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a b s t r a c t

Recommender Systems (RSs) are becoming increasingly popular in the last years. They collect reviews
concerning several types of items (e.g., shops, professionals, services, songs or videos) in order to
rank them according to a given criterion, and to suggest the most relevant ones to their users.
However, most of the currently used RSs exhibit two main drawbacks: they are based on a centralized
control model and they do not provide reward mechanisms to encourage the participation of users.
To deal with these challenges, the architectures of current RSs could be enhanced through blockchain
technology, thus providing novel solutions to decentralize them. As a matter of fact, the blockchain
technology could be successfully adopted in this context because smart contracts would allow the
decentralization of system control, while cryptocurrency and tokens could be used to implement the
reward mechanism.

In the light of the above considerations, this manuscript presents a decentralized rating framework
aimed to support the users of RSs based on blockchain technology, providing a token-based reward
mechanism that remunerates users submitting their reviews to incentivize their participation. More-
over, the proposed system provides a flexible strategy to rank items, allowing users to choose among
different functions to combine reviews to obtain item ranking. The performance and the cost of using
the proposed system have been evaluated on the Ropsten Ethereum test network. For instance, our
experiments have shown that the median time required to store a batch of 35 ratings is about 47 s,
while the average time required to obtain the score of an item having 6000 ratings is less than 2.5 s.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Nowadays, information and communication technologies al-
ow users to share any kind of content quickly and easily. As a
esult, the amount of information available on the World Wide
eb is huge and continuously growing, and this makes it difficult

or users to find the most relevant and reliable data for them.
eviews concerning the most disparate types of items, both real
nd virtual (e.g., shops, professionals, services, songs or videos),
re among the contents that are commonly shared on the web,1
hich result of limited use if they are not properly organized.
o alleviate the issue, Recommender Systems (RSs) have been
roposed [1]. Essentially, a RS collects from its users the reviews
consisting of ratings and opinions) about a set of typically ho-
ogeneous items (e.g., restaurants), and exploits such reviews

∗ Corresponding author at: University of Pisa, Largo Bruno Pontecorvo, 3,
6127 Pisa, Italy.

E-mail addresses: andrea.lisi@phd.unipi.it (A. Lisi), andrea.desalve@cnr.it
A. De Salve), paolo.mori@iit.cnr.it (P. Mori), laura.ricci@unipi.it (L. Ricci),
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1 Statista 2019: https://bit.ly/2BYJf1U [Accessed 15-January-2020].
ttps://doi.org/10.1016/j.future.2021.02.003
167-739X/© 2021 The Authors. Published by Elsevier B.V. This is an open access a
c-nd/4.0/).
to compute a score for each item, ranking them by order of
liking, and to forecast the most favored items to users according
to the ratings, the preferences expressed, and the actions they
performed.

For instance, reading or writing reviews on TripAdvisor,2 cur-
rently one of the most popular RSs, has become a regular activity
among Internet users and, based on TripAdvisor Global Report [2],
about 49% of travelers were inspired to visit a new destination by
a personalized recommendation. Besides products, restaurants,
and hotels, RSs are also used to rate and recommend other
types of items such as movies [3], professionals and companies
(LikedIn, Glassdoor), healthcare providers [4], videos uploaded on
YouTube [5], and songs on Spotify [6].

The collection of reviews about items is one of the most
important steps for a RS, and it is typically carried out by allowing
each user to express a rating, which is a numerical vote (e.g., a
number of stars in the range [0, 5]), and/or an opinion, which is
a textual evaluation of the item based on the user experience.
The cooperation and altruism of individuals are vital for the above

2 TripAdvisor: https://www.tripadvisor.com.
rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.future.2021.02.003
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2021.02.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:andrea.lisi@phd.unipi.it
mailto:andrea.desalve@cnr.it
mailto:paolo.mori@iit.cnr.it
mailto:laura.ricci@unipi.it
mailto:s.fabrizi1@studenti.unipi.it
https://bit.ly/2BYJf1U
https://www.tripadvisor.com
https://doi.org/10.1016/j.future.2021.02.003
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


A. Lisi, A. De Salve, P. Mori et al. Future Generation Computer Systems 120 (2021) 36–54

s
r
c
c
a
i
T
s
m

g
s
o
t
e
m

c
w
m
t
v
t
i
a
p
o
f
a
i
i
r
o
t
d
m
c
t
f
v
o
b
e

t
b
u
c
b
b
a
i
p
a
T
t
u
p
p
f
e
w
e
n
t
v

f
a
a
e

t
t
t

r

i
B
o
d
a
p
w
p
S
r

2

c
T

2

c
d
d
i
c
n
s
i
u
n
t
s
a
l

ystems to provide an effective service because they rely on the
eviews submitted by their users. The cooperation of individuals
an be community based or incentive based [7]: in the former, the
ooperation is socially driven, where people accomplish a task as
group; when the social component is missing the latter comes

n, where an incentive is necessary to push people’s motivation.
he incentive can have the form of reputation, i.e., improves the
tatus of an individual, reciprocity, i.e., improves mutual trust, and
onetization, i.e., an economic reward.
Since the presence of rewards is a necessary condition to

enerate a willingness to people to cooperate [8], modern digital
ystems often utilize a reward mechanism, such as the metaphor
f likes (social networks), collaborations (between YouTube au-
hors), and virtual currency (games and Bitcoin). However, in sev-
ral cases (such as fast-food [9]), a large fraction of users prefers
onetary rewards (discounts or cashback) to non-monetary [10].
Most of the currently available RSs are based on a centralized

ontrol model, i.e., they are controlled by a single service provider
ho manages the collection and the storage of the reviews sub-
itted by their users, as well as the computation of the scores of

he items based on such reviews. Such scores have an economic
alue, because they are used to build ranked lists of items meant
o influence the future purchasing decisions of the user request-
ng them [11]. As a matter of fact, most of the users which ask
RS for the ranked list of restaurants nearby their positions will
robably have their meals in one of the best ranked restaurants
n that list. Hence, having a high score, thus being among the
irst items of the ranked lists returned by a RS, would lead to
n increase in the number of customers for the corresponding
tem. One of the main issues of current centralized control RSs
s that they do not provide to their users any evidence of the
eviews that have been taken into account for the computation
f the score of an item and of the algorithm that has been used
o compute such score. Because of this lack of transparency, it is
ifficult for a user to prevent the provider of a centralized RS from
anipulating the score of the items, even if the service provider
laims to be honest or exposes the algorithms used to compute
he score of the items [12,13]. Consequently, users of RSs are
orced to trust the service providers, since they have no means to
erify the item score calculation process. In order to avoid control
f the service provider over data, decentralized RSs [14] have
een proposed and they aim to avoid unnecessary centralized
ntities.
This paper proposes an alternative approach, based on the Dis-

ributed Ledger Technology [15], to address the previous issue by
uilding a decentralized rating framework aimed to support the
sers of RSs with a transparent review collection and item score
alculation processes. In particular, the proposed framework is
uilt on top of a platform that runs smart contracts on a public
lockchain, without any authority controlling it, and supporting
decentralized collection of reviews and ranking of items. Since

t is based on a public blockchain that provides an immutable,
ublic, and ordered ledger, it prevents censorship, downtime,
nd alteration of the submitted reviews in a second moment.
he framework implements a straightforward authorization sys-
em to regulate the recording of the reviews submitted by its
sers. A preliminary version of the proposed approach has been
resented in [16]. Since user participation is crucial for RSs to
rovide an effective service, in this paper we have extended the
ramework capabilities in this direction by integrating a token
conomy based on the notion of user experience. In particular,
e introduced a reputation mechanism meant to compute the
xperience of users when reviewing items, and a reward mecha-
ism that grants to users reviewing items a reward proportional
o their current experience. The reward is modeled by an internal

irtual currency exploiting ERC20 compliant tokens. To prove the

37
easibility of the proposed approach, we developed and deployed
prototype of such improved decentralized rating framework on
n Ethereum test network, and we conducted an extensive set of
xperimental evaluations to measure its performance.
The resulting framework promises a higher level of participa-

ion and it applies to any retail and e-business infrastructure, with
he only changes being the integration of the related data and of
he functions for the computation of the score of an item.

Briefly, the main contributions of this paper can be summa-
ized as follows:

• Starting from the results of our previous work [16], we
define a general decentralized rating framework to model
the backbone of a recommender system built on top of a
public blockchain;

• We enrich the framework by adding a novel local reward
strategy based on both reputation and monetization. Users
are incentivized to submit their reviews because they are
rewarded with both reputation increases and tokens, where
such tokens can be subsequently spent for benefits. The item
owners decide, based on their strategies, the value of their
tokens. Moreover, a cryptocurrency payment method has
also been added to the framework, supporting token-based
discounts;

• We provide a prototype of the proposed framework on the
Ethereum ecosystem and conducted an extensive evaluation
of its performance on the Ropsten testnet;

• We perform a detailed comparison against both our pre-
vious version of the framework and other state-of-arts ap-
proaches, discussing their strengths and weaknesses.

The rest of the manuscript is organized as follows: Section 2
ntroduces the reader to fundamental concepts related to
lockchain, Section 3 provides the model and the architecture
f our framework, while in Section 4 we provide the reader the
etails of a prototype developed on the Ethereum platform and
n evaluation of the performance of that prototype. Section 5
resents the related works and compares the proposed approach
ith them. Instead, Section 6 focuses on critical analysis of the
roposed framework and presents the threat model. Finally, in
ection 7 we draw the conclusions and outline avenues for future
esearch.

. Background

In this section we introduce the reader to the fundamental
oncepts related to Blockchains, Smart Contracts, and Ethereum
okens.

.1. Blockchain and smart contracts

Recently, Distributed Ledger Technology (DLT) has gained in-
reasing attention from both the scientific community and in-
ustry due to the important applications and results achieved in
ifferent contexts (such as IoT [17] and Health [18]). A blockchain
mplements a DLT through an append-only list of blocks that
ontains immutable records. Immutability is achieved by a combi-
ation of cryptographic techniques and a P2P consensus protocol,
uch as Proof of Work (PoW) or Proof of Stake (PoS), which
s a collaborative approach that defines who will be elected to
pdate the ledger (e.g. miners or validators) by appending the
ew block and will be finally rewarded for its contribution to the
ransactions validation. Other approaches characterizing permis-
ioned ledgers [19], i.e., ledgers whose validator’s set is closed,
re known as Byzantine Fault Tolerant (BFT). In this case, a col-
aborative process establishes the next state of the ledger through
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voting procedure between the participants: the proposed next
tate is valid if a certain quorum of votes is reached.
As a consequence, the blocks of the chain are protected against

odification: consensus algorithms like PoW do not require the
nowledge of the identity of the validators and reach a probabilis-
ic consensus, i.e., a block may be invalidated by a chain fork that
oes not contain that block with a probability which decreases
ver time; consensus algorithms like BFT reach a deterministic
onsensus, meaning that a new valid state has no risk to change,
ut they require the knowledge of the identities of the validators.
The underlying peer-to-peer network is used to replicate the

lockchain on different peers. The first use case adopting the
lockchain technology is the decentralized currency named Bit-
oin proposed around 2009. Bitcoin [20] uses the blockchain
o mint and transfer a cryptocurrency, the bitcoin, in a dis-
ributed fashion. A newer approach is adopted by Ethereum [15],
blockchain-based network to build a platform to execute de-
entralized stateful applications (named smart contracts) writ-
en through a Turing-complete programming language (e.g., So-
idity3) on a virtual machine called Ethereum Virtual Machine
EVM). In particular, a smart contract [21] is a piece of software
ith the property of running transactions without involving third
arties. Bitcoin uses smart contracts as well, coded in Script, a
orth-like language that is intentionally simple and mostly lim-
ted to the verification of digital signatures of Bitcoin transactions.
ntities in Ethereum are referred to as ‘‘accounts’’, and to any
ccount corresponds an address generated by a private–public
ey pair. These accounts can be either Externally Owned Accounts
EOAs), which are managed through their private keys, or con-
tract accounts, which are controlled by code: each account has
a balance and can send transactions, which represent a change
from a state to another. The cryptocurrency used by Ethereum
is named Ether (ETH) and it must also be used to pay the fees
for the execution of smart contracts. A smart contract needs
to be compiled, and the resulted bytecode is executed by the
EVM. Every opcode has associated a cost measured in units of
gas. The summation of the costs of all the opcodes in a function
determines the cost in gas of such function. The caller decides
how much ETH to assign to every unit of gas (gas price) and
how many units of gas to provide for that execution (gas limit).
Miners are incentivized to execute and validate a transaction with
a higher gas price. A smart contract function that changes the
state of the network needs to be embedded in a transaction, and
therefore stored in a block: in that case, the caller pays a fee in
ETH equal to the amount of gas effectively consumed multiplied
by the gas price. The gas concept is a measure to prevent abuse of
a Turing-complete computation, since endless loops could freeze
the entire network. In particular, if the execution of a contract
exceeds the gas limit, the contract will be reverted to the original
state and all gas spent will not be refunded. In contrast, a state
query does not need to be placed in a block and thus does not
consume ETH to the caller, even though the gas is computed
and the gas limit rule still applies. At the time of writing both
Ethereum and Bitcoin use as consensus the PoW algorithm [22].

2.2. Ethereum token standards

In Ethereum, tokens are a digital representation of a value
associated with an asset, a service, or the right to do something,
and they are implemented through smart contracts. The smart
contract of a token automatically reacts to specific events and
it regulates the exchange of tokens unit. In general, the tokens
can be classified into two categories based on their application

3 Solidity docs: https://solidity.readthedocs.io/en/v0.6.1/index.html. [Accessed
5-January-2020].
 1

38
field: utility tokens and security tokens (also known as equity
tokens). The former acts as a key to access some goods through a
blockchain and are used to pay the access to a service, application,
or resource. Instead, security tokens are similar to equity shares
and they are considered financial investments. Put in another
way, the key difference is that equity tokens give to the holder of
the token ownership rights, while utility tokens act as coupons
and do not provide holders with an ownership stake in any asset,
like a company’s asset and so on.

Given the widespread adoption of the Ethereum tokens in dif-
ferent decentralized applications, several standards (referred to as
Ethereum Request for Comment or ERC) have been proposed by
the Ethereum official community.4 Each ERC defines the signature
of a set of functions (or interfaces) that the smart contract of the
token must provide. In the following we describe such standards
and the most relevant proposals of new standards.

ERC20. It is the first standard provided by the Ethereum com-
munity to ensure interoperability between tokens. An ERC20-
compliant smart contract must implement a set of 6 functions
and 2 events. The first two functions, totalSupply and bal-
nceOf return, respectively, the total amount of available tokens
n the contract and the total amount of tokens owned by an
ccount. The function transfer allows transferring tokens from
he caller of the function to another address. An address can allow
nother address to transfer its tokens on its behalf, in such a
ase the transferFrom and the approve functions are used in
ombination. In particular, through the function approve, the
oken owner authorizes another user, the receiver, to spend their
okens. The transferFrom function, instead, allows the receiver
o transfer tokens on behalf of the token owner. Finally, the func-
ion allowance allows to query the amount of tokens that the
eceiver can still withdraw from an account that has previously
llowed it. The events are issued as a result of the execution of
he transfer, approve, and transferFrom operation. A token
mplementing the ERC20 standard has the property of fungibility
ecause individual units are interchangeable, and each unit of
oken is indistinguishable from another part.

However, transferring ERC20 tokens should be performed with
ttention. Sending tokens to an address of a smart contract with
he transfer operation may lead to a token loss if the target
mart contract does not have the code to interact with tokens.
eanwhile, while this operation is safe with EOA, when in-
oked by a smart contract, it is suggested to use the approve
transferFrom combination.

RC223. This standard aims to safely send tokens to smart con-
racts with a single transfer operation discriminating if the
arget is a smart contract or an EOA. In the former case, a smart
ontract designed to work with tokens needs to implement a
okenFallback function, otherwise the transaction fails.

RC777 and ERC820. The standard ERC777 improves ERC20 by
efining a procedure to check whether the recipient is allowed
o receive tokens. To do that, the contract requires to be ERC820-
ompliant, a standard allowing anyone to check whether a given
mart contract defines or not some functions.

RC721. The ERC721 standard is used to define unique and non-
ungible tokens. Given a set of tokens from an ERC721-compliant
mart contract, each token represents a unique object of a collec-
ion (also a physical good).

4 Ethereum improvement proposals: https://eips.ethereum.org/erc. [Accessed
5-January-2020].

https://solidity.readthedocs.io/en/v0.6.1/index.html
https://eips.ethereum.org/erc
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. The rating framework for recommender system

To address the issues of current centralized RSs (see the re-
ated work in Section 5) and to provide transparency and flex-
bility to users, we propose a decentralized rating framework
hat brings together blockchain technology and recommendation
ystems. In the following of this paper, we focus on the review
anagement process, while we do not consider recommendation
trategies because they are meant to be executed on off-chain.
n particular, the proposed rating framework supports the sub-
ission, the storage, and retrieval of reviews, the modeling and

mplementation of the internal virtual currency to be used as
reward for the users, and the implementation of a reward
echanism through the notion of skills and reputation.
The integration of a reputation based reward mechanism has

roven to be an effective technique to facilitate engagement [23],
nd it is an enhancement to the version presented in [16]. Indeed,
everal works demonstrated that services providing a reward or
emuneration for users’ actions promote engagement and cooper-
tion [23,24]. In particular, the rating framework proposed in this
aper consists of a set of smart contracts for the recordkeeping
nd management of the typical data characterizing rating plat-
orms, implementing a reward system based on user reputation
nd monetization. Since the proposed framework is implemented
hrough smart contracts on top of a public blockchain, it ensures
he following benefits:

• Public: all the data composing the framework (e.g., collected
reviews, user reputations, and smart contracts) is visible to
all users;

• Decentralized: users do not need to trust the honesty of
the entity running the proposed framework, because such
framework is not executed by a central authority but, in-
stead, it runs on the blockchain;

• Tamper-proof and Persistent: the data is replicated among
all the nodes of the blockchain and its integrity and avail-
ability are protected through cryptographic techniques.
Hence, the ratings submitted by the users, once registered
in the blockchain, cannot be altered or removed by a single
entity.

.1. System model

As shown by Fig. 1, the proposed solution is built on top of
blockchain protocol supporting smart contracts, and it consists
f several components that cooperate to implement the system
unctionalities. In the following, we describe in more details the
ntities, the concepts, and the operations involved in our rating
ramework:

tems An item is a virtual representation of a place (such as a
restaurant, a hotel, or a store) or of a service (such as a
financial instrument or other web services) and it is paired
with a set of properties characterizing it, each of these
corresponding to a skill that is acquired by users rating
items having such property.

kills After a review, the user unlocks the item property as
a personal skill. For instance, the Chinese cuisine skill is
given to users who have reviewed restaurants having the
property Chinese cuisine. A skill is a nominal value and the
set of skills of a user represents his area of expertise.

Users A user registered to the system is identified by a
pseudonym. Each user is allowed to review the used items
and, consequently, improves his skills on the properties
of such items. For each skill, a user has a reputation rep-
resenting the experience on that skill obtained from the
review mechanism. Moreover, each user holds tokens ob-
tained from the reward mechanism.
39
Tokens A token is a currency used as an economic reward mech-
anism for users. Each user gains some tokens when reviews
an item, and such tokens can be spent as a discount for a
future payment.

eviews This mechanism allows authorized users to leave a rat-
ing and an opinion on a specific item. Only the users who
used an item are authorized to rate it (e.g., a restaurant
should be rated only by users who have eaten there).
After reviewing an item, the user acquires experience on
the corresponding skills and receives a certain amount of
tokens proportional to such experience.

ser Reputation Keep reviewing items with the same property
improves the experience of a user on the corresponding
skill, and such experience is modeled through the reputa-
tion of the user on that skill. The reputation is a numerical
value.

ating Function A rating function computes the overall liking of
items. Our approach supports a set of distinct rating func-
tions, and each of these functions processes the reviews
stored on the blockchain according to a distinct criteria.

The reputation mechanism is meant to measure the expe-
ience of a user in reviewing items. Each time a user reviews
n item, he improves his experience on the skills corresponding
o the properties of that item and, consequently, the system
ncrements his reputation on such skills to represent the expe-
ience accumulated so far by the user with this kind of item.
or example, in the case of a restaurant rating framework, the
kills could correspond to the cuisine or cooking style, e.g., fusion
uisine, nouvelle cuisine, vegan cuisine, or vegetarian cuisine.
restaurant specialized in vegan cuisine will be paired with

he Vegan Cuisine property, and its customers will improve their
eputation in the Vegan Cuisine skill when eating there and rating
he restaurant. The growth of the reputation of a user every time
new review is submitted can be computed with the help of

everal reputation models that have been defined in the liter-
ture [25,26]. However, in this paper we do not focus on the
efinition of a new model, but we observe that the chosen one
hould prevent a collapse of the system due to the uncontrolled
rowth of the discounts.
The reward mechanism is based on user reputation and mon-

tization. As a matter of fact, the user who reviews an item
eceives a reward in tokens proportional to his current reputation
n the skills corresponding to the properties of the item. The
okens are used as an internal payment method in the application.
e exploited the decision-aid tool proposed in [27] to decide
n which token (see Section 2.2) is the most appropriate for
mplementing the previous functionalities. Our analysis indicates
hat the most appropriate token to be used by our reward mech-
nism is the utility token (such as, ERC20 in Ethereum), which
s interchangeable (fungible) and indistinguishable from another
oken of the same type. Two approaches for token management
an be adopted:

1. A token economy global to the system: all the items,
e.g., restaurants, share the same typology of tokens, and
a user who gains a token from restaurant A can spend it
in restaurant B. This model is simple but it does not allow
the item owners to decide the discount system policy, like
the total number of tokens in the system or the value of a
single token, that are instead decided by the system owner.

2. A token economy local to the item: each item creates and
manages its tokens and, consequently, a token issued by
restaurant A can be used at restaurant A only. In this way,
item owners have more control over their token economy,
but the system is more complex.
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Fig. 1. Global view of the proposed decentralized rating framework with internal components and operations, bringing together blockchain and recommendation
strategy.
o
u

m

In our framework, we adopt the local token management method.
Unlike centralized control RSs, our system allows the defini-

ion of custom evaluation metrics called Rating functions to rank
tems. Users can propose their methods to compute the final score
f an item exploiting the data available on the blockchain. In
ection 3.2 we show how such functions apply in our system, and
n Section 4.3 we show a few concrete examples.

As shown in Fig. 1, the proposed framework provides its users
ith the following set of operations implementing the system

unctionality. The Register operation takes care to instantiate
new user in the system and assigns a new identifier to such a
ser. A new user starts with no tokens and no experience, i.e., his
eputation has value 0 for all the existing skills.

Each user of the system can add new items with the Create
tem operation, assigning to such items the public informa-
ion needed to recognize them, and the properties characterizing
hose items. The other users can review such items.

After using the service provided by an item (e.g., after having
aten at a restaurant), a user can pay using the blockchain native
urrency. In this case, to enable the payment, the item owner
ssues the Grant permission operation, specifying the user
nd the amount to be paid. Subsequently, the user exploits the
ay item operation to pay for the service. If the user has a
ositive balance of tokens, such tokens can be converted as a
iscount to that payment. If the payment is successful, the right
o review the item is automatically given to the user by the Pay
tem operation. However, in case the payment is not executed
xploiting the blockchain native currency (e.g., the user pays with
iat currency5), our framework provides to the item owner an
lternative version of the Grant permission operation which
irectly gives the right to review the item to the user, without
eing subordinated to the Pay item operation. In this case, the
oken discount will not be applied, and the item owner should
ssue the Grant permission operation only when he verified
hat the payment has been successfully executed.

The Rate item operation stores a review record that includes
he identifier of the user, a timestamp, the current reputation
alue of the user on the item’s skill, and the customer review (a
core and textual information). The Rate item operation auto-
atically triggers the Issue Tokens operation, which rewards

he user by issuing him an amount of tokens proportional to his
urrent reputation value on the item’s properties and improving
uch reputations. The user reputation is meant to grow following

5 Fiat money, Investopedia: https://www.investopedia.com/terms/f/
iatmoney.asp [Accessed 15-January-2020].
40
a model global to the system, decided by the system owner. In
case an item has more than one property (e.g., Vegan and Wine),
the system can be modeled to improve the user’s reputation on
all the corresponding skills. However, this detail could be also left
to the item owner who, at item creation time, decides the number
of user skills to improve after a review of his item.

Users can explore the available items and see how they are
rated through the Computes score operation. In particular, the
user can choose which rating function (among the available ones)
the system must use to compute the score of an item. Each rating
function computes the score of an item using a different formula.
For instance, a rating function could compute a simple average
of the ratings given by the users, while another rating function
could compute a weighted average, using the user reputation
as weights for the ratings. Since the information stored on the
blockchain is public, each user could even decide to implement
custom rating functions.

A recommendation strategy component is also represented in
Fig. 1, which has the goal of implementing recommendation
technique exploiting the information stored in the blockchain.
Given the complexity of such algorithms, we assume this com-
ponent to run off-chain. As a result, the owner of the rating
framework can use any recommendation strategy to execute
predictions and recommendations on the items, for example with
content-based or collaborative filtering. In addition to the infor-
mation stored on the blockchain, the recommendation strategy
can also use other sources of information: for instance, recent
recommendation strategies have increasingly incorporated social,
demographic, or geographic information to improve the accuracy
of the prediction [28].

3.2. System architecture

In this section we present the architecture of the proposed
system, following the model previously described. Fig. 2 lists
the contracts implementing the entities, the concepts and the
operations shown in Fig. 1. Each box represents a smart contract
and shows the attributes and the functions it supports. Each
smart contract has an owner field that stores the address of the
creator, omitted in Fig. 2 for simplicity. The relationships between
the smart contracts are modeled following the UML standard for
class diagrams.

The RatingSystemFramework (RSF) contract is responsible
f creating, storing, and deleting User contracts that model the
sers of the rating framework. The User contract is responsible

of creating, storing, paying and rating items. The Item contract
odels an item by storing the related reviews (named Rating),

https://www.investopedia.com/terms/f/fiatmoney.asp
https://www.investopedia.com/terms/f/fiatmoney.asp
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Fig. 2. Overview of the main contracts that implement the system model.
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he map (named paymentMap) recording which Users need to
ay for having used the item, and a permission map describ-
ng which Users have the permission to rate the item (named
ermissionMap).
As shown in Fig. 2, the relationship between the RSF and User

contracts is one-to-many, as well as between User and Item.
he contract UserSkills stores the skills and the corresponding
eputation values of a User, modeling the reputational reward
echanism of the framework. The contract ERC20 implements a

oken following the ERC20 standard and models the economical
eward mechanism of the framework. Each UserSkills smart
ontract is paired one-to-one to a User smart contract, while
ERC20 smart contract is paired one-to-one to an Item. The
atabaseSkills contract is a registry storing the items’ prop-
rties supported by the system: therefore, the users’ skills match
hose stored in this registry. The FunctionRegistry contract is
n charge to store the rating functions. The latter two contracts
hould be singleton within a RSF.
To simplify the description of the architecture, we introduce

he following actors: (i) Alice, who wants to deploy a recom-
endation service for different types of establishments in the

estaurant field (such as restaurants, bars, and pubs); (ii) Bob,
ho is the owner of a bar; (iii) Carl, a customer of Bob’s bar. We
ssume that Alice, Bob and Carl have addresses 0xalice, 0xbob and
xcarl, respectively.

ystem deployment. Fig. 3 shows the system owner, Alice, who is
n charge of the deployment of the RSF contract which automat-
cally creates the registries FunctionRegistry and Databas-
Skills. All the contracts will have stored 0xalice as their owner.
he RSF contract has initially no data, as well as the two reg-
stries. Therefore, Alice needs to populate the registries with a few
ating functions and properties (skills) to bootstrap her system.

ser module. Once the system has been deployed, the bar owner
amed Bob can subscribe himself with the createUser() opera-
ion provided by RSF smart contract: the operation deploys a new
nstance of User contract, at address 0xbobUser, and its personal
kill contract UserSkills: both of the contracts store 0xbob as
heir owner. We assume Carl to be registered to Alice’s RSF as
ell, thus having his own User contract, at address 0xcarlUser,
nd UserSkills as shown in Fig. 3. Now both Bob and Carl are
fficially users of Alice’s platform, with no items and with no
eputation on any skill.
41
Fig. 3. The actors and their deployed contracts.

tem. In order to create an item representing his own bar, Bob
eeds to call the createItem() operation on his User contract.
t is worth noting that only the owner of a User contract is
llowed to create items. The createItem() operation deploys
new instance of Item contract (storing 0xbobUser in the owner
ield in our example), as well as a new instance of token contract
elated to that item. Our framework pairs a distinct token contract
o each item, meaning that these tokens can be used as a discount
o that item only (the local model described in Section 3.1). Each
oken is identified by the token name, symbol, and its value in
ryptocurrency. The maximum number of tokens available for an
tem is defined at deployment time. The value of each token is a
undamental point for the item owner because it can significantly
nfluence the success and competitiveness of the system. For
nstance, a low value for a token may result in loss of interest
nd demotivation for users. On the other hand, a high value for
token can result in monetary damages and risk for the item
wners due to the reward mechanism. Now is possible, for other
sers, to rate Bob’s bar.

kill module. The skill module involves three different actors, the
ystem owner (Alice), the item owner (Bob), or the user (Carl).
he system owner populates the DatabaseSkill registry with
he proper set of skills to be used to characterize items. When
reating a new item, the item owner (Bob) selects the skill to
e assigned to his item. We remark that during the creation of
User contract, the operation deploys also a UserSkills con-

ract. This contract is a personal database of the user, storing the
eputation value of his skills. After reviewing an item (see Rating
odule paragraph below), the user’s skill reputations matching

he item’s properties are improved.
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ayment. The proposed system allows users to make payments
or an item using the official cryptocurrency powering the under-
ying ledger. In such a case, the payment operation executed by
he blockchain guarantees that the rating permission is granted
o users only after they have successfully paid the bill. As for
nstance, after Carl had breakfast at Bob’s bar, he decided to
ay exploiting the PayItem() function provided by his User

contract. The operation computes the discount (if Carl has a
positive balance of tokens), transfers the currency from Carl to
Bob’s Item contract and, finally, it grants to Carl the rights to
rate such item. However, in case the payment is not executed
exploiting the blockchain native currency (e.g., Carl pays with
fiat currency), our framework provides the item owner Bob with
a function to allow Carl to rate the item as well. In this case,
Bob is in charge to check that the payment has been successfully
performed.

Rating module. To rate an Item, Carl needs permission from Bob.
Bob, as item owner, unlocks the permission to other users to rate
his items through the grantPermission() operation provided
by the Item contract. As previously explained we have two cases:
(a) Carl pays with the blockchain cryptocurrency; (b) Carl pays
with other means of payment (e.g. fiat currency). To discriminate
these two cases the Item contract provides two distinct versions
of the grantPermission() operations:

(a) grantPermission(to, amount): Bob commits the Item
contract to set the permission to rate it to the user specified
as first parameter of the operation only after he has paid
a given amount with the system currency through the
payItem(item, amount) operation of his User smart
contract;

(b) grantPermission(to): Bob sets the permission to rate
his item to the user specified as parameter of the oper-
ation. This operation is used when Carl pays outside the
blockchain system, and it requires Bob to check that the
payment has been successfully executed.

Once Carl has the permission set, he can rate Bob’s item
by invoking the addRate() operation on his User contract, at
address 0xcarlUser, within a time window expressed in number
of blocks. The addRate() operation expects as input parameters
the address of the Item contract to rate and a score value.
The function calls the addRate() operation of the input Item
contract who checks Carl’s permissions and, if positive, it resets
them, it updates its state with the new Rating and rewards
Carl with an amount of tokens proportional to the value of his
reputation on the item’s property. Lastly, the function updates the
reputation on Carl’s skill corresponding to the item’s property.

Rating function module. A rating function computes the score of
an item according to a specific formula. In our framework, the
RatingFunction interface is a smart contract exposing only one
42
Fig. 5. RatingFunction implementations.

ethod called compute() that calculates the overall score of an
tem. A rating function can use various parameters, such as the
atings registered in the blockchain, their block indexes as time
eferences, and the reputation values associated with the users
hen they submitted such ratings. The FunctionRegistry con-

tract is in charge to store RatingFunction implementations
and can be populated only by who deployed the RSF (Alice in
our example): this should keep the registry clean by unnecessary
implementations, such as bad or repeated ones. Fig. 5 shows the
relationships among the listed contracts, while Fig. 4 shows the
workflow to include a new rating function: the continuous arrows
represent smart contract functions, while the dashed arrow an ac-
tion outside the system. To compute the score, the Item contract
provides the computeScore() operation that accepts as input a
RatingFunction: Carl can choose a RatingFunction from the
registry and use it to compute the score of Bob’s bar.

Workflow of the review process. Let us suppose that Carl orders a
glass of Chianti at Bob’s bar. The sequence diagram in Fig. 6 shows
the workflow of the review process in terms of smart contract
calls, and the OR box distinguishes the case of payment with the
native blockchain cryptocurrency or payment with other means
(e.g. fiat currency). Let us suppose that Carl pays for his glass of
Chianti using the blockchain cryptocurrency.

1. At first, Bob invokes the grantPermission() operation
on his Item contract, at address 0xbobItem, passing as
parameters the address of Carl’s user contract, 0xcarlUser,
and the amount to be paid (step
1a.grantPermission(0xcarlUser, amount) in Fig. 6).
This operation will allow Carl to obtain the permission to
rate Bob’s bar as soon as he pays that amount to Bob’s Item
contract.

2. To pay his glass of Chianti, Carl invokes the payItem()
operation on his User contract, at address 0xcarlUser, pass-
ing as parameters the address of the Bob’s Item contract,
0xbobItem, and the amount he must pay (step 2.payItem(
0xbobItem, amount)). This operation first retrieves the
tokens owned by Carl from Bob’s item (this requires mul-
tiple interactions summarized in step 3.getTokens()), it
computes the discount that will be granted on the amount
by using these tokens, it authorizes Bob’s Item contract
to transfer such tokens to itself through the approve()
operation of the ERC20 token contract (step 4.approve(
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Fig. 6. Workflows of review process operations.
0xbobItem, tokens)), and finally it invokes the success-
fulPayment() function on the Bob’s item contract, at ad-
dress 0xbobItem, (step 5.successfulPayment(amount-
discount, tokens)). This last function triggers the trans-
fer of Carl’s tokens from the ERC20 smart contract to
0xbobItem (step 6.transferFrom(0xcarlUser, 0xbobItem,
tokens)), operation authorized in step 4. Supposing that
such tokens are successfully transferred to Bob’s Item
contract, the contract checks whether the amount sent
by Carl matches the residual amount expected by Bob.
Supposing that the amount sent by Carl covers the residual
43
amount to be paid, then Bob’s Item contract transfers to
Bob such amount (step 7.send(amount-discount)) and,
finally, it gives the permission to Carl to rate Bob’s item by
adding to the permissionMap a new entry (step 8).

3. In order to rate Bob’s item, Carl invokes the addRate()
operation on his User contract, passing as parameters the
address of Bob’s Item and the related score (step 9.ad-
dRate(0xbobItem,score)). The addRate() operation, at
first, retrieves from the Item contract the related property,

which is Wine in our example, (step 10.property()),
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and then calls the homonym function of the Item con-
tract, passing as parameters the received score and Carl’s
reputation value on Bob’s item property (step 11.ad-
dRate(score,skills[property]). Bob’s Item revokes
the permission to 0xcarlUser (step 12.revokePermis-
sion(0xcarlUser)) and issues the right amount of tokens
to Carl’s User contract if his reputation value for the Wine
skill is positive (step 13.transfer(0xcarlUser,tokens)).
Finally, Carl’s User contract increases Carl’s reputation
related to Wine through the updateSkill() operation
(step 14.updateSkill(property)). This operation also
involves the UserSkills contract (not shown for simplic-
ity).

At any time in the future, Carl can get, through the with-
draw() operation of his User contract, the cryptocurrency un-
spent because of the discount. Instead, in case the payment is
not executed exploiting the blockchain native currency (e.g., Carl
pays with fiat currency), Bob invokes the (b) version of the
grantPermission() operation that gives to Carl the right to
rate the item without requiring him to execute the payItem()
operation (step 1b.grantPermission(0xcarlUser)). Obviously,
in this case Bob is in charge to check that the payment has been
actually executed.

4. A prototype on Ethereum: implementation and evaluation

In this section we present a prototype implementing the pro-
posed system on Ethereum, and we show an extensive evaluation
on a live test network. In particular, Section 4.1 describes the
prototype and shows the gas price of the main operations. Sec-
tion 4.2 shows the evaluation of the operations payItem(),
addRate(), createItem() and grantPermission(), while
Section 4.3 shows the evaluation of the rating functions.

4.1. Prototype description

The prototype has been implemented on top of Ethereum [15]
and is publicly available on Github.6 Stable and participated test-
ing Ethereum networks are currently available, as well as tools for
the development of smart contracts, and a standard definition of
tokens (see Section 2.2). The smart contracts have been imple-
mented in Solidity programming language following the system
architecture shown in Fig. 2. The local development and testing
have been done with the help of the Truffle7 framework, which
also provides to the developer commands to upload the compiled
version of the contracts (i.e., EVM bytecode) onto the main and
testing Ethereum networks. The accounts have been created and
managed using the Metamask8 wallet.

The prototype is a simplified version of the model and ar-
chitecture presented in the previous sections. For simplicity, a
Rating is an integer in the range [1, 10] and does not store
textual information as this field is not fundamental to our evalu-
ations. Moreover, due to the gas system of Ethereum, unbounded
textual information can be costly, and we cannot make a-priori
assumptions on the textual length. The tokens follow the ERC20
standard, and each Item contract creates its ERC20 token as ex-
plained in Section 3.1. For simplicity, the current implementation
of the system supports a single property per Item. The proto-
type implements both the versions of the grantPermission()
operation described in Section 3.2.
44
Table 1
Analysis of the gas consumed by the operations considering a gas price of 15
Gwei.
Contract Operation Cost in gas Var % Eth-15Gw

RSF deploy 7,675,723 + 76.5% 0.1151

RSF createUser 4,576,056 + 100.4% 0.0686

User createItem 2,313,822 + 122.7% 0.0347

User payItem 96,687 – 0.0014

User addRate 347,004 + 108.6% 0.0052

Item grantPermissiona 79,593 + 1.1% 0.0012

Item grantPermissionb 78,785 + 0.06% 0.0012

DatabaseSkill addSkill 68,992 – 0.0010

FunctionRegistry pushFunction 75,637 + 0.7% 0.0011

agrantPermission(to, amount).
bgrantPermission(to).

4.1.1. Gas evaluation
In this section, we provide the reader the costs in gas of

the functionalities of our prototype. Indeed, with respect to our
previous work, [16], the addition of the support for managing
skills and tokens increased the complexity of the framework and,
consequently, the gas used to execute most of the operations.

Table 1 shows the cost in gas (column Cost in gas) for the
most relevant operations of our framework and the related cost
in Ether (column Eth-15Gw) that will be charged to the caller for
the execution of such operations with a gas price of 15 Gwei. The
bytecode of the RSF contract needs to be manually loaded onto
the network by means of a client: in Table 1 we use the term
deploy to indicate this operation. All the other contracts of our
framework, instead, are created by contracts of the framework
itself, as we will show in the following.

Considering the change ether:euro of 1:110.01 at the time of
writing, we have that the payItem() and both the grantPer-
ission() operations cost about 0.15 and 0.13 euros respec-
ively for a user, comparable to the cost of addSkill() and
ushFunction() for the system owner, while the cost of the
ddRate() operation is about 0.57 euros. Instead, the operations
reateUser() and createItem() cost about 7.54 and 3.81
uros respectively. For item owners these costs represent an
nvestment for their activities; for customers these costs are paid
ack by the introduction of the tokens.
Table 1 also shows the percentage of the gas overhead (column

ar % ) with respect to the gas consumed by the corresponding
perations in the previous version of the system [16], introduced
y skill and token management for the implementation of the
eputation and the reward mechanisms. The overhead of the
ayItem() and addSkill() operations is absent because these
perations were not implemented in the previous version. The
verhead introduced in the grantPermission() operation is
ery small because its main logic is identical to the previous
ersion except for some small changes. The execution of the token
ransfer and the increasing of the user reputation is performed in
he addRate() function: this is the reason for the relevant cost
ncrease with respect to the previous version. Finally, the cost
f deployment of the RSF and the cost of the create operations
rovided by User and Item, raises because these operations
nvolve the deployment of contracts on the blockchain, and such
ontracts have larger bytecode because they embed additional

6 Prototype repository: https://github.com/DistributedSystemsSocialNetwork
nalysis/Decentralized-Rating-Platform.[Accessed 15-January-2020].
7 Truffle: https://www.trufflesuite.com/. [Accessed 15-January-2020].
8 Metamask: https://metamask.io/. [Accessed 15-January-2020].
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ode for skills and tokens management. Although we expect, for a
ingle user, the need to deploy the User contract only once, and
he Item contract only a few times.

.2. Evaluation of the state update operations

In this section we provide the reader with a detailed eval-
ation of the performance in terms of throughput of the main
perations of our framework involving a transaction. This section
s structured as follows: Section 4.2.1 describes the setup of our
xperimentation, Section 4.2.2 lists the evaluation metrics, and
inally Section 4.2.3 describes the results achieved.

.2.1. Experimental setup
We deployed the smart contracts composing the system on an

thereum testing network and we used transactions to trigger the
xecution of each operation. We chose Ropsten9 because it uses
he same consensus (PoW) of the Ethereum main network at the
ime of writing.10 Our experiments rely on the Infura service,11
hich acts as a proxy to a remote Ethereum node to interact with
he Ethereum main and test networks. For each operation we
valuated, we created n batches of, respectively, [N1,N2, . . . ,Nn]

equests, and for each batch i we sent to the network a sequence
f Ni transactions and we waited for all of their resolutions. Each
est is repeated multiple times, and performed for gas prices of 10
nd 20 GWei. The input of each of these transactions is randomly
enerated within a valid range of values.

.2.2. Evaluation metrics
For each batch size Ni we aim to measure four different met-

ics: (a) the average number of blocks required to execute/store
ll the transactions; (b) how many blocks elapsed on average
rom the time all the transactions are submitted to the time all
he transactions are stored in the blockchain; (c) the average
umber of our transactions in each block (taking into account
nly the blocks containing at least one of the submitted trans-
ctions); (d) the time elapsed, in seconds, to process the batch.
he time required for executing a transaction depends on both
he network latency to propagate requests and the mining. At
he time of writing, Ethereum has an average mining time of 13–
4 s.12 An important factor is that, given multiple transactions,
heir mining latencies do not necessarily add up since a single
lock may contain several transactions whose total gas cost stays
elow the block gas limit, limiting the computation that can
ccur per block. At the time of writing the blocks of Ropsten
est network can contain transactions for at most 8M units of
as.13 We chose to test the following operations: payItem(),
ddRate(), createItem() and grantPermission(). The gas
osts of these operations have different orders of magnitude (see
able 1).

.2.3. Results
Given the cost of the operations shown in Table 1 and the gas

imit of Ropsten, we expect that each block can contain at most 3
reateItem() transactions, or 100 grantPermission() trans-
ctions (both versions), or 82 payItem() transactions, or 23
ddRate() transactions. Because of that, for each operation we
sed different batch sizes.

9 Ropsten: https://ropsten.etherscan.io/. [Accessed 15-January-2020].
10 We refer to Ethereum 1.0, to avoid confusion with the upcoming Ethereum
.0.
11 Infura: https://infura.io/. [Accessed 15-January-2020].
12 From Etherscan: https://etherscan.io/chart/blocktime. [Accessed 15-January-
020].
13 With web3 connected to Ropsten: web3.eth.getBlock("latest").
asLimit.
45
Fig. 7 shows the experimental results concerning the
payItem() operation. Each plot in the figure shows on the x axis
the size of the batches Ni, and on the y axis the measurement
as described in Section 4.2.2. Fig. 7(a) shows how the number
of blocks required to store all the payItem() transactions we
requested in the same batch increases when the batch size goes
from 1 to 100 transactions. For instance, on average, to process a
batch consisting of 25 transactions are required about 1–2 blocks,
while to process a batch of 100 transactions are required about
3 (gas price 20GWei) or 2 (gas price 10GWei) blocks. Since the
blocks containing the transactions we issued in the same batch
could be not contiguous, we show in Fig. 7(b) how many blocks
elapsed from the time all the transactions of the batch are submit-
ted to the time all the transactions are stored in the blockchain. In
this case we observe only a slight increase of no more than half
a block on average. We investigate in more detail the average
number of transactions recorded in each block in Fig. 7(c). The
results indicate that the average number of transactions per block
goes up to about 45 (with gas price 10GWei) with a batch of
100 transactions while we previously saw that a block could
theoretically host up to 82 payItem() transactions. Fig. 7(d),
considers the time Ropsten takes to execute all the transactions
on a batch. The figure shows that the median time to mine a batch
of 100 transactions is about 53.5 s.

Fig. 8 shows the experimental results concerning the ad-
dRate() operation. Like in the previous case, the number of
blocks required to store all the transactions of a batch increases
with the size of the batch (see Figs. 8(a) and 8(b)). For instance,
our experiments show that to process a batch of 35 addRate()
transactions are needed about 2–3 blocks and elapsed about 3–
4 blocks on average. Fig. 8(c) shows that in our experiments
the average number of transactions processed in the same block
ranges between 12 and 14 with a batch of size 35, while we
previously saw that a block could theoretically host up to 23
addRate() transactions. The median time of the execution of a
batch of 35 addRate() operations is about 47.5 s.

Fig. 9 shows the same evaluations concerning the
createItem() operation. Fig. 9(c) shows that each block con-
tains, on average, about 1.5 transactions, while we previously said
that each block could theoretically host up to 3 createItem()
transactions. As a matter of fact, Fig. 9(a) shows that the number
of non empty blocks containing the transactions of a batch is
lower than the number of transaction of the batch itself. Such
blocks are not contiguous: for example, for a batch of 8 trans-
actions, Fig. 9(b) indicates that the number of blocks created
during our experiment, about 9–10 blocks, is higher than the
total number of blocks containing the transactions of our batch,
i.e., about 5 blocks in Fig. 9(a). Furthermore, independently from
the gas price, the number of blocks mined with such transactions
are very similar. Fig. 9(d) represents the time it takes to mine a
set of transactions. The high variation of the time spent by the
mining process is reflected in our measurements.

Finally, Fig. 10 represents the evaluations obtained from the
execution of the grantPermission() operation. Fig. 10(c)
shows that, submitting a batch of 100 grantPermission()
operations, the number of transactions per block is about 26
transactions for 20GWei, and about 32 for 10 GWei, while the
theoretical maximum number of transactions that can be hosted
in a single block is about 100. Fig. 10(a) shows the number
of blocks containing the transactions composing our batches.
Finally, Figs. 10(b) and 10(d) show the elapsed time to issue a
batch of transactions in terms of elapsed blocks and seconds.
The number of blocks mined for the execution of a batch of 100
transactions is about 4 (gas price 20 GWei) or 3 (gas price 10
GWei), while the median time necessary to execute all those

blocks and transactions is about 45 s.

https://ropsten.etherscan.io/
https://infura.io/
https://etherscan.io/chart/blocktime
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Fig. 7. Testing the resolution of multiple payItem() transactions.

Fig. 8. Testing the resolution of multiple addRate() transactions.

Fig. 9. Testing the resolution of multiple createItem() transactions.
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Fig. 10. Testing the resolution of multiple grantPermission() transactions.
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.3. Evaluation of rating functions

In this section we provide the reader a detailed evaluation of
he performance in terms of latency and computational limita-
ions of the rating functions that, differently from the previous
perations, are read-only and therefore they do not involve a
ransaction. We expect the query of the score of an item to
e the most frequent read operation in a rating system. This
ection is structured as follows: Section 4.3.1 describes the setup
f our experimentation, Section 4.3.2 lists the evaluation metrics,
nd finally Section 4.3.3 describes the results achieved from our
xperiments.

.3.1. Experimental setup
We performed the following measurements in the Ropsten

est network using Infura as described in Section 4.2.1. We im-
lemented some rating functions and, for each one, we deployed
he corresponding contract. We remark that a rating function is
contract exposing a single operation called computeScore()
ith input three history arrays: the array of scores, that of times-
amps, and that of reputation values (see Fig. 5). This allows a user
o dynamically plug a rating formula based on their needs. To be
ble to implement different functions we cannot aggregate the
ata each time an item receives a new rating, therefore such oper-
tion requires the history of all the ratings. Even if such operation
oes not cost a fee, the execution is subjected to the gas limit
nyway, and cannot scale indefinitely. In our experiments, for
ach rating function fi, we call the computeScore() operation
ith arrays of lengths [1, 500, 1000, 2000, 3000, 4000, 6000]
ach filled with random data within the valid range (e.g. [1, 10]
or scores). Each test has been repeated multiple times, and we
eported the average value.

.3.2. Evaluation metrics
For each function fi we measure the latency to get the result,

nd the maximum size of the arrays (i.e., the maximum number
f reviews) that is possible to process with a gas limit of 7M units.
he formulas for computing the score of an item are summarized
n Table 2: formula (f1) computes a simple average on the scores;
ormula (f2) computes the average value weighted on the age of
he blocks (recent blocks impact more on the score); formula (f3)
omputes the average value weighted on the reputation value
f the selected skill (the highest impacts more on the score);
ormula (f4) calculates the average weighted on both blocks ages
 r
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Table 2
Table showing the rating function.
Label Description Formula

f1 Avg on scores
1
n

n∑
i=1

si (1)

f2 W. avg on blocks
∑n

i=1 si · wi∑n
i=1 wi

; wi =
(bi · 100)
maxB

(2)

f3 W. avg on skills
∑n

i=1 si · vi∑n
i=1 vi

(3)

f4 W. avg on blocks and skills
∑n

i=1 si · wi∑n
i=1 wi

; wi =
(bi · vi · 100)

maxB
(4)

f5 Quadratic avg on scores

√ 1
n

n∑
i=1

s2i (5)

f6 Median on scores median(scores) (6)

n = number of ratings received by an item; si = the score of the ith rating;
i = the block of the ith rating; maxB = the block of the latest rating; vi = the

reputation of the skill of the ith rating.

and skills (a mixed weight of the last two approaches); finally,
formulas f5 and f6 consider only the scores and compute the
uadratic average and the median respectively. The quadratic
verage involves additional operations than the simple average,
hile the median is a measure often used. Since Solidity does
ot support float number computation, in our implementation
he weights are in the range [1, 100], and the resulting score is
runcated in the range [1, 10].

.3.3. Results
Fig. 11 shows on the y-axis the average time required for

omputing the score of an item for each of the rating functions,
arying the number of ratings taken into account (shown on
he x-axis). The plot indicates that the latency of each rating
unction is very similar to each other, and some are subjected
o a higher standard deviation, especially when the input size is
arger. The gas used by each function depends on the complexity
f the function itself. For instance, the function f4 runs out of gas
ith 7000 ratings as input, f2 and f3 run out of gas with 10,000
atings, while f1, f5 and f6 run out of gas with 12,000 ratings.
n the city of Pisa, Italy, the main restaurants have a number of
eviews that goes from a few hundred to a few thousand. As a
esult, at the time of writing, rating functions in Solidity cannot



A. Lisi, A. De Salve, P. Mori et al. Future Generation Computer Systems 120 (2021) 36–54

i
t
i
d
v
b
e

Fig. 11. Time required by the rating functions to return the result.
mplement formulas too complex. As concerns the best formulas
o be used as a rating function, there is no standard solution that
s adopted by current RSs. Indeed, a rating calculation formula is
omain-dependent [29] and most of them are based on modified
ersions of the previous formulas. For instance, the method used
y Revain [30] is based on weighing the ratings with the user’s
xperience and time elapsed (as we do with our function f 4 in

Table 2) while the approaches used by Amazon and Tripadvisor
are unknown to the public. Authors in [31] compare various
methods to estimate the quality of a product, and they find that
the accuracy of a simple average formula is comparable to more
complex methods (e.g., lower bound on the normal confidence
interval, weighting authors according to maximum likelihood,
and others). Similarly, the authors in [32] prove that the simple
average produces a better estimation of the quality of the product
than the median and the majority14 rules when a product has
more than 100 ratings.

5. A comparative analysis of recommender systems

This section provides the reader with a description of the
works which have been done in the field of blockchain-based
RS, and compares their rating supports with our work following
both a qualitative and quantitative approach. In particular, in
the following of this section we list the related works and we
compare their general characteristics (Section 5.1), their architec-
tures (Section 5.2), and their services (Section 5.3) with our work.
Finally, in Section 5.4 we quantitatively compare our approach to
those related works for which it is possible.

Several approaches have been proposed to manage the recom-
mendation of items to users in different contexts. In the following,
we consider some popular centralized RSs, as well as experi-
mental proposals involving blockchain solutions. For instance,
Tripadvisor and Amazon are among the most popular centralized
RSs that collect feedbacks on destinations (e.g., restaurants or
hotels) and products to provide a rating for such items and to
recommend them to users. LinkedIn, instead, acts like an Online
Social Network where companies are recommended to users who
fit required skills. Gastroadvisor [33], a Tripadvisor-like system
focusing only on restaurants, stores on the blockchain only special
type of reviews, called gold reviews, that are submitted by users
who booked the restaurant through the platform and paid the
bill through FORK tokens, i.e., the platform currency. Friendz [34],
an Instagram-like application focusing on product campaigns,
exploits the blockchain to make the system transparent and de-
centralized. Both Gastroadvisor and Friendz have their tokens

14 To assign a product the rating equal to the most popular one.
48
built on top of the public blockchain and a reward system to make
the platform more appealing to users.

The authors in [36] propose the blockchain as a recordkeeping
system providing a proof of the existence of educational con-
tents introducing the Kudos as a ‘‘educational reputation digital
currency’’. Educational centers can use such tokens to award stu-
dents or educational achievements, who in turn can pay personal
tutors with such tokens.

Another relevant work is proposed in [39], where blockchain
is used as Personal Data Management System. The personal data
of users relevant for the recommendation task are stored in
encrypted form on the blockchain and they can be used by
companies, i.e., third-parties interested in recommending their
products and services.

Authors in [37] focus on preserving users’ identity disclosure
in RS by exploiting a blockchain-based solution. In particular, they
use locality sensitive hashing classification as well as a set of
recommendation methods using obfuscated ratings stored in the
blockchain.

The approach we presented in this paper extends our previous
work presented in [16] and proposes a methodology to increase
the user motivation with reputation and economic rewards to
minimize the user’s economic impact due to the transaction
fees characterizing public ledgers. Other works tackle the prob-
lem with different approaches, for example defining a novel
Bitcoin-like general purpose blockchain where transactions are
used to store reputation scores of users sharing files with each
other [38], or creating a private network to limit the authority of
participating nodes [40].

The approach proposed in [12] consists of an Ethereum smart
contract with incentives to reviewers. The service provider gener-
ates a token for the user to write a review and the smart contract
will pay Ether to the author of reviews. To highlight the novelty of
our approach w.r.t. existing ones, we have summarized in Table 3
the properties of current RSs in terms of three categories: general
characteristics, system architecture, and provided services.

5.1. General characteristics

The category general characteristic provides information about
the type of items taken into account by the RS, the type of review,
and the type of rating. Table 3 shows that the most of current
RSs are designed around a specific set of item type: restaurants
and destinations (Tripadvisor and Gastroadvisor), products (Ama-
zon), social media contents [38], Friendz), business (Revain, [40],
works and industry (Lina.Review, LinkedIn, [36]). Instead, there
is a subset of approaches [12,37,39] designed to be general and
to accommodate any type of item. As concerns the review, it
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able 3
omparison of current Recommendation Systems. (C = Centralized; B = Blockchain-based; L = Local; G = Global; R = Reputation; M = Monetization).
Approach Characteristics Architecture Service

Items Type Review Type Rating Control Avoid Censorship Auditability Reward Reward Policy Payment Reputation

Tripadvisor restaurants and destinations text 5-star C ✗ ✗ ✗ ✗ ✗ ✓

Amazon products text 5-star C ✗ ✗ ✗ ✗ ✓ ✓

LinkedIn work positions based on skills – – C ✗ ✗ ✗ ✗ ✗ ✓

Gastroadvisor [33] restaurants text 5-star B ✓ ✓ ERC20 - RM G ✓ ✓

Friendz [34] posts, profiles, app review – 5-star B ✓ ✓ ERC20 - M G ✓ ✗

Revain [30] cryptocurrency services text 5-star B ✓ ✓ ERC20 - RM G ✓ ✓

Lina.Review [35] industry, supply chain, healthcare text 5-star 0-N B ✓ ✓ ERC20 - RM G ✓ ✓

[36] intellectual works – – B ✓ ✓ kudos - R G ✓ ✓

[37] any type of item – 0-N B ✓ ✓ ✗ ✗ ✗ ✗

[38] users – 0–1 B ✓ ✓ bitcoin - M L ✓ ✓

[39] any type of item – – B ✓ ✓ discount - M L ✓ ✗

[40] bids and offers for trade emission – – B ✓ ✓ ✗ ✗ ✗ ✓

[12] any type of item – – B ✓ ✓ ether - M L ✓ ✗

[16] any type of item – 0-N B ✓ ✓ ✗ ✗ ✗ ✗

Our approach any type of item – 0-N B ✓ ✓ ERC20 - RM L ✓ ✓
mainly consists of a text and a rating, as in the case of Tripad-
visor, Amazon, Grastroadvisor, Revain, and Lina.Review. Instead,
some approaches either require only the rating (such as, Friendz,
and [38]) or they do not specify whether the text is necessary
(i.e., [36,37,39,40]). Lina.Review is designed to be general because
it allows specifying a set of criteria to be reviewed from users.
Instead, the approach proposed in [12] does not specify the
structure of the review because it exploits off-chain storage to
collect them while their hash pointers are stored on-chain. Most
of the RSs require that the rating of a review is denoted by using
either the 5-star system (e.g., Tripadvisor, Amazon, Gastroadvisor,
Friendz, and Revain), a binary system (such as, Like/Not Like as
in [38]), or a numeric rating (such as [37]). In some cases, the
rating is not required (such as LinkedIn) or authors do not specify
whether it exists (i.e., [36]). In addition, some approaches do not
specify the type of rating [12,39,40].

Similarly to [12,37,39], our approach stores on the blockchain
nly the numeric rating (0-N) of the reviews, as it is the minimal
nformation structure needed for providing transparent review
ollection and item score calculation. Indeed, each review can
e associated with a large amount of data (e.g., text, images,
r videos), but storing all of these data on the blockchain is
ery expensive and it could negatively impact the overall system
erformance and scalability [41]. However, the InterPlanetary File
ystem (IPFS) [42] could be exploited to store such data.

.2. System architecture

In this section, we summarize for each approach of Table 3
he properties related to the system architecture by focusing
n the control of the platform (which could be centralized or
ased on blockchain architecture), the resistance of the system
o censorship, and the verifiability of the information.

The most popular RSs, such as Tripadvisor, Amazon, and
inkedIn are implemented by exploiting a centralized control
rchitecture, where the system is controlled by a single authority,
hich collects the reviews submitted by users, manages the
eputations, and performs recommendation for the other users,
nd are accessible only through the services offered by them.
uch centralized control of the service provider introduces some
ssues and risks for the users of the services. For instance, the
entral authority controlling the service could alter or delete
xisting reviews to maliciously modify the rank of an item [13,
3], increasing the risk of censorship. Moreover, the users are
naware of (or cannot verify) the method used by the centralized
uthority to compute the rank of the items. Summarizing, users

eed to trust those centralized control RSs, because the latters

49
could alter the score of items in many ways without the former
being aware of this.

From an architectural point of view, several works implement
the whole service (or a part of it) by exploiting blockchain-based
architectures, where there is no central authority that controls
the system and any user can verify the data written on the
blockchain. For instance, Friendz and [40] exploit the blockchain
to manage the activities related to brands and campaigns, while
the personal data stored in the users’ profiles are not publicly
available. Gastroadvisor exploits the blockchain to manage re-
ward and payment, making the review process more transparent
and verifiable by users using the hash of the corresponding pay-
ment transaction. In Revain and [38], the blockchain platform
is used to increase auditability and resistance to censorship be-
cause each data is hashed and then written in the blockchain.
Lina.Review utilizes a hybrid architecture based on the Ethereum
blockchain and the Lina Core, a private high scalable blockchain
that is used to store complete and verifiable information about
transactions. Authors in [36] exploit blockchain to store records
of achievement and degree certificates. Such information is added
to the blockchain by the awarding institution while students
can access and share them. The approaches proposed in [12,37]
exploit a decentralized storage system (such as IPFS [42]) to
minimizes the information that needs to be stored and shared
in the blockchain. The architecture of [39] is designed to store
on the blockchain encrypted personal data which are relevant for
recommender systems.

From an architectural point of view, our approach relies on
a blockchain-based solution (such as Lina.Review and [12,36,37,
39]) but, unlike previous works, the proposed framework man-
ages the entire review process through the blockchain, increasing
transparency, auditability of data, and preventing the risk of
censorship from third parties. Indeed, our solution is entirely
built on top of a public blockchain where the running smart
contracts implement the reward and payment mechanisms, the
management of ratings, and the computation of the reputation
score obtained from users’ reviews.

5.3. Service features

In this section, we investigate the features of the provided
services, focusing on payment support, reputation, and reward
supports. Indeed, as shown in Table 3, the reward mechanism
can be based on reputation (R), on monetization (M), or both
(RM). The former improves the status of an individual while the
latter provides an economic reward. Furthermore, we indicate for
each approach the mechanisms used to implement the reward

(i.e., token, discount, currency, ether, etc.) and the corresponding
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eward policy, which could be Global if the reward policy is
nique among all the item owners, or Local, if each item owner is
nabled to create his specific reward policy for each of his items.
Tripadvisor, LinkedIn, and Amazon do not provide any eco-

omic incentive for users to complete their tasks. Among these
ystems, only Amazon supports traditional payment methods
ecause Tripadvisor and LinkedIn are mainly focused on rec-
mmendations. In Tripadvisor and Amazon, the reputation of
he users is computed based on the number of reviews they
ubmitted and the number of likes received. LinkedIn, instead,
ssigns to users values on their professional skills.
Gastroadvisor incentives its users with a reward mechanism

ased on reputation proportional to the number of reviews, likes,
nd reshares the users received, and monetization through the
ORK tokens gained when booking, writing reviews, or publishing
ultimedia contents. The reward policy is global, and all item
wners have to comply with it. Friendz motivates its users to
articipate in content creation and validation by using the FDZ
oken that can be spent on in-app services. The platform does not
onsider the reputation of users because it provides Online Social
etwork-oriented services. Revain provides its users a reward
echanism based on monetization with the internal RVN tokens,
nd with two types of reputation: the level based one, gained
hen writing or commenting reviews (with the 10th level as
he highest), and the ‘‘karma’’ one, computed on the likes/dislike
eceived. Moreover, a 9th level user can apply to become an
‘expert’’. In Lina.Review, each user can submit a review request
r a new advertising campaign, exploiting an internal ERC20
ompliant token (named lina) as a reward and payment method
e.g., an advertising campaign can reward the first 1000 users
ith 1 lina for each click). Furthermore, also in Lina.Review users
ith a high reputation can apply and be promoted with the role
f expert and are paid by the platform.
The platform proposed in [36] exploits a reputation-based

ewards mechanism to incentivize students for small educa-
ional services. The cryptocurrency provided by the underlying
lockchain is used as a reward, and the amount of currency
wned by an organization is proportional to its educational rep-
tation. Each recognized institution, organization, and an intel-
ectual worker is paired with an educational reputation currency,
amed kudos, which depends on the Rankings for Universities,
-index for academics, and author rank for published authors.
he approach proposed in [37] is mainly focused on the auditabil-
ty of the information and it does not take into account any
eward. Authors in [38] proposed a monetization-based reward
echanism to discourage users from behaving dishonestly when
haring a file. When users submit some data on the blockchain
hey include in each transaction the user who requested the files
nd the hash of the file. The receiver answers with a transaction
ith ‘‘1’’ if they are satisfied, ‘‘0’’ otherwise: the reputation of
user is the sum of such values. However, the reputation is not
omputed on the blockchain but by the peer’s client, and it avoids
ollusion attacks averaging the scores received by a single peer.
he platform proposed in [39] exploits a monetization-based
eward mechanism whenever users share data with a company,
aining cryptocurrency or obtaining discounts on the company’s
roducts: as a result, this is a local reward policy. The reputation
f the users is not considered. Authors in [40] proposed an
pproach to increase the auditability and reputation of users
hen reducing carbon emission as a function of past emission
ates, but it does not take into account any reward mechanisms
r payment methods. The reward mechanism proposed in [12]
s based on monetization because it expects the item owners to
rovide some money as an incentive for the users through a smart
ontract: the item owner funds the smart contract, they assign
ccess tokens to users, and in turn, the smart contract will pay
ther to the EOAs of the authorized reviewers.
50
Compared to our previous work [16], the proposed framework
introduces several improvements because of the integration of:
(i) a local reputation and monetization-based reward mechanism
that models the experience of a user based on personal skills
and it is implemented through a standard token, (ii) a compo-
nent that integrates blockchain cryptocurrency and token-based
payments. Compared to existing approaches, a novelty introduced
by our framework is the full support of both a local reward
policy, helping the item owner, and a reward system helping
the user. When cryptocurrency or tokens are used for payment,
our framework automatically gives to the user the permissions
to rate the item. An external payment, instead, needs a manual
intervention from the item owner. Finally, to evaluate the score
of an item, a user can choose among a number different crite-
ria, the rating functions, that can be dynamically added to the
framework. As shown in Table 3, the proposed approach is the
first method in the literature using smart contracts for providing
a local reward mechanism based on reputation and monetization.
The most similar works to our proposal are [12,38,39], which
also implement a local reward policy. However, these approaches
have two major limitations: the reward is based only on either
reputation or monetization, and they are not designed to support
efficient token-based rewards.

5.4. Experimental comparison

In order to experimentally compare the performances of the
different methods listed in Table 3 we took into account common
evaluation measures that are relevant for performance evalua-
tion. Since our prototype implementation is based on Ethereum,
we compared the proposed approach against other similar so-
lutions that have been designed for Ethereum blockchain, and
we used the gas consumed by the smart contracts as a com-
mon evaluation measure for the comparison. For this reason, the
approaches we selected for the experimental comparison have
to meet the following requirements: (i) they must be designed
to support Ethereum blockchain, and (ii) they must make avail-
able the source code of the smart contracts implementing the
approach. Centralized approaches, i.e., Tripadvisor, Amazon and
LinkedIn, as well as the approaches proposed by [38–40] do
not meet any of the above requirements. Therefore, they cannot
be experimentally compared with our solution. The approaches
proposed in [34,36,37] are based on Ethereum but they do not
provide the source code. Instead, the approaches proposed by [12,
16], Gastroadvisor, Revain, and Lina.review are suitable to be
directly compared with our proposal because they meet both the
above requirements. Consequently, the available source code has
been downloaded, compiled, and deployed by using the Remix
IDE to measure the gas cost.

The smart contracts implemented by Lina.Review, Gastroad-
visor, and Revain focus only on the definition of a custom ERC-
compliant token, which is globally used to manage the reward
and the reputation of users. The cost of the deployment of
Lina.Review and Gastroadvisor is quite low: 1,456,919 and
2,066,430 units of gas respectively. Instead, in the case of Revain,
the implementation of the token includes also a large set of
general-purpose contracts that implement a number of utility
functions, such as, a threshold multi-signature scheme and a
contract for generating unique identifiers, a proxy, and a storage
service for ERC20 token. The system provides few specifics on
how such smart contracts interact with each other and we were
unable to deploy the implementation of the token because the
contract’s gas requirement is larger than Remix block gas limit.
Unfortunately, Lina.Review, Gastroadvisor, and Revain do not pro-
vide further details on how the management of the items, skills,
reviews, and rating functions would work. Furthermore, their
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epositories do not expose the code of any function that is se-
antically similar to our operations (i.e., the grantPermission
nd the addRate).
The method proposed in [12] is the least expensive to deploy

n terms of gas (999,145 units of gas), and its functionalities
re more similar to our Item contract (whose creation costs
,313,822 units of gas) rather than to the entire framework. As
hown in Table 3, the approach in [12] provides few advantages
n comparison with conventional methods. In particular, it pro-
ides users a local reward policy based only on monetization,
hich does not support reputation and token standard. The item
wners have complete control over the generated permissions
nd the fairness of the payment process may not be guaranteed.
ndeed, the item owner can arbitrarily decide to grant or not
rant permissions to a customer, even if they pay with the native
ryptocurrency. Also, the code used to compute the score of the
tems cannot be directly executed on the blockchain because data
re stored on IPFS.
In order to compare in more details our approach with [12],

e replicated the transactions experiments described in Sec-
ion 4.2. In particular, we compared the function called Is-
ueToken exposed by the smart contract in [12] against the
rantPermission function exposed by our approach because
hey are semantically similar, i.e., they both set the permis-
ion to a user to leave a rating. Fig. 12 compares our approach
ith [12], showing the average and the standard deviation result-

ng from our experiment by considering the performance metrics
xplained in Section 4.2.2. In particular, the gas price used for
ll the invocations is 10Gwei, and we used the results showed
n Fig. 10 for the grantPermission function. The costs of the
wo functions are comparable, i.e., 50,676 units of gas for the
ssueToken function and 79,693 units or the grantPermis-

sion function. For this reason, we note that all the proposed
measurements in Fig. 12 have similar performance results for the
two tested functions. As for instance, for the execution of a batch
of 100 transactions, both functions require about 3 blocks on av-
erage (see Fig. 12(a)), the average number of transactions in each
block is between 30 and 40 (see Fig. 12(c)), while the average
time required for appending the transactions to the blockchain is
less than 55 s for both approaches.

Finally, the rating framework proposed in this paper is ob-
viously experimentally comparable with our previous approach
[16]. In particular, our previous version of the framework takes
about 4,347,987 units of gas to be deployed. Hence, the additional
features introduced in the version presented in this manuscript
increase the deployment gas cost by 76% as shown in Table 1
(column Var % ). The cost of the other operations increase as
well. For instance, the cost of the addRate operation in the new
version is twice the cost we had in the previous version.

6. Framework discussion

In this section, we focus on a critical analysis of the proposed
framework discussing weaknesses and main threats.

Architectural limitations. A RS built on top of a permissionless
blockchain technology benefits of transparency and immutabil-
ity of the data but inherits some flaws of the permissionless
blockchain as well. An important one is the limited amount
of data that can be processed and stored over time. However,
a number of solutions for increasing blockchain scalability are
under investigation [44]. The fee is another blockchain-related
aspect to be discussed. Section 4.1.1 shows that computing the
rating of items does not consume gas, while the cost of uploading
a new review on our rating framework is low, and mitigated by
the reward. Creating a new user, instead, is more expensive, but
this operation is executed only once for each user.
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Unauthorized reviews attack. A relevant threat consists of a mas-
sive submission of unauthorized reviews, i.e., reviews from users
who did not really exploit the service provided by the item. This
event is known as a review bomb [45], and it can have the goal
of destroying or increasing the score of an item. These are called,
respectively, nuke and push attacks in [46]. A simple authorization
mechanism, like the one adopted in our framework, could be used
to prevent the insertion of reviews from users who did not really
exploit the service.

Sybil attack. A second threat is the Sybil attack, which consists
of impersonating multiple identities in order to insert more than
one review to the same item, thus altering its score. This attack is
easy to accomplish when obtaining a new identity is cheap, and
it is popular in recommender systems [38,46,47]. It is possible
to mitigate the effectiveness of reviews left by ad-hoc generated
users with the concept of rating functions. For instance, if the
result returned by the rating function f4, which considers the
users’ reputations, is considerably lower than the result returned
by the function f2, which does not consider users’ reputations,
then it is reasonable to think that the item owner attempted to
get positive ratings from new generated accounts.

Collusion with high reputation users. A way for item owners to
increase the score of their items is to bribe high reputation
users and convince them to insert good reviews their items. We
can mitigate this threat by restricting the system to accept only
payments in cryptocurrency, so that the payment can be traced
on the blockchain, thus attesting the exploitation of an item by
a user. However, this countermeasure does not really solve the
problem because the item owner could falsify service exploitation
with arbitrarily small payments.

Fairness of the payment process. An important aspect is the fair-
ness of the process described in Fig. 6, i.e., Bob should be paid
by Carl, and Carl should receive permission to rate Bob’s item.
Since the services/products provided by items to users are not
blockchain-related, e.g., the glass of wine Bob sold to Carl, our
framework does not ensure that the item owner will be paid for it.
However, in case Carl pays with cryptocurrency, our framework
grants to Carl the review permissions only if he pays the amount
specified by Bob. Then, it is up to Carl to decide whether he
wishes to leave a rating. On the other hand, there are no guaran-
tees when Carl pays in any other way (such as via fiat currency).
In this case, Bob is responsible both to check that the payment has
been performed, and to issue the grantPermission operation
(b) to give Carl the permission to review his item. Several ad-
vanced payment techniques have been proposed in the literature
to solve this issue, e.g., [48,49].

Malicious reviews. Finally, like any review platform, the proposed
framework is vulnerable to ill-natured ratings, i.e., ratings sub-
mitted by authorized users of the system that do not reflect the
real opinions of the users (fake review), or contain provocative
contents (trolling), or mention off-topic contents. Lina.Review
and [50] try to limit this problem by exploiting users with ad-
ditional powers, like opinion leaders, to moderate or accept the
reviews.

7. Conclusions and future works

This paper proposes a general decentralized rating framework
based on blockchain, supporting recommender systems and re-
warding its users for their reviews to compensate them for the
cost they incurred due to the permissionless blockchain. In our
approach, the ratings of items, the reputations, the tokens of
users, and the algorithms exploited to compute the score of the
items are stored on the blockchain, thus being publicly visible
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Fig. 12. Testing the resolution of multiple grantPermission and IssueToken transactions.
nd not alterable. Users are incentivized to review items because:
i) their reputations concerning items’ skills improve through the
pdate mechanism defined in the system; (ii) reviews made by
igh reputation users impact most; (iii) higher reputations lead to
higher amount of tokens earned by reviewers for their reviews.
he proposed system provides direct support to payments with
ryptocurrency, but it also allows the item owner to accept other
off-chain) payment methods by manually invoking a smart con-
ract to confirm the payment execution. Finally, the manuscript
rovides a comparison with the other systems proposed in the
iterature.

An interesting future work could be aimed at mitigating the
isuse of the system that could be perpetrated by malicious high

eputation users, for instance through the integration of advanced
uthorization systems [51,52], or by designing a sophisticated
rust network [53,54] so that a user can label a set of known user
s ‘‘trusted reviewer’’ even if they do not have a high reputation.
The problem of recommending the most appropriate item for

ach user is not trivial and the techniques proposed in the liter-
ture [28,55] are typically too expensive to be implemented by
mart contracts. Hence, a future research direction could concern
he definition of an efficient strategy that can run on top of
uch constrained resources. Finally, to overcome the limitations of
ublic permissionless blockchains, the components building the
roposed framework can be split between different blockchains,
ermissionless and permissioned, to find a tread-off between
erformance, immutability, and transparency [56]. Therefore, it is
mportant to design an effective interoperation protocol: a survey
f those protocols can be found in [56–58]. We find suitable for
ur case techniques based on Atomic Swaps [49] and Outsourcing
ervice Payment [48] since our framework supports the exchange
f assets (a review permission for a payment, and a reward for a
eview) and cryptocurrency payments between untrusted parties.
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