Stateful Usage Control for Android Mobile Devices*

Aliaksandr Lazouski, Fabio Martinelli, Paolo Mori, and Andrea Saracino

Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche
Pisa, Italy
name.surname@iit.cnr.it

Abstract. This paper proposes a framework for regulating data sharing on An-
droid mobile devices. In our approach, the user downloads a copy of the data on
his Android device, then the framework controls the data usage by enforcing the
usage control policies which have been embedded in the data itself by the data
producer. The usage control policy is based on the Usage Control model, whose
main feature is to allow the usage of the downloaded data as long as conditions
specified in the policy are satisfied. The proposed framework secures the data
access procedure relying on both the Android security mechanisms and the in-
troduction of Trusted Platform Module functions. The paper details the proposed
framework, presents some preliminary results from the prototype that has been
developed, and discusses the security of the prototype.

Keywords: Usage Control, Mobile devices, XACML, Android

1 Introduction

In the last years, the spreading of mobile devices, such as mobile phones and tablets,
has dramatically increased so that nowadays the majority of the population owns at least
one of them. New generation mobile devices are managed by operating systems which
can be customized by installing applications (apps) offering a plethora of functionali-
ties. Smartphones and tablets are equipped with fast multi-core processors, they have
a good storage capacity, and a strong connectivity. Mobile devices can connect to the
Internet through several interfaces, e.g., operator network (3G/4G), WiFi, or they can
communicate directly with other devices through Bluetooth or NFC interfaces.

Thanks to these features, mobile devices are currently an excellent platform to
download and access data, whose usage sometimes should be restricted by security
policies.

Currently, Android is the leading operating system for mobile devices and is run by
almost 80% of smartphones and tablets '. Android is a multi level open source platform,
which provides an environment for the execution of mobile applications. Mobile appli-
cations are distributed to the final users through repositories (markets), that are managed

* This work was supported by the EU FP7 project Confidential and Compliant Clouds (CoCo-
Cloud), GA #610853
! http://www.gartner.com

by trusted parties (e.g., Google Play Store), where developers upload, distribute and sell
applications. Android provides a robust security architecture that has been designed to
ensure the protection of the platform, i.e., of data, resources and applications, while
reducing the burden on application developers as well as allowing users to control the
access rights assigned to applications. In fact, each Android application is executed in
a sandbox that prevents it from interacting with other applications, and the access to
resources is regulated by a permission system, as detailed in Section 3.1.

However, to regulate the access to downloaded data, the native security features of
Android are not sufficient. This paper focuses on controlled data sharing on mobile
devices running Android. As a matter of fact, as long as data are stored in the producer
domain, they can be protected using traditional access control techniques, but once
these data have been downloaded on a mobile device, typically no further controls are
performed to regulate their usage. However, many scenarios require that the usage of
data is regulated even when they are stored outside the producer’s domain.

1.1 Contribution and Motivation

This paper proposes a framework which allows the sharing of data on Android mobile
devices while protecting the data by regulating their usage. In particular, the data pro-
ducer embeds a data usage control policy in the data he shares with another user. The
data users exploit our framework to download a copy of the data on their Android de-
vices, and the framework controls their subsequent accesses and the usage of these data
by enforcing the usage control policy which is embedded in each data copy. The usage
control policy is based on the Usage Control model, defined by Sandhu in [1], and its
main feature is that it allows the usage of data as long as a set of conditions are satisfied.
Our approach protects the data from the users of the device and from the appli-
cations running on the device. Also, since the device is not always connected to the
internet it should be possible to make access decisions locally. Our framework consists
of a Data Protection System, that manages the storage and the accesses to the data, and
of a policy decision point which is capable to evaluate policies written in UXACML lan-
guage, an extension of XACML OASIS standard for Usage Control. We implemented
the prototype of our stateful data usage control system as a couple of Android applica-
tions, called Data Protection System (DPS) app and UXACML Authorization app.
Many real scenarios would benefit of the proposed framework. For example, the
data producer could be a team manager who wants to share his business documents
with his employees. Since the documents are critical, the manager wants to allow his
employees to visualize them on the company’s tablets when they are located within the
building of the company department, or when they are outside this building and the
network interfaces of their devices are switched off. Hence, the manager could use our
framework to share documents with his employees, embedding in these documents a
policy that allows the visualization of the document according to the previous condi-
tion. Other real scenarios like this one can be envisioned in the Bring Your Own Device
(BYOD) paradigm, in which employees are allowed to use the same mobile device both
for business and private usage. The employers want the employees to separate the two
domains, private and business, on their device. Thus, some business functions should

be disabled when the employee is using the device for private matters. With the intro-
duction of smartphone and tablets and the increasing popularity of cloud environments,
BYOD topic is of central importance and several security challenges have still to be
addressed [2]. The approach described in this paper can be used to prevent the access to
data and cloud functionalities, when a business-related security policy is not valid any
more.

1.2 Paper Structure

The paper is structured as follows. Section 2 describes some related work. Section 3 de-
scribes the standard security support provided by the Android operating system, and the
Trusted Platform Module. Section 4 describes the adoption of the usage control model
in our scenario along with simple examples of security policies. Section 5 shows the
architecture of the proposed framework, describes the prototype implementation along
with some performances and security analysis. Finally, Section 6 draws the conclusions.

2 Related Work

The authors of [3] propose a framework to enhance mobile devices security focused
on the protection of the resources of the mobile devices from the applications that are
executed on these devices. In particular, the framework prevents the misuse of mo-
bile device’s resources using a runtime monitor that controls the application behaviour
during its execution, and policies are expressed in Conspec [4]. The paper presents a
prototype for Symbian OS, running on Nokia E61 and N78 devices, and a prototype for
OpenMoko linux running on HTC Universal devices, and evaluates the overhead and
the battery consumption introduced by the security support.

The work described in [5] proposes the run-time enforcement of policies to regulate
the information flow among applications on Android devices. Policies are expressed
through labels, applied to applications or to their components, which specify the secrecy
level, integrity level, and declassification and endorsement capabilities of the object it
is paired with. The paper describes an implementation on a Nexus S phone running
Android 4.0.4, built on the top of Android’s activity manager, that intercepts the calls
between the components. This framework is different from the one proposed in this
paper because it is focused on controlling the information flow among applications.

Another system designed to enhance the security support of Android, CREPE, is
proposed in [6] and [7]. CREPE is a fine grained context related policy enforcement
system, where each policy consists of an access control policy, composed by standard
access rules, and an obligation policy, which specifies some actions that must be per-
formed. Each policy is paired with a context, a boolean expression over physical and
logical sensor of the mobile device, and when a context expression is evaluated to true
the corresponding policy is enforced. The paper describes and evaluates the effective-
ness and the performance of a prototype derived from the Android Open Source Project
(AOSP).

The work in [8] describes a framework called Kirin for security attestation of apps
before they are installed on a mobile device. The framework looks for malicious pattern

in the application package and avoids the deployment of dangerous apps. Kirin does
not perform analysis of the runtime behavior of the application and does not apply any
security policy.

Another work focusing on the analysis of access to security critical resources is
TaintDroid presented in [9]. This framework is based on hooks put in all the methods
that handle access to user or device data. The information flow is then tracked, to un-
derstand which applications are effectively able to see the tracked data. This framework
requires the operative system to be modified.

The work proposed in [10] describes a security framework which enhances the An-
droid permission system allowing the user to choose the permissions to grant to an
application and handling correctly the exceptions for revoked permissions, preventing
the apps from crashing. With this framework the user can choose effectively which per-
missions grant to the app. However, the security policies which can be defined through
this approach are static and limited to the coarse-grained permission system.

Access control to privacy sensitive information has been addressed in [11], which
propose a framework called TrustDroid to define access level to specific device re-
sources and operation. TrustDroid also allows to define some context based policies,
but this policies only apply to applications installed on the device, thus private data in
the wrong context can still be accessed by the user. Moreover a mechanism of remote
attestation is missing and it requires modification of the operative system.

A preliminary work concerning sticky policies for mobile devices is presented in
[12] where authors claim that context-aware access and usage control can be a signifi-
cant support for users in mobility. The paper presents a prototype for Android systems,
called ProtectMe, which allows to specify sticky policies including access and usage
control directives to be enforced on the data they are attached to.

There some significant differences between the work in [12] and the one presented
in this paper. Mainly, it is due to the security policy languages that the two frameworks
enforce, respectively, PPL [13] and U-XACML [14]. The PPL language is designed
to express obligations, i.e., actions that must be enforced by the PPL engine. Instead,
the the U-XACML engine handles continuous authorizations and conditions, i.e., con-
strains on mutable attributes which should be re-evaluated when attributes change and
a resource is still in use. A violation of these authorizations and/or conditions implies
the access revocation. Then, the U-XACML assumes a distributed authorization infras-
tructure which requires collaboration of many parties on sharing and updating security
attributes. Thus, it is capable to enforce policies which govern usage of all data copies
rather than local only. Finally, the work in [12] does not provide performance analysis.

3 Background

We report in this section background notions on the security mechanism on which the
proposed framework relies.

3.1 Android Security Overview

The Android framework includes several elements to enforce security on the physical
device, applications and user data. The Android native security mechanisms are the

Permission System and Application Sandboxing, which enforce, respectively, access
control and isolation. Through the permission system, every security critical resource
(e.g., camera, GPS,Bluetooth, network, etc.), data or operation is protected by mean
of a permission. If an application needs to perform a security critical operation or ac-
cess a security critical resource, the developer must declare this intention in the app
AndroidManifest.xml (manifest for short) file asking the permission for each
needed resource or operation. Permissions declared by the application are shown to
users when installing the app, to decide if he wants to consider the application secure or
not. If the application tries to perform a critical operation without asking the permission
for it, the operation is denied by Android. The manifest file is bound to the application
by means of digital signature. The integrity check is performed at deploy time, thus the
Android system ensures that if an application has not declared a specific permission, the
protected resource or operation cannot be accessed. In the last Android versions, users
can dynamically revoke and re-grant specific permissions to applications, however this
practice requires a level of knowledge and expertise greater than that of average users.
In fact, revoking permissions will often result in app misbehaviors including crashes,
due to the unhandled exception caused by the missing permission.

On the other hand, isolation is enforced through the synergy of two elements: the
Dalvik Virtual Machine and the underlying Linux kernel. In Android every application
runs in a virtual machine called Dalvik Virtual Machine (DVM). The DVM is an opti-
mized version of the Java Virtual Machine, where each application has its own memory
space, can act like it is the only application running on the system and is isolated from
other apps. Moreover each instance of the DVM is registered as a separate user of the
Linux kernel. This means that each installed app is considered a user at the kernel level,
able to run its own processes and with its own home folder. The home folder of each
application stores application files on the device internal memory, thus it is protected
from unauthorized access by the Linux kernel itself. In fact, files stored in the home
folder can be accessed only by the application itself. However, since the device internal
memory is limited, the amount of data that can be stored in the home folder is limited
and generally using the internal memory is a deprecated practice.

3.2 Trusted Platform Module

Integrity of the mobile device architecture can be assured through usage of Trusted
Computing. Verifying device integrity is mandatory to ensure that other applications
cannot interfere with the DPS and UXACML Authorization Apps. The Trusted Com-
puting Platform (TCP) is an hardware framework that enforces hardware level security
on a specific system. Devices protected through trusted computing embed a hardware
module called Trusted Platform Module (TPM). The TPM includes keys and routines
necessaries to verify the integrity of various levels of the device, from the firmware level
to the application one.

The Trusted Computing Group is currently proposing a standard for the applica-
tion of the TPM to mobile devices, such as smartphone and tablet. The system model
presented in [15] and depicted in Figure 1 can be matched with the Android architec-
ture. In fact, the Operating System block can be seen as the underlying Linux kernel

Interpreted
Applications

Native
Applications

Interpreter

Protected
Environment

ASIC Hardware

Fig. 1. Secure Mobile Device Architecture Proposed by the TCG

of Android devices, the Native Applications block is embodied by the native applica-
tion set provided by Google or the device manufacturer on stock devices e.g. Dialer,
Hangout, GMail etc.. Furthermore, the Interpreter block is the DVM which exe-
cutes all the applications on the device (Interpreted Applications). The protected envi-
ronment is the part protected by the TPM where secure information is stored.

The TPM securely stores inside its registers (PCR) the values to perform the in-
tegrity checks of the device components. Integrity check is performed by the TPM with
a bottom-up approach, in a process which is defined as Chain of Trust, where the in-
tegrity of each level is considered the Root of Trust for the higher level. This process
involves a set of measurements on its configuration, which includes a set of hash com-
putations of the code of its kernel and of the running applications. The root-of-trust is
rooted to the physical platform TPM. Hence, to measure the initial integrity of the de-
vice, starting with the TPM, the following steps are required. Firstly, the TPM applies
a set of measurements on the boot-loader, so that from now on, all the steps can be
measured from boot to kernel loading and its modules. Then is verified the integrity of
the kernel, operative system and finally of the application installed on the device.

When the integrity of a level cannot be verified, the device is considered non-secure
from that level to higher ones. If the device cannot be considered secure, the integrity of
the DPS and UXACML Authorization apps cannot be ensured. This check is effective
against malware or device rooting attempts. In fact, if the user tries to root the device,
i.e. tries to obtain root privileges to avoid security policies, the TPM will detect this
modification and, consequently, it will block access to data removing the application
and all its data (see Section 5). Moreover the external provider of the app will be no-

tified. The same goes for dangerous applications. Any installed application is matched
against a database of authorized application signatures. If a new application is installed
then the value stored into the TPM is updated only if the app is in the signature database,
otherwise the device will be considered non-secure.

Since the mobile TPM has still to be standardized, currently there are no Android
devices supporting it. However, the TCP building blocks that have to be included on the
Android platform have been described in [16], and are the following: a Root-of-Trust
for Measurement (RTM), a Root-of-Trust for Storage and Reporting (RTS/RTR) and a
Static Chain of Trust (SCoT). These elements have been developed as extension of the
Linux Kernel, realizing a virtual TPM which implements all the interfaces to perform
integrity checks and update stored values. However, being a software component this
virtual TPM is not able to ensure any security property.

It is worth noticing that the TPM module is a hardware component embedded onto
mobile devices, which will be delivered with an Android version able to manage it.
The proposed framework will be available only for those devices equipped with TPM.
However, the installation of the proposed framework will not require any modification
of the existing version of Android, since it will exploit the existing standard interface to
exploit the TPM.

4 Usage Control on Android

The framework proposed in this paper is aimed at enabling Data Producers (DPs) to
perform a controlled sharing of their data, i.e., it allows other users, data users (DUs),
to download a copy of these data (Data Copy, DC) and it imposes some constraints
on the usage of these data. The framework has been designed for allowing the sharing
through mobile devices running Android operating system. In fact, the data users run
our application on their Android devices to download a local copy of the shared data
from our sharing server and to access it. The downloaded data copies are paired with
their usage control policies, which have been defined by the DP, and our application
enforces these policies when data are accessed and stored on Android devices.

4.1 Usage Control Model

The policies enforced on shared data are based on the Usage Control model (UCON)
defined in [1]. The core components of the UCON model are: subjects, objects, actions,
attributes, authorizations, conditions, obligations. In the following, we briefly describe
how they are instantiated in our scenario. However, for a detailed description of the
UCON model please refer to [17,18,19].

The subjects are the Data Users (DUs) who perform some actions on the local copies
of the data (which are the objects) that have been downloaded on their mobile devices.
In the previous example, the employees are the subjects and the business document is
the object. We assume that DUs are registered to Google, as we use the Google account
as subject identity. In the reference scenario of this paper the policy covers a small set
of security relevant actions:

— visualize(s, 04c): the DU (s) visualizes the data copy object 0g4e;

— append(s, 04c,nd): the DU (s) append new data nd in the data copy object 04.;

- replicate&send(s from, Sto, 0de): the DU (S rrom) sends a copy of its data copy
object (04.) to the (device of the) other user s;,;

— delete(s, 04c): the DU (s) deletes the data copy object o4, from the mobile device.

We recall that the set of actions performed by the application could be larger than
the previous set because not all the actions performed by the application (and not all
their parameters) are security relevant.

Attributes are used to represent subjects’ and objects’ features. Attributes are muta-
ble when their values are updated as a consequence of actions performed by subjects.
Mutable attributes can be updated before the access (pre-update), or during (on-update),
or after (post-update) the usage. For example, the subjects’ reputation is an attribute that
could be updated with a post-update. An object attribute can refer to: i) a specific Data
Copy (DC), e.g., “id” or “creation date”, ii) a subset of DCs, e.g., “number of data
copies belonging to the user U”, iii) all DCs derived from the same data object, e.g.,
“global number of copies”.

Immutable attributes of data, e.g., id, creation date, or producer, are embedded in the
data object itself, because their values will not change during the object lifetime. Muta-
ble attributes of data, instead, are not embedded in the data object because a large over-
head for keeping consistency among all copies of the same attribute would be required.
Consequently, mutable attributes of data and users are stored on proper Attribute Man-
agers that are invoked to retrieve the current value of these attributes when required.
Since mutable attribute might be read and updated concurrently, Attribute Managers
must be able to manage concurrent accesses avoiding inconsistencies. Mutable attribute
management is out of the scope of this paper; an example is given in [20].

Authorizations are predicates that involve attributes of the subjects and of the ob-
jects. The policy could require that an authorization predicate is satisfied to begin
the access (pre-authorization), or continuously while the access is in progress (on-
authorization). In the latter case, as soon as the authorization predicate is no longer
satisfied, the access is terminated. Conditions are environmental factors which do not
depend upon subjects or objects. The evaluation of conditions can be executed before
(pre-condition) or during (on-condition) the action. Obligations verify the fulfilment of
some mandatory requirements before performing an action (pre-obligation), or while
performing it (on-obligation).

4.2 Policy Example

Let us consider the the previous example, where a team manager wants to share some
critical business documents with his employees. The following policy example is ex-
pressed using a more readable language then UXACML language:

policy-set:
Target: (o.id = "document’) AND (s.role = ’'employee’

policy-1:
Target: action = ’visualize(s, o)’
on—-authorization:
(e.location = ’company-department’)
OR

/ Mobile OS UCON Authz System

o E \d Domain B
[PIPy]::[LMy]::{ AMy J
user

Fig. 2. Usage Control Architecture

(e.inet = 'OFF’) AND (e.bluetooth = OFF’) AND (e.nfc = ’'OFF’)
policy-2:
Target: action=’replicate&send(s, s’, o)’
pre-authorization:
(0.nOfCopies < N) AND (e.inet = 'ON’) AND (s’.role = ’"employee’)

pre-update:
(0.nOfCopies++)

The manager wants to allow his employees to visualize the document on their tablets
only when they are located within the building of the company department, or when the
network interfaces of their devices are switched off (policy-1). This policy includes
an on-authorization predicate which requires that the employee is located within the
building of the company department, or that all the network interfaces of his devices are
switched off. This predicate must be verified for the whole time the employee visualize
the document. In fact, if an employee successfully opens the business document when
he is at work, as soon as he leaves the company’s building, the framework automatically
detects it and closes the business document if at least one of the network interface on
his device is switched on.

Another possible usage control policy in this scenario is the one that authorizes one
(or more) employees to produce further data copies form their copy, but it allows a
maximum of N copies of the same data (policy-2). This policy requires that the device
is connected to the internet because the attribute which encodes the number of data
copies is global and should be queried/updated from the remote attribute repository.

S Prototype

This section describes the prototype architecture and implementation, and reports per-
formance and security analysis.

5.1 Architecture Components

Figure 2 shows the components of the architecture. Though main security components
reside on the mobile device, the architecture is distributed because the security attributes

required for the evaluation of the security policy might be spread over several domains.
This architecture has been designed to deal with concurrent retrieval and update of
mutable attributes, but we don’t cover this aspect in this paper.

The main components are the following:

— Policy Decision Point (PDP) is a component which evaluates security policies and
produces the access decision;

— Policy Enforcement Point (PEP) is a component which intercepts invocations of
security-relevant access requests, suspends them before starting, queries the PDP
for access decisions, enforces obtained decisions by resuming suspended requests,
and interrupts ongoing accesses when the policy violation occurs;

— Context Handler (CH) is the front-end of the authorization system, that manages the
protocol for communicating with PEPs and PIPs. It converts and forwards messages
sent between components in the proper format. During the pre decision phase, the
CH also contacts different PIPs and retrieves security attributes;

— Attribute Manager (AM) is a component which manages attributes and knows their
current values;

— Policy Information Point (PIP) is a component which provides interface for other
security components to query attributes. The PIP communicates then with the spe-
cific AM to retrieve attributes;

— Lock manager (LM) is a component which guarantees consistency in concurrent
retrieval and updating of mutable attributes It determines whether the attribute
query/update should be served or should be delayed by placing it in a queue and
executing it later. The LM might be embedded into the AM;

— Session Manager (SM) is a components which is responsible for continuous control
and manages ongoing usage sessions;

— Access Table (AT) is a component which keeps meta-data regarding ongoing ses-
sions. It contains a table of the current sessions with their statuses and a table of
IDs of the attributes needed to service each session;

— Data Protection System (DPS) is the component which allows the user to access the
data. The DPS embeds the PEP in a way such that all the accesses to the data are
controlled by the usage control system. The DPS keeps encryption keys to access
the data and perform encryption/decryption is the access should be granted to the
requester.

5.2 Components Implementation

UCON Authorization System Implementation. The core of our prototype is the UCON
authorization system which implements functionality of CH, PDP, PIP, LM, AM, AT,
and Session Manager. It was realized as Android application, UXACML Authoriza-
tion App (see Figure 3), which consists of a set of Android services and each Android
service implements specific component or several components of the architecture.

The front-end of the UCON authorization system, the CH, is a bound Android ser-
vice which implements client-server synchronous interactions. Initially, the PEP binds
to the CH and then sends access requests using inter process communication (IPC) of
Android OS. Communications between the PEP and the CH are blocking, i.e., the code
where the PEP is inserted can not continue unless an authorization decision is provided.

DPS App

Thread ACtivity Thread Service

OnCreate():
PEP.tryaccess

PEH‘s"tartaccess

OnDestEy{):
PEP.endaccess

IPC (inter process communication)

- | |
UXACML Authorization App @

Thread Service

‘ Alarm Manager ‘ ‘ SQLite DB ‘ ‘ Bluetooth Driver ‘

Fig. 3. Usage Control Implementation in Android

The CH may accept several access requests from different applications (PEPs) and
each new request is evaluated in a separate thread. The Android OS handles a group of
working threads to facilitate efficient evaluation of new requests. Therefore, the UX-
ACML Authorization App is powerful to handle multiple calls (access requests) hap-
pening at the same time.

After receiving the access request, the CH pulls attributes from PIPs and then sends
the access request and the UXACML policy to the PDP for the access evaluation. We
modified Balana XACML Engine of OW2 in order to make it running on Android. If
the access decision is “permit”, the CH calls the Session Manager and the AT to store
the metadata regarding new usage session, i.e., the UXACML policy, attributes needed
for the continuous access revaluation, address of the PEP where the revocation message
should be sent in case of the policy violation, etc. All session-related metadata are stored
in the AT, Android SQLite DB, which is private data of the UXACML App and can not
be accessed by other Android apps. Access to the AT is done to be thread-safe. Then, the
CH subscribes to remote PIPs which holds mutable attributes needed for the continuous
access re-evaluation. Finally, the CH responds to the PEP with access decision and this
ends the pre-authorization phase.

The CH collects attributes from local and remote PIPs. The local PIP provides in-
terfaces to environmental attributes (e.g, status of a bluetooth connection) and attributes
related to local data copies (e.g., number of accesses to the DC stored on the device).
Local attributes are stored in PIP’s SQLite DB and the LM guarantees the consistent
access to these attributes if multiple attribute queries are happening at the same time.

The CH queries remote PIPs for global attributes, e.g., the overall number of the
DC in the system. We used implementation of the remote PIP described in [citation re-

moved for blind review]. The remote PIP is implemented as a web-service with locking
deadlock-free concurrency mechanism to attributes stored in PostgreSQL DB. Besides,
the PostgreSQL triggers allow the CH to subscribe for updates of attributes needed for
continuous access re-evaluation. The CH and the remote PIP communicate via wi-fi
network.

Indeed, in mobile scenarios the wi-fi network might be down and some remote
attribute changes will not be delivered to the CH. To avoid such situations which lead to
possible access violation, the CH is periodically triggered by Android Alarm Manager.
The UXACML Authorization App administrator is in charge to specify re-evaluation
interval. If during the access re-evaluation the CH is not capable to reach remote PIPs
and local attributes do not make the policy applicable, the CH fires the access revocation
for such sessions and sends corresponding messages to PEPs.

PEP Implementation. Figure 3 shows the example of where the PEP code should
be inserted if the Android ACtivity is considered as a resource and time when the AC-
tivity is visible as the long-lasting security-relevant action.

The PEP binds to the UXACML Authorization App on “tryaccess” and unbinds on
the “endaccess” or “revokeaccess” (i.e., when the ACtivity is destroyed). If the resource
and actions on it are represented by another abstraction and the lifetime of the resource
is longer than that of the activity/service which provides access to it, the binding be-
tween the PEP and the UXACML Authorization App is executed upon each security
message exchange. The UXACML Authorization App also binds to the PEP if the re-
vocation of usage session is detected. Thus, the PEP receives the revocation message
(Android intent) and starts a new thread that handles the real access revocation.

5.3 Performance Analysis

We tested the performance of our prototype in the presence of many concurrently
running usage sessions. We installed the UXACML Authorization App and the DPS
App with embedded PEP on Motorola Moto G which runs Android 4.4 KitKat and is
equipped with 1 GB RAM and Quad-Core 1.2 GHz Cortex-A7 CPU.

Time, ms
600

500
400
300
200
100

0
0 20 40 60 80 100

Number of Attributes

Fig. 4. Overhead of Pre-authorization Phase

First, we measured the overhead which occurs during the pre-authorization phase as
aresult of the access request construction, attributes retrieval, and evaluation of the pol-
icy against the access request (see Figure 4). Without loss of generality, we considered
a scenario in which there is a PEP which should authorize the single request. We varied
the number of attributes from 10 to 100 which are required by the UCON system to per-
form the decision process. As a matter of fact, there is a slight growth of ,,.. with the
number of attributes. In our tests, we used local attributes and non-updating UXACML
policies (i.e., no attribute updates are needed as a result of access evaluation), while in
real systems remote PIPs could be exploited, possibly increasing the time needed for
attributes retrieval.

Time, s
16

14
12 =®=revocation

=i reevaluation

8
6
4
2 ././.,._-."_"./.’.
0

0 50 100 150 200

Number of Ongoing Sessions

Fig. 5. Overhead of Ongoing Access Phase

Then, we measured the re-evaluation time of many sessions running concurrently
varying the number of sessions from 20 to 200. All session used the same 10 attributes
which were queried once but all session were re-evaluated independently and sequen-
tially. Figure 5 (blue chart) shows the results obtained. We see that the time needed for
re-evaluation of sessions grows linearly in the number of running sessions and for 200
ongoing sessions it is about 4 seconds. In fact, the results shown that the mobile device
is powerful to handle a big amount of ongoing sessions.

Further, we measured the revocation time of all sessions whose policies use the
same security attribute which changes its value from good to bad and violates the poli-
cies. The revocation time of all sessions defines the period of time passed from the
point when the CH is triggered for access re-evaluation until PEPs receive revocation
messages for all sessions that have to be revoked. Figure 5 (red chart) shows the results
obtained. We see that the revocation time of all sessions grows linearly in the num-
ber of running session and for revoking 200 sessions we need about 15 seconds. The
revocation time of all sessions is several times higher than the time needed just for re-
evaluation of the access for these sessions. This is due to heavy resource consumption
for the IPC between PEPs and the UXACML Authorization App.

Finally, we measured how many computation resources are consumed by the UX-
ACML Authorization App which runs along with other applications on device and con-

i1 uxacmiService

org.cnr uxacml.core

Process Information

Type VM Application Process
Excluded NO

PID 10315

Process Name org.cnr.uxacml.core
Status Background [400]
Started 24 Jun 2014 16:12
Activities 1 (1 active)

Current Session

CPU Usage

Total CPU Time 56s

Time Since Start 1h 6m 52s
Average Consumption 1.4%
Memory Usage

Resident 43.4M
Shared 13.7M
Effective 29.7M

Fig. 6. Resources Consumption of UXACML Authorization App

sumes CPU, battery, and memory. Figure 6 shows the resources consumption in the case
of 100 ongoing usage sessions and when the access re-evaluation is triggered every 30
seconds. With such load the the UXACML Authorization App takes just about 1.4 per
cent of the CPU time and needs approximately 30 MB of RAM.

5.4 Security Analysis

This subsection presents a security analysis of the proposed system. The security of
our implementation relies on the Android security support, enhanced with the use of a
TPM, as discussed in Section 3.2. The proposed system prevents users (including other
applications) from directly accessing the DCs downloaded on this device, which are
encrypted. As a matter of fact, the DCs stored on the device must be accessed only
through our Data Protection System, which enforces the related usage control policies.
We consider the following model of attackers:

i) Users trying to access data stored in the SDCard. Users can browse the SDCard
contents through a file manager application.
ii) Users trying to access encryption keys used to encrypt data stored on the SDCard.
iii) Users trying to acquire root privileges to access restricted memory space.

The implementation described in this paper assumes to have a mobile device with an
embedded TPM, although no Android device currently provides it. The files including
the DCs to be protected are stored in the mobile device external memory, i.e. in the SD-
Card, and they are encrypted through the AES algorithm. This protects from attackers
of type i) who will find encrypted files (and not usable) when accessing the SDCard
of the device. The related secret key is stored in the device internal memory, in the
home space of the Data Protection System application. Differently from the external
memory, this space can only be accessed by the Data Protection System application, so
that encrypted files can be decrypted only by the Data Protection System. This secu-
rity mechanism protects the key from attackers of type ii). Thanks to the inclusion of

trusted computing, it is possible to ensure that only the Data Protection System applica-
tion can access the secret key. In fact, the secret key will be no more accessible as soon
as the device has been rooted or unknown dangerous applications have been installed
on it. In particular, as soon as the integrity verification fails, the Data Protection System
application and all the related files, residing in both the internal and external memory,
are removed from the device. Furthermore the Data Protection System application will
not be released anymore to the device owner, unless she can prove the device status
is secure again, e.g. through a factory reset. This ensures the protection also from an
attacker of type iii).

The communications between the Data Protection System and the PDP and between
the PDP and the PIP are secured, i.e., the mutual authentication is performed to verify
the identity of the communicating applications, and also the integrity of the messages
is preserved through the standard Java security library: Java SE Security.

The security policy is paired with each data copy, and it is encrypted and stored with
the data itself. In this way, the security policy cannot be modified by the mobile device
user or by other applications to obtain unauthorized accesses.

The status of the UXACML Authorization app, e.g., the set of the sessions that are
currently opened, is stored in the private space of his app. In this way, neither the device
user nor the other applications can modify it.

Finally, if the mobile device user terminates the Data Protection System, and/or the
UXACML Authorization app, this only prevents him from accessing the data, since the
Data Protection System app is the only way to perform the access to the data.

6 Conclusions

In this paper we have discussed a framework for regulating data sharing on Android
mobile devices. In this framework, the data producer embeds a usage control policy in
the data, which is downloaded by the user and enforced on the device to prevent unau-
thorized access to specific pieces of data. The access regulation is performed over time
through the usage control paradigm. In particular, the usage control policy is able to in-
terrupt accesses in progress when a previously valid policy is not satisfied any more. We
have also presented an implementation of the proposed framework for Android smart-
phones and tablets, which exploits both the Android native security mechanism and a
TPM to ensure system integrity. The TPM inclusion is an assumption, since currently
no Android devices with a physical TPM are available, though a standard for TPM
on mobile device is currently under the analysis of the TCG. Implementation on an
Android-based device with TPM has been scheduled as future work.

References

1. Park, J., Sandhu, R.: The UCON 4pgc usage control model. ACM Transactions on Infor-
mation and System Security 7 (2004) 128-174

2. Morrow, B.: BYOD security challenges: control and protect your most sensitive data. Net-
work Security 2012(12) (2012) 5-8

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

. Costa, G., Martinelli, F., Mori, P., Schaefer, C., Walter, T.: Runtime monitoring for next

generation java me platform. In Computers & Security 29 (2010) 74-87

. Aktug, I., Naliuka, K.: ConSpec: A formal language for policy specification. In: Proceedings

of the First International Workshop on Run Time Enforcement for Mobile and Distributed
Systems (REM 07), ESORICS (2007) 107-109

. Jia, L., Aljuraidan, J., Fragkaki, E., Bauer, L., Stroucken, M., Fukushima, K., Kiyomoto, S.,

Miyake, Y.: Run-time enforcement of information-flow properties on android. In Crampton,
J., Jajodia, S., Mayes, K., eds.: ESORICS 2013. Volume 8134 of Lecture Notes in Computer
Science. (2013) 775-792

. Conti, M., Crispo, B., Fernandes, E., Zhauniarovich, Y.: Crépe: A system for enforcing fine-

grained context-related policies on android. IEEE Transactions on Information Forensics
and Security 7(5) (2012) 1426-1438

. Conti, M., Nguyen, V., Crispo, B.: Crépe: Context-related policy enforcement for android.

In: 13 Information Security Conference (ISC10). (2010) 331-345

. Enck, W., Ongtang, M., McDaniel, P.. On Lightweight Mobile Phone Application Certi-

fication. In ACM, ed.: 16th ACM conference on Computer and Communications Security
(CCS’09). (2009) 235-254

. Enck, W, Gilbert, P, Chun, B.G., Cox, L.P,, Jung, J., McDaniel, P., Sheth, A.N.: Taintdroid:

An information flow tracking system for real-time privacy monitoring on smartphones. Com-
mun. ACM 57(3) (2014) 99-106

Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smartphone appli-
cations (on android). In: 4th International Conference on Trust and Trustworthy Computing
(TRUST 2011). (June 2011) 93-107

Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.R., Shastry, B.: Practical and
Lightweight Domain Isolation on Android. In ACM, ed.: 1st ACM workshop on Security
and privacy in smartphones and mobile devices (SPSM11). (2011) 51-61

Cerbo, ED., Trabelsi, S., Steingruber, T., Dodero, G., Bezzi, M.: Sticky policies for mo-
bile devices. In: The 18th ACM Symposium on Acces Control Model and Technologies
(SACMAT’13). (2013) 257-260

Trabelsi, S., Sendor, J., Reinicke, S.: Ppl: Primelife privacy policy engine. In: 2011 IEEE
International Symposium on Policies for Distributed Systems and Networks, IEEE Computer
Society (2011) 184-185

Colombo, M., Lazouski, A., Martinelli, F., Mori, P.: A proposal on enhancing XACML with
continuous usage control features. In: proceedings of CoreGRID ERCIM Working Group
Workshop on Grids, P2P and Services Computing, Springer US (2010) 133-146

Trusted Computing Group: Tpm 2.0 mobile reference architecture (draft) (April 2014)
Bente, 1., Dreo, G., Hellmann, B., Heuser, S., Vieweg, J., von Helden, J., Westhuis, J.: To-
wards permission-based attestation for the android platform. In: Trust and Trustworthy Com-
puting. Volume 6740 of Lecture Notes in Computer Science., Springer Berlin Heidelberg
(2011) 108-115

Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal model and policy specification of
usage control. ACM Transactions on Information and System Security 8(4) (2005) 351-387
Zhang, X., Nakae, M., Covington, M.J., Sandhu, R.: Toward a usage-based security frame-
work for collaborative computing systems. ACM Transactions on Information and System
Security 11(1) (2008) 3:1-3:36

Lazouski, A., Martinelli, F., Mori, P.: Usage control in computer security: A survey. Com-
puter Science Review 4(2) (2010) 81-99

Lazouski, A., Mancini, G., Martinelli, F., Mori, P.: Architecture, worflows, and prototype for
stateful data usage control in cloud. In: 2014 IEEE Security and Privacy Workshop, IEEE
Computer Society (2014) 23-30

