop points, and (3) dropping 7 sensors at 48 equally spaced drop points, all
resulting in nmin = 336. The number of sensors to be dropped at each drop
point with the optimal strategy resulted always below 10 in case of low dis-
persion (σx = σy = 1), and resulted as high as 20 in case of high dispersion
(σx = σy = 2). It is worth noting that, in evaluating nmin, a significant role is
played by the inherent discretization in the number of dropped sensors.

In a second set of experiments, we have evaluated the effect of the dispersion
factors on nmin, given the DoC(0.90,0.95) requirement. The results of these
experiments are reported in Figure 10 for the straight line, and in Figure 11
for the 90◦ arc. The results obtained for the 180◦ arc are very similar to those
obtained for the 90◦ arc and are not reported. From the figures it is evident the
different effect of the dispersion along the y axis in the two cases. As explained
above, this is due to the fact that when R is a curve symmetry plays a significant
role.
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Figure 8: Minimum number of nodes to be deployed in order to fulfill
DoC(q, 0.95) with increasing values of q. R is a 90◦ arc.

Before ending this section, we observe that, in case the application scenario is
border monitoring, the designer is in general interested at deploying a “barrier”
of sensors [7], rather than covering a given (one- or two-dimensional) area. We
have performed a set of experiments in which we fixed two points, s and d, as
the starting and ending points of the border to monitor, and we built a coverage
graph G in which two sensors are directly connected iff their covering circles
intersect. Points s and d act as base stations in this scenario. With this setting,
we have investigated the probability of having s and d connected by a path in
G when a certain number of sensors are dropped over the sd line segment. This
problem is essentially that of 1-barrier covering an arbitrary, but sufficiently
wide, belt region, i.e., a region in which the “east-west” bounding curves are
distant enough from the line sd (see [7]). Here, however, we require that the
connected path joins two well-defined points (s and d) rather than two arbitrary
points along the “north-south” bounding curves of the belt region.

We have computed the minimum number of nodes needed (on the average)
to obtain s−d connectivity in the coverage graph with probability at least 0.95,
where the sensor dropping strategies are the same as in the previous experiments
(i.e., sensors are dropped on the line segment connecting s and d). The results
of our experiments are reported in Table 2. As seen from the table, substantially
less sensors can be dropped if the goal is to provide barrier coverage, instead of
coverage of the line segment. Actually, line coverage implies barrier coverage,
but not vice-versa (see Figure 12). The decrease in the number of deployed
sensors can be as high as 61% when σx = 1 and σy = 2.

Summarizing, the main findings of our extensive simulation-based analysis
of 1-SDP are the following:

– providing very strong coverage guarantees (say, prob. of coverage above
98%) with partially controlled sensor deployment is very expensive in

17



1 1
1

1
2

2
22

Figure 9: Minimum number of nodes to be deployed in order to fulfill
DoC(q, 0.95) with increasing values of q. R is a 180◦ arc.

Figure 10: Minimum number of nodes to be deployed in order to fulfill
DoC(0.90, 0.95) with different values of dispersion. R is a line segment.

terms of infrastructure cost (number of deployed sensors).

– the ‘finer’ deployment strategy (i.e., dropping one sensor at each drop
point) is often the best performing strategy; however, this strategy might
be very difficult to achieve or costly in a practical setting, and more ‘coarse’
dropping strategy might be considered.

– a considerable increase in sensor density (2.7-fold to 9.8-fold) with respect
to the case of optimal (manual) sensor deployment is needed to provide
strong coverage guarantees in case of partially controlled sensor deploy-
ment.

– the shape of the region to cover plays a significant role only when the
dispersion factor is asymmetric (σx 6= σy);
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Figure 11: Minimum number of nodes to be deployed in order to fulfill
DoC(0.90, 0.95) with different values of dispersion. R is a 90◦ arc.

nmin

σx σy barrier line

1 1 420 725
1 2 555 1440
2 1 495 795
2 2 630 1510

Table 2: Minimum number of nodes to be deployed in order to obtain barrier
coverage (barrier entry) and coverage of the line segment sd (line entry). The
target probability is 0.95 in both cases.

– relatively few sensors are needed for guaranteeing barrier coverage instead
of guaranteeing coverage of a straight line.

5 Two-dimensional case

In this section, we analyze the following two-dimensional sensor dropping prob-
lem:

Definition 2 (Sensor Dropping Problem (SDP)). We are given a square geo-
graphical region R = [0, 1]2 and a DoC requirement DoC(s, q, p). Sensor nodes
are dropped from a moving vehicle. We assume that the node spatial distribution
generated when sensors are dropped at a certain point (x, y), with 0 ≤ x, y ≤ 1, is
accurately approximated by a probability density function (pdf) F . Sensors can
be dropped at arbitrary locations within R. Given R, DoC(s, q, p) and F , which
is the optimal drop strategy, i.e., the strategy such that the DoC requirement is
met and the total number of deployed sensors is minimum?

Solving this problem in the most general formulation is very difficult (mainly
because of the uncountable number of different drop strategies to consider), and
we leave it as an open problem. In this paper, we simplify the above problem
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s d

Figure 12: Barrier and line coverage. There is a connected s − d path in the
coverage graph, even though the sd segment is not covered.

Figure 13: Grid strategy of parameter d = 0.25. Drop points are represented
by circles. There are 4× 4 = 16 drop points in total.

formulation by restricting the class of possible drop strategies to grid strategies,
which we now define.

Definition 3 (Grid drop strategy). The grid drop strategy of parameter d, with
0 < d ≤ 1, corresponds to releasing sensors at coordinates (d

2 + i · d, d
2 + j · d),

for i, j = 0, . . . ,
⌊

1
d

⌋
− 1. The total number of drop points in the grid strategy of

parameter d is
⌊

1
d

⌋2.

The grid strategy of parameter d = 0.25 is reported in Figure 13. Figure
14 shows the subdivision of R into cells when s = 0.1, and four different grid
strategies.

In our analysis, we assume that F is the two-dimensional Normal distribution
of parameter σ centered at the drop point. More formally, the pdf of the x-
coordinate of a sensor dropped at point (x̄, ȳ) is accurately approximated by
N (x̄, σ), while the y-coordinate is accurately approximated by N (ȳ, σ).

Parameter σ models the expected geographical dispersion of sensor nodes
when dropped at a certain point. For this reason, σ is called the dispersion
factor. For the sake of simplicity, we assume that σ does not depend on the
particular drop point. In other words, we assume that the pdf that models the
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s

Figure 14: Subdivision of R into square cells when s = 0.1. Grid strategies of
parameter d = 0.1 (black circle), d = 0.25 (white circle), d = 0.5 (cross) and
d = 1 (shaded circle) are also shown.

node spatial distribution is the same at each drop point. Finally, we assume that
the dispersion along the x-axis is the same as the dispersion along the y-axis,
and that the two measures are independent. Again, the goal of this assumption
is only making the presentation of our results clearer. Our techniques can be
easily extended to account for different dispersions along the two axes.

We are now ready to define the constrained version of SDP which will be
analyzed in this section.

Definition 4 (Grid Sensor Dropping Problem (GSDP)). We are given a square
geographical region R = [0, 1]2 and a DoC requirement DoC(s, q, p). Sensor
nodes are dropped from a moving vehicle. We assume that the node spatial
distribution generated when sensors are dropped at a certain point (x, y), with
0 ≤ x, y ≤ 1, is accurately approximated by the two-dimensional Normal distri-
bution of parameter σ centered at (x, y). Given R, DoC(s, q, p) and σ, which is
the best performing grid drop strategy, i.e., the grid strategy such that the DoC
requirement is met and the total number of deployed sensors is minimum?

5.1 Theoretical analysis

At first sight, the restricted version of the SDP introduced in the previous
section could be investigated using occupancy theory, an important branch of
Probability Theory (see, e.g., [6]). The classical occupancy model of randomly
throwing n balls into N boxes has a number of well-known applications, and
it has been used also in ad hoc networks to investigate properties such as con-
nectivity [13], and the performance of cell-based energy-conservation strategies
[1] and of clustering protocols [21]. In our case, we can quite naturally view
the sensing cells as the boxes and the sensors dropped as the balls thrown into
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Figure 15: One vs four launches: the small circles indicates the (projection of
the) point from which sensors are dropped.

them2. However, there are some difficulties that prevent us from using the most
studied occupancy models. Consider the launch of a sensor and suppose that pi

is the probability that it lands in cell i. Occupancy theory gives us models for
the case of equiprobable allocations (which means that the probability of a ball
going into box i is the same for all i, i.e., pi = 1

N , where N is the number of
boxes) as well as nonequiprobable allocations (i.e., possibly pi 6= pj , for i 6= j).
However, in our case the balls (sensors) are thrown from different places; this
makes the elementary probabilities pi also dependent on a further variable, say
t, that can be interpreted as a time variable. In other words, we must replace
pi with pi(t), t = 1, 2, . . ., where pi(t) is the probability that the t-th sensor
dropped goes into cell i. Moreover, the pi(t) are not given for free; in fact, each
pi(t) has to be computed by integrating, over the area represented by cell i,
the probability density function that governs the t-th launch. At the very least,
for a large number of cells and many drop points, the computation of the basic
probabilities pi(t) can be time consuming.

For the above mentioned reasons, we do not further pursue this line of attack;
rather, we devise, using “special purpose” methods, an analytical result that
applies to one specific, yet interesting, instance of GSDP.

Suppose we are faced with relatively large values of σ with respect to the
sensing granularity. Under this circumstance, a simple question that turns out to
be analytically tractable is the following: is there any advantage from dropping
sensors at the intersection of four cells with respect to dropping (a less number
of) sensors over each of the four cells (see Figure 15)?

Consider a square region R of side 4u and suppose it is divided in four square
cells of side 2u, for some u ≥ 0. We consider the following two experiments: (a)
four sensors are dropped, one at the center of each cell, and (b) four sensors are
dropped at the center of R (Figure 15). We compute the probability that cell
1 receives at least one sensor under (a) and (b); because of an easy symmetry
argument, such probability is the same for all the cells. In all cases we assume
that the pdf governing the dispersal of the sensors is Normal with mean cen-
tered at the drop point (which is always assumed to be at (0, 0) without loss of
generality) and standard deviation σ along both axes, denoted NO,σ. We also

2The surface outside the deployment region R can be regarded as an additional box col-
lecting the probability of a sensor not landing into R.
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Figure 16: Integration domains within the definition of C(ρ, θ) and S(ρ, θ).

assume that dispersions along the x and y axis are uncorrelated. With these
assumptions, in polar coordinates we have:

NO,σ(ρ, θ) = NO,σ(ρ) =
ρ

2πσ2
e−

ρ2

2σ2 . (1)

Case (a). Assume the four cells are numbered 1 through 4 as in Figure 15.
Let pij denote the probability that a sensor dropped at the center of cell i lands
somewhere in cell j, i, j = 1, . . . , 4, and let qij = 1 − pij . The probability p1

that cell 1 receives at least one sensor is p1 = 1 − q11q21q31q41. By symmetry,
pij only depends on the relative positions of cells i and j. Hence, for instance,
p21 = p31 = p12 and p41 = p14, and we are simply lead to compute p11, p12, and
p14. To this end, for θ ∈

[
0, π

4

]
and ρ ≥ 0, we define the following two functions:

C(ρ, θ) ,
∫ θ

0

∫ ρ
cos θ

0

N(ρ′, θ′)dρ′dθ′ =

=
θ

2π
− 1

2π

θ∫
0

e−
ρ2

2σ2 cos2 θ′ dθ′, (2)

and

S(ρ, θ) ,
∫ π

4

θ

∫ ρ
sin θ

0

N(ρ′, θ′)dρ′dθ′ =

=
1
8
− θ

2π
− 1

2π

π
4∫

θ

e−
ρ2

2σ2 sin2 θ′ dθ′. (3)

By definition, C(ρ, θ) (respectively, S(ρ, θ)) is the probability that a sensor
dropped at (0, 0) lands somewhere in the triangle (0, 0), (ρ, 0), (ρ, ρ tan θ) (re-
spectively, (0, 0), (ρ, ρ), (ρ cotan θ, ρ)) – see Figure 16.

By combining C(ρ, θ) and S(ρ, θ), we can compute the probabilities p11, p12,
and p14 as follows.

– p11 = 8C(u, π
4 ), where C(u, π

4 ) accounts for the probability over the area
depicted in Figure 17.

– 1
2p12 = 2

(
C(3u, θ̄) + S(u, θ̄)− C(u, π

4 )
)
, where θ̄ = arcos

(√
10/3

)
, by the

area decomposition suggested in Figure 18.
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Figure 17: Area that receives C(u, π
4 ) of the total probability. Sides have length

2u.

A1
B1

B2

A2

Figure 18: The probability over the light gray shaded area (B1, B2) is computed
as the probability over (A1, B1) (S(u, θ̄)), plus the probability over (A2, B2)
(C(3u, θ̄)), minus the probability over (A1, A2) (C(u, π

4 )).

– p14 = 2
(
C(3u, π

4 )− C(u, π
4 ))− p12

)
. In fact, p14 can be computed by

following the area decomposition suggested in Figure 19.

Substituting the single pieces into p1 = 1−q11(q21)2q41 and doing the algebra,
we get:

p1 = 1−

 4
π

π
4∫

0

e−
u2

2σ2 cos2 θ dθ

 ·

1− 1
π


π
4∫

0

e−
u2

2σ2 cos2 θ dθ −
θ̄∫

0

e−
9u2

2σ2 cos2 θ dθ +

−

π
4∫

θ̄

e−
u2

2σ2 sin2 θ dθ




2

·

1− 1
π


π
4∫

θ̄

e−
u2

2σ2 sin2 θ dθ −

π
4∫

θ̄

e−
9u2

2σ2 cos2 θ dθ




Case (b). Suppose we drop four sensors at the center of R. The probability
the any of these goes into cell 1 is p̂1 = 1 − (q̂1)4, where q̂1 is the probability
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Figure 19: The probability over the dark gray shaded area is computed as the
probability over the square with thick sides (2C(3u, π

4 )), minus the probability
over the light gray shaded areas (p12), minus the probability over the inner white
square (2C(u, π

4 )).

that any given sensor does not land in cell 1. In turn, q̂1 = 1 − 2C(2u, π
4 ), so

that (after simple algebra) we obtain

p̂1 = 1−

3
4

+
1
π

π
4∫

0

e−
u2

2σ2 cos2 θ dθ


4

.

Comparison. In Figure 20 we report the probability of cell 1 receiving at least
one sensor in the cases (a) and (b) discussed above. The probability is plotted
against the ratio σ

4u , i.e., the dispersion factor is normalized with respect to the
side of the deployment region. Clearly, for symmetry reasons, this is also the
probability that any other cell receive at least one sensor. The plot confirms the
intuition that there must be a value of σ

4u (approximately 0.206) beyond which
the probability of having at least a sensor in a given cell with the single launch
option is higher.

Let us now consider the expected number of sensors that must be dropped
in cases (a) and (b) in order to have at least one sensor in each cell. We
recall that, for independent trials (i.e., launches), each one having the same
success probability p, the number of attempts that must be made before the
first success occurs is a geometric random variable, i.e., the first success occurs
at trial i with probability p(1− p)i−1. The expectation of a geometric random
variable of parameter p is 1

p .
Let us start with scenario (a). In this scenario, the random experiment

is the launch of four sensors, one for each of the four drop points. Let Xi,
for i = 1, . . . , 4, be the random variable that denotes the minimum number of
experiments (each dropping four sensors) after which cell i contains at least one
sensor. It is immediate that Xi has geometric distribution of parameter p1,
where p1 is defined as above. Note that the Xis are not independent, since the
fact that a certain cell is occupied (or empty) has the effect of decreasing (or
increasing) the probability that another cell is occupied. However, they have
negligible correlation, as the following simple argument shows.

Let C be the random variable that denotes the number of experiments after
which all the cells are covered with at least one sensor. It is immediate that
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Figure 20: Probability of having at least one sensor in cell 1 under cases (a) and
(b) as a function of σ

4u .

C = maxi=1,...,4 Xi. Suppose, without loss of generality, that the maximum
is achieved at cell 1 and consider the conditional probability P (X1 ≥ k|Xi ≤
k, i = 2, 3, 4). How is the distribution of X1 affected by knowing that Xi ≤ k,
for i = 2, 3, 4? Actually, this latter information amounts only to saying that 3
out of 4k sensors launched have not landed in cell 1, and clearly this information
tends to be negligible as k grows. Actually, small values of k are likely to be
obtained for small dispersion factors, which in turn imply low correlation as
well (but for a different reason: nodes are highly concentrated around the drop
points).

The above observation has been confirmed by the simulation results. First,
we have derived a formula for E[C] under an independence assumption of the
Xi’s. Then, we have generated a large number of data sets and sampled the
true expectation. The results are reported in Figure 21.

To derive the formula for the expectation we have first determined the cu-
mulative distribution function of C as follows:

Prob(C < k) = 1− Prob(C ≥ k) =

1− Prob(∃i : Xi ≥ k) = 1− (1− Prob(∀i : Xi < k))

Under the stated independence assumption, we can then write:

Prob(C < k) ≈
4∏

i=1

Prob(Xi < k) .

Since the Xis are geometric random variables of parameter p1, we have:

Prob(C < k) ≈

k−1∑
j=1

p1(1− p1)j−1

4

. (4)
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Figure 21: Expected number of launches to have one sensor in each cell under
scenario (a) with our formula (Theor) and as resulting from simulations (Exper),
as a function of σ

4u .

Using the cumulative distribution function, we can compute the probability
that C equals k as follows:

Prob(C = k) = Prob(C < k + 1)− Prob(C < k) .

It follows that the expectation of the random variable C is:

E[C] ≈
+∞∑
k=1

k · Prob(C = k) .

Plugging equation (4) into the expression above and simplifying the resulting
formula (we have used MathematicaTM), we obtain:

E[C] ≈ −25 + 69p1 − 85p2
1 + 58p3

1 − 22p4
1 + 4p5

1

p1(−2 + p1)(3− 3p1 + p2
1)(2− 2p1 + p2

1)
. (5)

Note that the value above must be multiplied by four to obtain the number
of expected sensors to drop, since each experiment in this scenario consists of
dropping four sensors. So, E[Xa] = 4 · E[C], where Xa is the random variable
that denotes the number of sensors to be dropped in scenario (a) to have every
cell covered.

Turning to scenario (b), we observe that it is not necessary always to drop 4k
sensors (for some k > 0), and a finer analysis is required. The problem can be
viewed as a coupon collecting task (see, e.g., [11]): there are four coupons (the
four cells) that we want to collect, called valid coupons, and one which we are not
interested in, corresponding to the region outside R. Actually, we may assume
that the latter is a fifth coupon that we have already collected. The number of
attempts that we have to make before collecting all the valid coupons is the sum
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of the expected values of four geometric variables, X1 through X4, characterized
by decreasing probability of success. More precisely, let p the probability of
collecting any of the four valid coupons during one attempt. Note that in our
case 4p < 1, since the coupon we are not interested in has nonzero probability
of occurrence. For the first attempt we are happy if we get any of the four valid
coupons, and this happens with probability 4p. For the second attempt, we
look for one of only three valid coupons, with corresponding total probability
3p. By iterating the reasoning it is not difficult to see that the expected number
of attempts before collecting all the valid coupons under scenario (b) is

E[Xb] = E[X1 + X2 + X3 + X4] =
4∑

i=1

E[Xi]

=
4∑

i=1

1
ip

=
25
12p

, (6)

where p = 1− q̂1.
Figure 22 shows the plot of the expected values E[Xa] and E[Xb]: for σ

4u <
c̄ ≈ 0.1875 , dropping sensors at the center of each cell is the best choice (in
expectation); for σ

4u > c̄, the situation is reversed, and dropping sensors at
the center of the region is better. We have thus proved the following theorem,
which, similarly to the one-dimensional case studied in Section 4.1, shows that
the best performing sensor deployment strategy depends on the environmental
conditions.

Theorem 2. Assume R, with side l, is divided into four cells, and that we want
to deploy the minimum number of sensors such that all the cells are covered,
and consider the two deployment strategies (a) and (b) defined above. If the dis-
persion factor σ is such that σ

l < c̄, then the best performing strategy is to drop
sensors at the center of each cell (strategy (a)); otherwise, the best performing
strategy is to drop sensors at the center of R (strategy (b)). �

Since E[Xa] and E[Xb] are not integers, in general, we also report the rounded
values in Table 3, whose entries are computed from the expected values as
follows: under scenario (b) the nearest largest integer; under scenario (a) the
nearest largest integer divisible by 4. If you consider two consecutive rows of
Table 3, say rows i and i + 1, then row i + 1 gives the number of sensors to
be dropped when σ

4u is strictly greater than the value in row i and not greater
than the value in row i + 1.

5.2 Simulation study

In this section we report the results of the extensive simulations performed to
investigate GSDP.

The simulator that we have designed has the following input parameters:

– the required sensing granularity s, with 0 < s ≤ 1;
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Figure 22: Expected number of dropped sensors to have one sensor in each cell
under cases (a) and (b) as a function of σ

4u .

σ/4u 4-drops 1-drop σ/4u 4-drops 1-drop

< 0.175 8 9 0.3875 20 13

0.24 12 10 0.415 20 14

0.2625 12 10 0.4375 20 15

0.29 16 10 0.455 20 15

0.3275 16 11 0.46 24 16

0.36 16 12 0.48 24 17

0.3625 16 12 0.4975 24 18

Table 3: Expected number of sensors to be dropped for having one sensor in
each cell under (a) and (b).

– the parameter d of the grid drop strategy, with 0 < d ≤ 1;

– the transmitting range r;

– the dispersion factor σ;

– the number of sensors nd to be dropped at the single drop point. The
total number of deployed sensors is then n = nd ·

⌊
1
d

⌋2.

In a single experiment, nd sensors are dropped at each drop point according
to the Normal distribution of parameter σ. Once all the n sensors have been
deployed, the communication graph G is generated by connecting with an edge
all the pairs of nodes that are within distance r. Then, the largest connected
component LCCG of G is calculated. Finally, the fraction of sensing cells covered
by at least one node in LCCG is computed and recorded in the output file.

Note that, since node positions are generated according to a pdf with un-
bounded support, sensors may lay outside R. These “out of bound” nodes

29



Parameter Settings

s 1/8, 1/9, 1/10
d 1, 1/2, 1/3,...,1/10
r 0.15, 0.25
σ from 0.005 to 0.05 in steps of 0.0025

from 0.06 to 0.2 in steps of 0.01
from 0.225 to 0.5 in steps of 0.025

nd from 1 to 1000

Table 4: Settings of the input parameters used in our experiments. The values
of s, d, r and σ are normalized with respect to the side of the deployment region
R.

are useless for the purpose of coverage, but can be used as bridges to increase
network connectivity.

In our simulations, we have considered about 49000 different settings of
the input parameters and, for each setting, we have performed a number of
experiments varying from 250 to 1000. The settings of the various parameters
used in our simulations are shown in Table 4.

An observation concerning nd is in order. In order to keep the simulation
time reasonable, we have imposed an upper bound of 1000 to the total number
n of deployed nodes. Thus, depending on the value of d, the maximum value
of nd considered is much smaller than 1000. For instance, when d = 0.1 the
maximum value of nd considered in our experiments is 10.

We have performed simulations with two values of the transmitting range
r (0.15 and 0.25). Although these values are not sufficient to ensure network
connectivity as a consequence of coverage in the worst-case (we recall that we
need r ≥ 2rs ≥ 2

√
2s for this), the simulation results have shown that setting

r = 0.15 is already sufficient to provide connectivity on the average with the
DoC requirements used in our experiments. For this reason, in the following we
show only the results obtained when r = 0.15.

5.2.1 Evaluation of drop grid size

In the first set of experiments, we have evaluated the best grid size as the
dispersion factor σ increases. Given the value of σ, of r, and a certain DoC
requirement DoC(s, q, p), we have calculated the value of d corresponding to
the best drop strategy (among the ones considered), i.e. the value of d such
that DoC(s, q, p) is satisfied and n is minimum. This calculation has been
performed by post-processing the huge amount of output data generated by our
experiments.

The simulation results for r = 0.15, s = 0.1, p = 95, and different values of
q are reported in Figure 23. Figure 24 reports the same results when s = 1

8 =
0.125. In the figures, 75-95 (and the other plots) must be interpreted as follows:
in at least 95% of the cases, at least 75% of the cells is covered by at least one
sensor in LCCG.
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Optimal Drop Grid size - s= 0.1 - r = 0.15
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Figure 23: Optimal grid size for increasing values of σ. The sensing granularity
is s = 0.1, and the transmitting range is r = 0.15.

From figures 23 and 24 it is seen that as the dispersion factor σ increases, the
size of the best grid strategy increases as well. When σ is around 0.3 or above,
the best drop strategy is to drop all the sensor at the center of the deployment
region R, independently of the DoC requirement. Note that in this case it
is likely that the uncovered cells reside on the boundary of R. On the other
hand, when the expected dispersion is very small (σ = 0.03 and below), the grid
strategy of minimum size 0.1 is always best. In between these two values of σ,
we are in an intermediate regime, where we can observe an increasing trend of
the drop grid size. This trend is not perfectly linear, due to the considerable
effect of the discretization which is inherent in the definition of grid deployment
strategy. It is also important to observe that the effect of the DoC requirement
on the best performing grid size is only marginal. We believe this is due to
the fact that which deployment strategy performs best mainly depends on the
probability of covering cells in the vicinity of the drop point, which heavily
depends on the dispersion factor (recall Section 5.1).

5.2.2 Number of deployed nodes

In the second set of experiments, we have evaluated how the total number
of deployed sensors varies as a function of the dispersion factor σ. We have
considered four different grid drop strategies (d = s, d = 1

6 = 0.166, d = 1
3 =

0.333 and d = 1), with various DoC requirements. The transmitting range is
set to 0.15.

The results of our experiments for different DoC requirements are reported
in figures 25–28. The figures also report the number of sensors needed to obtain
the same DoC requirements under optimal (manual) and random uniform sensor
deployment. We make the following observations.
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Optimal Drop Grid size - s = 0,125 - r = 0.15
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Figure 24: Optimal grid size for increasing values of σ. The sensing granularity
is s = 0.125, and the transmitting range is r = 0.15.

– For any of the DoC requirements considered, the behavior of n as σ in-
creases depends on the drop strategy: if the drop grid is very fine (d = s),
we have a linear increase of n with σ (up to the discretization induced
on n by the fact that nd is an integer). For relatively coarser grids, n
decreases with σ quite sharply initially; then, it increases with a relatively
modest slope. When the dispersion factor is large enough (σ around 0.35
and above), n increases with σ independently of the grid size. This fact is
quite intuitive: as the dispersion factor increases, the node deployment be-
comes more and more difficult to control, and the total number of sensors
to be deployed to meet the DoC constraint increases.

– For any of the DoC requirements considered, we can distinguish three
regimes in the plots: for small values of σ (σ around 0.1 or below), drop-
ping the sensors using the finest grid (d = s) is a good choice, that often
minimizes n. For large values of σ (σ around 0.3 and above), the best
option is always to deploy sensors using a unique drop point located at
the center of R. For intermediate values of σ, setting d = 0.333 seems to
be the best choice.

– the ‘finer’ grid deployment strategy (d = 0.1) always resulted, if not the
best performing, very close to the best performing strategy. This finding,
which is in accordance with the results for the one-dimensional case, sug-
gests that dropping sensors at the center of each cells might be the best
choice in a practical setting.

– The DoC requirement has a dramatic effect on n. For instance, when
σ = 0.1, less than 200 nodes are sufficient to satisfy DoC(0.1, 75, 95),
while more than 400 nodes are necessary to satisfy DoC(0.1, 95, 95). In
words, increasing the required percentage of covered cells by 20% results
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in a more than 100% increase in the number of deployed sensors. This
means, under certain environmental conditions, requiring 100% coverage
of the monitored region incurs a huge infrastructure cost. Changing the
constraint on s has a less significant impact on n: when σ = 0.1 and the
requirement is DoC(0.125, 75, 95), the number of nodes to be deployed is
around 125. Thus, a 25% increase in s results in a decrease in the order
of 37% of the number of deployed sensors (we recall that a larger value of
s results in a less stringent DoC requirement). Note that the situation is
very different when σ is very small (σ below 0.025); in this case, up to 200
nodes are sufficient to satisfy both DoC(0.1, 75, 95) and DoC(0.1, 95, 95).
This is due to the fact that with these values of σ node deployment can
be accurately controlled, and dropping 1 or 2 sensors at the center of
every sensing cell is sufficient to meet basically all the DoC requirements.
In these situations, requiring 100% coverage of the monitored region is a
realistic goal, and techniques similar to those presented in [18, 20, 22] can
be used to increase network lifetime.

– when the dispersion factor is low (σ < 0.05), partially controlled sensor de-
ployment is more effective than random uniform deployment in achieving
the desired DoC requirement, especially when the coverage requirement
is quite stringent. For instance, when DoC = (0.1, 0.95, 0.95), at least 357
sensors are needed in cased of random uniform deployment, while ≤ 300
are needed with partially controlled deployment when σ < 0.05. This
should be compared with 95 sensors which are needed in case of optimal
sensor deployment. On the other hand, partially controlled deployment is
less effective than random uniform deployment when the dispersion factor
is high. This is also due to the fact that, under random uniform deploy-
ment, we are actually guaranteed that all the deployed sensors land into
R, which is hardly the case in case of partially controlled deployment with
high dispersion factor. This observation discloses an interesting insight,
i.e., that, contrary to what typically assumed in the literature, random
uniform deployment of nodes might not be a sort of ‘worst-case scenario’
for studying coverage problems in WSNs.

Before concluding this section, we present sample sensor deployments that
help us clarifying why the apparently trivial strategy of dropping all the sensors
at the center of R is optimal for large values of σ. We consider the two extreme
drop strategies: having a drop point in the center of every sensing cell (d = s),
and having a unique drop point at the center of R. Figure 29-a shows sample
deployments obtained with the two dropping strategies when σ = 0.04 with
n = 200 nodes. Figure 29-b shows similar samples when σ = 0.4 and n = 300.
In case of small σ, the finer drop strategy results in a far better coverage: 94%
of the cells are covered, as compared to only 10% covered cells when d = 1. The
situation is reversed when σ = 0.4: in this case, the cell coverage is 70% with
d = s and 82% with d = 1. The better coverage of the coarser drop strategy is
due to the fact that when all the sensor are dropped at the center of deployment
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Number of deployed nodes - s = 0.1, q = 75, p = 95
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Figure 25: Total number of deployed sensors with increasing values of σ and
different grid strategies. The DoC requirement to be met is DoC(0.1, 75, 95).

region, less sensors are expected to fall outside the boundaries of R: the number
of “out of bound” sensors is 56.7% when d = s, and only 35% when d = 1.

6 Final remarks

In this paper we have investigated in detail a wireless sensor dropping problem
that can arise when the WSN is used for monitoring vast geographical regions.
We have considered a target spatial DoC requirement, and studied both theo-
retically and experimentally the relation between the environmental conditions
that influence node dispersal (the dispersion factor(s)) and the best perform-
ing deployment strategy. In particular, we have shown that, in many practical
cases, the best performing deployment strategy depends only on the environmen-
tal conditions, and not on the particular DoC requirement. This observation is
important, since it eases the task of identifying the best performing deployment
strategy.

We believe that one of the main contributions of this paper is the definition
of a simple yet powerful methodology to tackle the problem of finding a ‘good’
WSN deployment strategy: 1) define a quantity that can be used to measure QoS
(in our case, sensing coverage) 2) define a pdf that models the node dispersal
at the single drop point (the Normal distribution in this paper) as a function of
the environmental conditions (modeled by the dispersion factor(s) in our study)
3) define a reasonable set of drop strategies (such as equally spaced drop points
in the one-dimensional scenario, or grid drop strategies in the two-dimensional
case) 4) once the above parameters are set, the best deployment strategy can
be identified.

As the example of barrier coverage considered in Section 4 has shown, the
methodology described above can be used to study node deployment strategies
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Number of deployed nodes - s = 0.1, q = 95, p = 95
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Figure 26: Total number of deployed sensors with increasing values of σ and
different grid strategies. The DoC requirement to be met is DoC(0.1, 95, 95).

in other application scenarios, such as target detection. For instance, it is clear
that sensing granularity and exposure (see [17]) are related measures: the finer
the granularity, the easier it is for the WSN to detect a target moving within
the monitored region. An in-depth investigation of the relation between these
two important QoS measures is the subject of ongoing studies.

Another way to extend the work presented in this paper is to analyze sensor
deployment problems in which the QoS requirement accounts also for temporal
accuracy, such as the latency with which events are reported to the base station.
We are currently working on this topic, and on the related topic of deploying
a network with a minimal guarantee on the operational lifetime. We believe
that a viable approach to tackle these more complex problems is to combine our
methodology with techniques used in the analysis of topology control, clustering
and energy-conserving protocols.

Finally, it is interesting to study variations of the deployment strategies
considered in this paper, for instance strategies in which drop points are subject
to a perturbation error, or in which the sensing regions are not uniform.
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