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The blockchain technology has been gaining an increasing popularity in the last years, and smart contracts are being used for a
growing number of applications in several scenarios. The execution of smart contracts on public blockchains can be invoked by any
user with a transaction, although in many scenarios there would be the need for restricting the right of executing smart contracts only
to a restricted set of users. To help deal with this issue, this paper proposes a system based on a popular access control framework
called RT, Role-based Trust Management, to regulate smart contracts execution rights. The proposed system, called L2DART (Layer
2 DecentrAlized Role-based Trust management), implements the RT framework on a public blockchain, and it is designed as a
layer-2 technology that involves both on-chain and off-chain functionalities to reduce the blockchain costs while keeping blockchain
auditability, i.e., immutability and transparency. The on-chain costs of L2DART have been evaluated on Ethereum and compared with
a previous solution implementing on-chain all the functionalities. The results show that the on-chain costs of L2DART are relatively
low, making the system deployable in real-world scenarios.

CCS Concepts: • Computing methodologies→ Distributed computing methodologies; • Security and privacy→ Distributed
systems security.
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1 INTRODUCTION

Blockchain technology has been recently used as underlying infrastructure to implement a large number of distinct
applications in several scenarios [3]. A blockchain is a distributed ledger shared among the members of a Peer To Peer
(P2P) network that supports the execution of transactions that are meant to update the ledger status. Ethereum [52],
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2 De Salve, et al.

one of the most popular blockchains, supports the execution of Turing-complete programs known as smart contracts

that implement decentralized applications. Smart contracts on public blockchains can be executed by anyone with
a transaction. Therefore, similarly to many other Internet-based scenarios where the resources are shared among
(potentially unknown) users, it may be required to restrict their usage to a set of trusted users that depends on a specific
context. For this reason, a number of approaches for easily integrating access control functionalities in Ethereum smart
contracts, such as OpenZeppelin [39] and [15], have been proposed in the literature.

The Role-Based Access Control (RBAC) model [24] is a well known and widely adopted method to regulate accesses
to resources. In RBAC systems the owner of a resource defines a set of roles and associates the right to execute each
operation on their resource to one (or even more) of these roles. When a user wants to execute an operation on a
resource, the access decision process is performed to determine whether such user holds the role requested by the
resource owner to perform such operation [46]. For instance, in a smart contract access control scenario, where the
rights to execute smart contracts’ functions must be regulated, the user deploying the smart contract (i.e., the resource
owner) defines which role must be held to have the right to execute the functions a smart contract exposes. Then the
resource owner associates to the other users one (or more) roles among the ones previously defined.

In order to infer if unknown users are trusted and eligible for a specific role, Trust Management Systems (TMSs) [4]
have been introduced. To this aim, Li et al. [35] defined the Role-based Trust-management (RT) framework combining
the strengths of RBAC and TMS. The RT framework allows its users to issue trust credentials that define, in terms of
roles, the trust relations among them, as well as the rules to infer new trust relations from the existing ones. Hence, in
the RT framework the roles of users are discovered at access request time using search algorithms [14], which exploit
the trust credentials defined by all the users. The RT framework is suitable to improve the current state of the art of
access control for smart contracts, especially in trans-organizational scenarios [13] where roles are assigned by multiple
organization in collaboration with, or in behalf of, the system deployer.

In order to adopt an RT system to regulate the execution of smart contracts’ functions, the RT system must be
implemented on the blockchain as well. The advantages of building the RT system on top of a blockchain are several
[2, 33, 53]. The blockchain takes care of both the storage and the processing of trust credentials, thus guaranteeing
transactions immutability and transparency, as well as the correct evaluation of the trust credentials to infer new trust
relations. Consequently, the blockchain-based RT framework benefits from data and computational auditability, i.e.,
anyone at any moment can read the available trust credentials, and can check the results obtained from their processing.
Auditability is a relevant feature [33] because no party should be able to misbehave, e.g., assigning or revoking a role,
without the others knowing that, and no party can repudiate the actions they performed [13, 15]. Moreover, performing
the role inference process on the blockchain prevents a potential malicious resource owner to state false claims, e.g.,
denying a requested access even though the requesting user holds the specified role.

In this respect, in a previous work [25] we focused on public and permissionless blockchains presenting DART, an
Ethereum implementation of a subset of RT called RT0. To the best of our knowledge, the RT framework is not supported
by any other existing access control systems for smart contracts.

In DART, the trust credentials defined by users are stored and evaluated on the blockchain. The DART smart
contract allows its users to create such credentials implementing RT0, and exposes an algorithm, called backward search
algorithm, which infers the users having a specific role from the existing trust credentials. Consequently, the blockchain
guarantees the immutability and a correct processing of the trust credentials without the need of trusted intermediaries.
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L2DART: A trust management system integrating blockchain and off-chain computation 3

1.1 Motivation and contributions

The implementation of a decentralized RT framework fully based on a public blockchain can prove to be a challenge
because smart contracts cannot currently perform complex computations on-chain. Indeed, from the experiments we
conducted in [25] on an access control scenario implemented on Ethereum, we found out that the gas consumed by the
DART smart contract to find the users holding a given role is very large. In particular, DART overcomes the Ethereum
block gas limit when processing the trust credentials of 20 users belonging to more than 15 organizations (universities
in our experiment). This could prevent the deployment of DART in several real use cases, where considerably larger
problems must be taken into account.

To overcome the scalability problem of DARTwhile keeping the auditability and decentralization of public blockchains,
in this paper we enhanced DARTmaking it a layer-2 system following the off-chain computationmodel [16], in particular
applying the verifiable computation approach [17]. The new framework, named L2DART (Layer-2 DecentrAlized Role-
based Trust management), is based on the intuition that in this scenario computing a solution off-chain and verifying it
on the blockchain is considerably cheaper than computing such solution on the blockchain.

L2DART stores RT0 credentials on a public and permissionless blockchain in the same way as DART. Instead, for what
concerns the inference of users’ roles from existing trust credentials, L2DART requests its users to run the backward
search algorithm off-chain, i.e., on their premises, exploiting the credential available on the blockchain. Together with
the result, the algorithm produces a proof validating it. This proof will be evaluated on the blockchain, by the L2DART
smart contract, in order to verify that the correspondent result is correct, i.e., a user holds a specific role according to
the existing trust credentials. This is particularly useful in trans-organizational Role-based access control systems [13],
where roles can be assigned to principals also by other organizations than the one that deployed the smart contract,
and the role required to execute the smart contract can then be inferred composing such roles.

Based on the motivations explained above, this paper provides the following contributions:

• The design of a layer-2 system, L2DART, a Role Based TMS implemented on top of a public and permissionless
blockchain that allows to regulate smart contracts’ execution rights in dynamic and trans-organizational
scenarios. L2DART makes TMSs benefiting from blockchain auditability while keeping their execution costs on
the blockchain affordable;

• The implementation of a prototype of the proposed system, following the latest state of the art best practices,
consisting of an on-chain module as a Solidity smart contract and an off-chain module as a Python software;

• A quantitative evaluation of the costs of L2DART in three application scenarios, a comparison with the costs of
DART, and a qualitative discussion.

The rest of the paper is organized as follows. Section 2 presents the fundamental concepts related to the blockchain
layer-2 technologies and Trust Management Systems. Section 3 presents L2DART and the problem it tackles, where a
new verifiable computation protocol is introduced, while Section 4 describes the approach in detail. Section 5 presents
the implementation of L2DART with Ethereum smart contract and a Python module, it shows the costs focusing on the
gas metrics of Ethereum, and it compares such costs with a prototype presented in a previous work. Finally, Section 6
discusses the system, Section 7 compares it with the related work on access control systems implemented on blockchain,
and Section 8 outlines the final remarks and future work.
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Fig. 1. Overview of a blockchain network.

2 BACKGROUND

2.1 Blockchain and off-chain computation

As shown in Figure 1, a blockchain is an append-only list of blocks, each composed of a header and a list of transactions,
which are cryptographically linked by a hash pointer stored in the header (denoted as H Ptr in Figure 1). A Blockchain
is typically managed by the nodes of a peer-to-peer network that execute a consensus protocol to achieve agreement on
the next block to be added. A user Alice sends, by means of a wallet application, a transaction, Tx, to the peer-to-peer
network. The transaction Tx is stored in the transaction list of a new block created (mined) by one of the nodes. Such
block is propagated, each node re-executes the transactions in the transaction list and stores the new block in its local
copy of the blockchain. While sending her transaction, Alice needs to pay a fee for the execution and storage of the
transaction.

According to research [10, 32, 56], scalability and transaction cost are the two main problems that hinder a wide
usage of blockchain technology. For instance, the Bitcoin blockchain can process on average 4 transactions per seconds
(TPS) with an average transaction fee equal to 183.61 USD on October 15th 2021 [54]. Instead, the Ethereum blockchain
executes about 14 TPS and the average cost of a single transition is equal to 11.38 USD on October 16th 2021 [55].
Such limitations led to a severe network congestion of the Ethereum blockchain in 2018, when the CryptoKitties
Decentralized application became popular among users.

To tackle this issue, layer-2 models [31, 56] have been proposed. These models build an overlay connected to the
blockchain able to perform operations that execute independently of the consensus protocol, but bound to the blockchain
with specific on-chain transactions [28]. The goal of layer-2 models is to reduce the code that on-chain transactions
execute making them responsible of connecting an off-chain operation with the blockchain [28]. As a consequence, the
transaction cost is smaller, more transactions can be placed in each block and, consequently, the time a transaction
has to wait before being placed in a block could be shorter. The advantages are, therefore, reduced transactions costs
and latency, increased transaction throughput, but also increased privacy since not all the transactions are executed
on-chain. Similarly, other layer-2 models have been designed and developed. For instance, the Bitcoin Lightning [43]
and the Ethereum Raiden Networks [44] implement an off-chain channels model, i.e., they create virtual channels that
allow two users to exchange cryptocurrency independently from the blockchain consensus, and exploit the network of
Manuscript submitted to ACM



209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

L2DART: A trust management system integrating blockchain and off-chain computation 5

Blockchain

Block N-2 Block N-1 Block N Block N+1 Block N+2

Bob

Sudoku

Contract


Sudoku

Verifier


Contract


Create new
sudoku 1) Get current Sudoku state

2) Resolve

Sudoku Off-chain

3) Verify
Solution

Alice

Fig. 2. Off-chain operations on smart contracts.

off-chain channels to route payments among users that are not directly connected by a channel. The side-chain model,
instead, is designed to connect parallel chains either with an existing blockchain, for example in the Plasma project for
Ethereum [42] (now deprecated [21]), or with a brand new blockchain, such as on Cosmos [34] and Polkadot [51]. This
model "splits" the blockchain in several side-chains, each side-chain processing transactions in parallel with the others,
and a mainchain that verifies the correctness of the sidechain operations. Finally, a similar model is known as cross-chain,
which connects existing blockchains, for example with cross-chain atomic swaps [29] or bridging approaches [47].

In this paper, we focus on the off-chain computation model, where an intensive computational task is outsourced to
nodes external the blockchain, while the blockchain stores application’s data that will be used in the future to verify
the correctness of the off-chain result. Additionally, a verification algorithm can be implemented on-chain, which
must be cheap, to validate the off-chain result with the goal of guaranteeing blockchain auditability. Following this
protocol, known as verifiable computation [16], a Prover executes a computation producing a result along with a proof
attesting the computation’s correctness, and publishes the proof on the blockchain. A Verifier verifies the proof and
confirms the result if the proof is correct. This protocol should be non interactive, i.e., the protocol must make use of a
single message, the verification must be cheap, the security assumptions on the Verifier must be weak to not introduce
additional trust in conflict with the blockchain’s purpose, and zero-knowledge properties could be integrated if private
inputs are required. For example, a user Alice could publish a sudoku on the blockchain, and another user Bob could
solve such sudoku off-chain and publish on the blockchain the solution or a proof of it, whose correctness is easy to
verify. Figure 2 shows a blockchain with two smart contracts, one to create a new sudoku game and the other that
verifies if a sudoku has been solved correctly. Alice invokes the first smart contract to create a new sudoku, while Bob
reads the current sudoku from the blockchain, solves it off-chain, and invokes the second smart contract to verify the
correctness of his solution and to store it on-chain.

As a result of their research in off-chain computation, Eberhardt et al. [17] proposed a list of off-chaining patterns.
We describe those applied in this paper: in the challenge and response pattern, a smart contract only accepts state
transitions, challenges, and a confirmation, or a rejection, of the challenges; in the delegated computation pattern, a user
outsources a heavy computation to an off-chain node, which provides both the result and a proof of correctness that
can be verified on-chain. Other patterns are the off-chain signatures, the content-addressable storage, and the delegated
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computation patterns. Given the transparent nature of most blockchains, the verification process publicly exposes
the data because it needs a transaction. To mitigate this issue, researchers studied the verification of zero-knowledge
proofs on smart contracts [38, 41] to prove that users have a certain property, such as the age or the salary, above,
below, or within a range of valid values without revealing the value itself. A notable tool that integrates zero-knowledge
proofs with Ethereum is ZoKrates [18]. Finally, other off-chain computation tools are Truebit and ARPA. Truebit [49]
is an off-chain verification tool that aims to overcome the computational limitations of a decentralized network. In
Truebit, a Taskgiver requests a computational heavy task storing an entry in a smart contract, Solvers offer themselves
to solve it in exchange of a reward, and Verifiers check the correctness of the result. ARPA [5], instead, is a Multiparty
Computation (MPC) network. In an MPC network a set of 𝑛 parties, including an adversary, wish to learn the outcome
of a function 𝑦 = 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝑛) where a participant 𝑖 knows only their secret input 𝑥𝑖 , and the outcome 𝑦 must be
correct [12]. The ARPA network is composed by a set of nodes performing secured and privacy preserving computation
in a MPC fashion, communicating with a blockchain through a proxy smart contract that stores ARPA computation
requests. The goal is to provide a verifiable scheme to prove that a certain computation has been performed off-chain
by the ARPA network, while protecting the privacy of the content and of the participants.

2.2 Role-Based Trust Management Systems

A TMS is defined as a set of principles used to model collaborative authorization modules capable of managing the
access over shared resources [8]. The Role-Based Trust Management system framework RT [35, 36] brings together
RBAC and TMSs to regulate the access to resources in an environment involving multiple independent organizations.
As shown in Figure 3, the key elements of RT are: i) principals (or entities), i.e., the users of the system who can issue
trust credentials or request for an authorization; ii) trust credentials, i.e., rules describing trust relationships between
principals through roles; iii) policies, i.e., sets of trust credentials representing the rules to evaluate in order to authorize
a request.

2.2.1 Principals, roles, and credentials. In RT, a principal reflects a user, and a role is created by a principal responsible
to define appropriate trust relationships on that role for a specific domain of interest. A role is denoted by the name
of the principal who defined it followed by a role name and separated by a dot. A principal cannot modify the roles
created by other principals, but the principal can use them to extend their trust relationships. For example, only the
principal University can create the roles University.student and University.professor, where student and professor are the
role names, which define the student and professor roles within the organization. After a set of roles has been defined,
the principal who created them can assign such roles to other principals with credentials.

A credential defines the rule to assign a principal to a defined role or, in other words, it states whether a principal is a
member of a role. For example, if University associates the role University.student to Bob, we say that Bob is a member of
the role University.student. A principal can assign members, directly or via delegation, only to their roles. For example,
only University can directly assign Bob as a member of University.student, or can delegate the assignment to another
principal. The set of credentials forms a policy and it can be assumed that principal names are unique in a policy [36].

Let Alice, Bob, and Charlie be principals and 𝑟 , 𝑠 , 𝑡 be role names. The RT0 language, a subset of RT, defines the
following types of credentials [36] in the form of "assigned-role← role-expression":

• Simple member: 𝐴𝑙𝑖𝑐𝑒.𝑟 ← 𝐵𝑜𝑏

Alice asserts that Bob is assigned the role 𝐴𝑙𝑖𝑐𝑒.𝑟 ;
Manuscript submitted to ACM
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Fig. 3. Workflow of the RT framework.

• Simple inclusion: 𝐴𝑙𝑖𝑐𝑒.𝑟 ← 𝐵𝑜𝑏.𝑠

Alice delegates to Bob the assignment of the role 𝐴𝑙𝑖𝑐𝑒.𝑟 on her behalf. In the example, all the members of the
role 𝐵𝑜𝑏.𝑠 are also considered to be members of the role 𝐴𝑙𝑖𝑐𝑒.𝑟 ;

• Linked inclusion: 𝐴𝑙𝑖𝑐𝑒.𝑟 ← 𝐵𝑜𝑏.𝑠 .𝑡

Alice uses the linked inclusion to include into 𝐴𝑙𝑖𝑐𝑒.𝑟 all the members of 𝑃 .𝑡 , for every principal 𝑃 that is
member of 𝐵𝑜𝑏.𝑠 . In the example, 𝐴𝑙𝑖𝑐𝑒.𝑟 ← 𝑃 .𝑡 ∀𝑃 ∈ 𝐵𝑜𝑏.𝑠 ;

• Intersection inclusion: 𝐴𝑙𝑖𝑐𝑒.𝑟 ← 𝐵𝑜𝑏.𝑠 ∩𝐶ℎ𝑎𝑟𝑙𝑖𝑒 .𝑡
This credential assigns the role 𝐴𝑙𝑖𝑐𝑒.𝑟 to all the principals having both the roles 𝐵𝑜𝑏.𝑠 and 𝐶ℎ𝑎𝑟𝑙𝑖𝑒 .𝑡 .

Unless stated explicitly, capital letters such as 𝐴, 𝐵, 𝑃 , represent principals and 𝐴.𝑟 , 𝐴.𝑠 , etc represent roles.

2.2.2 Weighted credentials. The credentials provided by RT0 are defined according to an "hard" security approach
[1], where a credential either assigns a role to a principal or not. Approaches extending 𝑅𝑇 0 with weights have been
presented in [6] where the authors define RT𝑊 to assign a weight to the simple member credentials, whose semantic
depends on a certain c-semiring tuple (maximize a value or minimize a cost), and in [22] where the authors build a
reputation and a recommendation model defining two families of credentials.

2.2.3 Backward search chain discovery algorithm. The backward search chain discovery algorithm [14] is a discovery
algorithm that is invoked by a principal, as shown in Figure 3, and answers to the following query: given a policy P,
find the set of principals {𝑝𝑖} that hold (are member of) an input role 𝐴.𝑟 .

The algorithm navigates the trust credentials in P to build a proof graph, i.e., a data structure that represents through
the nodes the role-expressions and the assigned-roles present in P, and through edges the relationships among such
nodes according to the trust credentials. Each node also stores the list of principals, also known as solutions, that are
found by the algorithm to be members of the role-expression or the assigned-role represented by that node. Each time a
solution is added to the solution set of a node 𝑛 and 𝑛 has an outgoing edge to 𝑛′, the solution is also added, we say
propagated, to the solution set of 𝑛′. An example of proof graph is shown in Figure 4 where, for simplicity, the solutions
stored in the nodes are not shown. The algorithm begins initializing a queue of nodes and the proof graph both with a
single node representing the input role 𝐴.𝑟 . As long as the queue is not empty, the algorithm removes the first node 𝑛
from the queue and process it as follows:

(1) when a node 𝑛 representing a role 𝐴.𝑠 is processed, the algorithm finds the trust credentials in P having 𝐴.𝑠 as
assigned-role (left-hand side of a credential) and, for each role-expression (right-hand side of a credential) it
creates the corresponding node, 𝑛′, it adds 𝑛′ to proof graph, it creates an edge from 𝑛′ to 𝑛, and it adds 𝑛′ to
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the queue. The pair (𝑛, 𝑛′) and the edge connecting them correspond to a credential in P.
Note that the new node 𝑛′ is added to the proof graph and to the queue only if a node representing the same
role-expression does not already exist in the proof graph. This check and the related actions are performed also
during the following steps, but we omit it to simplify the descriptions. If 𝑛′ already exists, then a new edge is
created from 𝑛′ to 𝑛. If 𝑛′ also contains solutions, then such solutions are propagated from 𝑛′ to 𝑛 using the
new edge. How a solution is added for the first time to the proof graph is explained in step 4;

(2) when a node 𝑛 representing a linked inclusion 𝐴.𝑠.𝑡 is processed, the algorithm creates a node 𝑛′ for 𝐴.𝑠 and
adds 𝑛′ in the proof graph and to the queue. The solutions of 𝐴.𝑠.𝑡 are all the principals 𝑝𝑖 ∈ 𝐵.𝑡 : ∀𝐵 ∈ 𝐴.𝑠 . To
find solutions of 𝐴.𝑠.𝑡 , the algorithm instantiates a "monitor" object, called L_Monitor, on the node 𝑛 which
observes the solution set of the node 𝑛′ (𝐴.𝑠): each time a new solution 𝐵 is added to such solution set, the
monitor creates a node 𝑛′′ in the proof graph representing 𝐵.𝑡 , adds 𝑛′′ to the queue, and creates an edge from
𝑛′′ (𝐵.𝑡 ) to 𝑛 (𝐴.𝑠.𝑡 ). This edge is known as derived edge because there is no credential in P directly representing
it, i.e., in the form 𝐴.𝑠.𝑡 ← 𝐵.𝑡 , but it is derived by the combination of semantically equivalent credentials that
proved 𝐵 to be a solution of 𝐴.𝑠: these credentials are known to be the support set of the derived edge;

(3) when a node 𝑛 representing an intersection inclusion 𝐵.𝑠 ∩𝐶.𝑡 is processed, the algorithm creates a node for
each role of the intersection, i.e., it creates a node 𝑛′ for 𝐵.𝑠 and a node 𝑛′′ for𝐶.𝑡 , and it adds them to the proof
graph and to the queue. Similarly to the linked inclusion node, to understand if a principal 𝑝𝑖 is member of
both roles, the algorithm instantiates a "monitor" object, called I_Monitor, on the node 𝑛 of the proof graph
which observes the solution set of both the nodes 𝑛′ (𝐵.𝑠) and 𝑛′′ (𝐶.𝑡 ). Each time a principal 𝑝𝑖 is added to the
solution set of 𝑛′ (or 𝑛′′), the monitor checks if 𝑝𝑖 is also present in the solution set of 𝑛′′ (or 𝑛′): if the answer
is positive, we say that the monitor is activated by 𝑝𝑖;

(4) when a node 𝑛 representing a principal 𝑝𝑖 is processed, the algorithm begins the propagation of 𝑝𝑖 through the
proof graph. The propagation of a solution 𝑝𝑖 through the proof graph is performed by recursively performing
the propagation step on the node 𝑛 as follows. The algorithm examines all the nodes 𝑛 𝑗 reachable from 𝑛

following its outgoing edges, including the derived ones. For each of these nodes 𝑛 𝑗 , the propagation step is
recursively performed on 𝑛 𝑗 if and only if 𝑝𝑖 is not already present in the solution set of 𝑛 𝑗 , and 𝑝𝑖 is added to
the solution set of 𝑛 𝑗 . Moreover, if 𝑛 is monitored by a I_Monitor attached to an intersection node 𝑛𝑘 and 𝑝𝑖
activates such monitor (step 3), the algorithm adds 𝑝𝑖 to the solution set of 𝑛𝑘 and recursively executes the
propagation step on such node as well. Recall that the propagation of solutions also happens when a new edge,
also a derived one, 𝑒 is created among existing nodes of the proof graph, say from 𝑛 to 𝑛′, to propagate the
solutions already stored in 𝑛 to the nodes of the proof graph that are now reachable through 𝑒 (as anticipated in
step 1).

By construction, the graph ensures that if the principal 𝑝𝑖 has role 𝐴.𝑟 , then there exists a path from the node
representing 𝑝𝑖 to the node representing 𝐴.𝑟 (completeness). Furthermore, if a path from node 𝐴.𝑟 to the node of the
principal 𝑝𝑖 exists, then the principal 𝑝𝑖 has role 𝐴.𝑟 (soundness) [35]. Once the queue is empty, meaning the algorithm
terminated, the set of solutions stored in the node representing the input role A.r is returned as the answer to the initial
query. Therefore, the backward search chain discovery algorithm infers the set of principals having the role 𝐴.𝑟 by
properly combining the existing credentials. Instead, the forward search chain discovery algorithm, see [14] as well,
infers from the credentials in P the set of roles held by a given principal 𝑝𝑖 .
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𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 ← 𝐸𝑂𝑟𝑔.𝑚𝑒𝑚𝑏𝑒𝑟 ∩ 𝐸𝑂𝑟𝑔.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 (1)
𝐸𝑂𝑟𝑔.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ← 𝐸𝑂𝑟𝑔.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 (2)

(3.1) 𝐸𝑂𝑟𝑔.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ← 𝑆𝑡𝑎𝑡𝑒𝐴.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (3.2) 𝐸𝑂𝑟𝑔.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ← 𝑆𝑡𝑎𝑡𝑒𝐵.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 (3.3) [...] (3)
(4.1) 𝑆𝑡𝑎𝑡𝑒𝐴.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ← 𝑈𝑛𝑖𝐴1 (4.2) 𝑆𝑡𝑎𝑡𝑒𝐴.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ← 𝑈𝑛𝑖𝐴2 (4.3) [...] (4)
(5.1) 𝑆𝑡𝑎𝑡𝑒𝐵.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ← 𝑈𝑛𝑖𝐵1 (5.2) 𝑆𝑡𝑎𝑡𝑒𝐵.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ← 𝑈𝑛𝑖𝐵2 (5.3) [...] (5)
(6.1)𝑈𝑛𝑖𝐴1.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ← 𝐴𝑙𝑖𝑐𝑒 (6.2)𝑈𝑛𝑖𝐴1.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ← 𝐵𝑜𝑏 (6.3) [...] (6)
(7.1)𝑈𝑛𝑖𝐵1.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ← 𝐶ℎ𝑎𝑟𝑙𝑖𝑒 (7.2)𝑈𝑛𝑖𝐵1.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ← 𝐷𝑎𝑣𝑒 (7.3) [...] (5)

𝐸𝑂𝑟𝑔.𝑚𝑒𝑚𝑏𝑒𝑟 ← 𝐴𝑙𝑖𝑐𝑒 (8)

2.2.4 Sample policy. This section shows the application of the backward search algorithm to a sample policy, derived
from [14] and named P𝐸𝑝𝑎𝑝𝑒𝑟𝑠 that will be used as reference example through the paper. For instance, the policy could
be used to grant the right to the members of the role EPapers.studentMember to access some educational material with a
discount. In the following representation of the policy P𝐸𝑝𝑎𝑝𝑒𝑟𝑠 , similar credentials have been placed on the same line.

Figure 4 shows the proof graph built as a result of the execution of the backward search chain discovery algorithm
with P𝐸𝑝𝑎𝑝𝑒𝑟𝑠 as input policy and 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 as input role, which is the entry point of the graph.

Each box represents a role-expression or an assigned-role, the plain arrows connect pairs of nodes in order to
represent the credentials in P. The dashed arrows represents the derived edges built by L_Monitor: for example, the
derived edge (a) is created as a result of edges (3.1) and (4.1), which are the support set of (a). The monitors L_Monitor
and I_Monitor are represented as blue boxes right below the role-expression they support, and the dotted blue lines
connect the monitors to the nodes the monitors observe. Finally, Figure 4 highlights in red the minimal subset of the
nodes and edges of the graph to find that Alice is a member of 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 .

3 A LAYER-2 DECENTRALIZED ROLE-BASED TRUST MANAGEMENT

This section describes the design of L2DART, a Role-Based Trust Management System implementing the RT0 framework
as a blockchain layer-2 system that is used to regulate the execution of smart contracts’ functions. L2DART is an
enhancement of a previous system, DART [25], which implements the RT0 framework entirely on the blockchain, but
it overcomes the Ethereum gas limit already when the number of trust credentials in a policy is relatively low, thus
being not usable in real scenarios. The main idea underlying the L2DART approach is to outsource the execution of the
search algorithm, which is computationally intensive, to a service running outside the blockchain, still maintaining the
advantages of the blockchain by introducing a result verification step executed on the blockchain.

In our reference application, L2DART is used to protect smart contracts, i.e., to regulate the rights of blockchain
users to execute the functions exposed by such contracts. To this aim, the smart contract developers decide which role
must be held by users to execute each function exposed by their smart contracts, while the protected smart contract,
before executing their functions, must invoke the L2DART smart contract to check that the caller actually holds the
required role. Furthermore, a constraint on the minimum weight paired to the required role can be imposed as well.
The integration of the invocation to L2DART in the protected smart contracts is very simple, and could be executed
even by an automatic inlining tool. As a matter of fact, it is sufficient to add a call to the L2DART smart contract among
the first instructions of the code of each function. For example, in Solidity this could be implemented with a modifier.

In the following of this section, Section 3.1 summarizes DART, the groundwork of the proposed approach, while
Section 3.2 describes L2DART, an improvement of DART exploiting the layer-2 blockchain technology to solve the
DART issues while maintaining the properties of blockchains.
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EPapers.studentMember

EOrg.member EOrg.student

... ... EOrg.university

StateA.university

UniA2 ...

UniA1.student UniB1.student

Bob Charlie Dave ......

StateB.university

UniB1 UniB2 ...

...

... ... ...

EPapers, EOrg

States

Alice

UniA1

(1)

(2)

(8)
(4.1)

(6.1)

(3.1)

(a)

Universities

I_Monitor

EOrg.member  EOrg.student

L_Monitor

EOrg.university.student

(3.2)

(4.2) (5.1) (5.2)

(6.2) (7.1) (7.2)

(b)

Fig. 4. Illustration of the proof graph generated by the execution of the backward search chain discovery algorithm to find the
users having the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 according to the policy P𝐸𝑝𝑎𝑝𝑒𝑟𝑠 . Highlighted in red the subset of nodes and edges
related to the solution Alice.

3.1 DART

DART has been presented in [25], and it is a Role-Based Trust Management System implementing the RT0 framework
(see Section 2.2) on a public blockchain. The DART smart contract allows its users to create new trust credentials
and to execute the backward search discovery algorithm (described in Section 2.2.3) to find the users holding a given
role A.r according to the policy. DART supports weights attached to the trust credentials similarly to the solutions
listed in Section 2.2.2. Since DART is implemented on a public blockchain, it inherits the blockchain advantages:
the trust credentials building the policy are public and robust against modification and censorship, and any user
can independently process a policy by executing the DART chain discovery algorithm on the blockchain. The code
implementing DART is publicly available [26].

However, the properties listed above come with a cost. Executing transactions on public blockchains require a fee to
be paid in cryptocurrency, which might be large when the computation is complex. Indeed, the experimental evaluation
we conducted on the Ethereum implementation of DART (described in [25]) showed us that, while storing credentials
has reasonable costs, executing the backward search algorithm on the blockchain has an high cost. Such cost overcomes
the block gas limit when the complexity of the policy increases, making DART not usable in many real scenarios.

3.2 The design of a Layer-2 DART

In order to overcome the previously described limitations, we enhanced DART by redesigning it as a layer-2 system,
L2DART, in order to satisfy the following properties:
Manuscript submitted to ACM
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P1 Data auditability: the trust credentials are permanently stored on the blockchain and benefit of blockchain
auditability, i.e., anyone can independently read these credentials at any time;

P2 Computational auditability: the verification of a role must benefit of blockchain auditability, i.e., anyone can
reliably verify that a user really held a given role at a given time according to the trust credentials present at
that time;

P3 Affordable fees: the system should be usable for real applications, i.e., the fees to pay to store trust credentials
and to process them must be affordable.

In the following, we take as example the policy P𝐸𝑝𝑎𝑝𝑒𝑟𝑠 , presented in Section 2.2.4, and we assume Alice wants to
prove to EPapers that she is a member of 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 .

DART satisfies the property P1 because the DART smart contract stores all the trust credentials composing
P𝐸𝑝𝑎𝑝𝑒𝑟𝑠 . Theoretically, DART also satisfies the property P2 because it allows anyone to prove that Alice holds
the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 since the backward search algorithm is implemented by the DART smart contract as
well. However, this computation requires high fees overcoming the Ethereum block gas limit even with simple policies
(see the experiments in Section 5.1, Test Scenario A), thus not satisfying the property P3, nor P2 in practice. Moreover,
the backward search algorithm finds all the users holding the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 , information that Alice
does not need to compute, and therefore to pay for being computed on the blockchain. Alternatively, the forward search
algorithm, which computes all the roles of a principal [14], could be used, but it has the same issues of the backward
search algorithm, since i) it computes more solutions than the required one, and ii) it needs high fees to search for all
the solutions on-chain. In both cases, the extra solutions returned by the algorithms could not be cached to avoid future
invocation of the algorithms. As a matter of fact, policies are dynamic because existing credentials could be removed,
while new credentials could be added. Consequently a solution computed at time 𝑇1 may not be valid any more at time
𝑇2, where 𝑇2 > 𝑇1, because the set of valid credentials in the policy could be changed. In this respect, the choice of the
most suitable algorithm depends on the specific problem to be addressed. For instance, in a policy describing a web of
trust scenario (see the experiments in Section 5.1, Scenario B), a principal Eve trusts another principal if the latter holds
the role 𝐸𝑣𝑒.𝑡𝑟𝑢𝑠𝑡 . In this scenario, Eve might want to know all the principals she trusts, i.e., all the principals having the
role 𝐸𝑣𝑒.𝑡𝑟𝑢𝑠𝑡 in the policy. In this case, the backward search algorithm provides the answer to this query. Alternatively,
in the same scenario, a principal, say Alice, who wants to know all the other principals 𝑝𝑖 who trust her, needs to
discover all the roles 𝑝𝑖.𝑡𝑟𝑢𝑠𝑡 she holds according to the policy. In this case, the forward search algorithm provides Alice
with the answer to this query. Instead, in the access control scenario a principal must have a given role to be authorized
to invoke a given function of a given smart contract. In this case, both the backward search algorithm and the forward
search algorithm are suitable because the solutions they compute include the required one. In this paper we focus the
attention on the backward search algorithm, but the approach can be extended to the forward search algorithm as well.
Indeed, to meet the properties P2 and P3, L2DART executes the backward search algorithm off-chain following the
off-chain computation model. As a matter of fact, L2DART implements the verifiable computation protocol and uses
the blockchain to verify, among the solutions computed off-chain, only the ones needed to guarantee property P2. This
significantly reduces the cost of the code executed on the blockchain and also prevents L2DART users to be charged by
the blockchain for the computation of the solutions they do not need, thus satisfying also property P3.

We designed the L2DART architecture and operations as follows:
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L2DART
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Fig. 5. A representation of the L2DART architecture.

(1) L2DART is composed by two modules: an on-chain module, i.e., the L2DART smart contract deployed on a
public blockchain, and an off-chain module, i.e., the L2DART application deployed on one or more computers
external the blockchain;

(2) The on-chain module allows users to upload their RT0 trust credentials enhanced with a trust weight value on
the blockchain. This is unchanged from DART;

(3) The off-chain module exposes a function implementing the backward search algorithm, called OFFchainBack-

wardSearch. Given in input a policy and a role, the OFFchainBackwardSearch function returns a, possibly empty,
list of triples (principal, weight, proof) indicating that principal is member of the input role, within the input
policy, with a certain weight according to a proof which demonstrates it;

(4) When a user wants to prove they hold a role to obtain the right to execute a L2DART protected smart contract
𝑆𝐶 , they need to provide to 𝑆𝐶 the proof produced by the off-chain module. In turn, 𝑆𝐶 calls the verify function
exposed by the on-chain module to check the validity of such proof: the module processes the proof and returns,
as a result, the role the proof demonstrates, or an error if the proof is not well formatted. Depending on the
result of the proof, 𝑆𝐶 will grant or deny the execution right to the user.

Figure 5 shows an overview of the L2DART architecture, consisting of the two modules. As depicted, the on-chain
module provides the functionalities to store the principals, the roles, and the trust credentials of a policy on the
blockchain, and exposes the verify function and the functions to store roles and credentials. The off-chain module
allows its users to execute the chain discovery algorithm on their computers, using the trust credentials read from the
on-chain module. We assume the off-chain module to be untrusted, i.e., it may craft malicious results, and to not have
any computational limitations (i.e., they can execute the search algorithms even for very complex policies). Instead,
since the on-chain module is executed by the blockchain nodes, it is trusted, but it has a limited computational capacity
and a fee must be paid for its execution. These assumptions will be discussed in Section 6.
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Fig. 6. The typical sequence of operations when using L2DART.

Figure 6 shows the sequence of the L2DART operations applied to the policy P𝐸𝑝𝑎𝑝𝑒𝑟𝑠 . Plain arrows represent
function calls, while dashed arrows represent the related answers. The principals 𝐸𝑃𝑎𝑝𝑒𝑟𝑠 , 𝐸𝑂𝑟𝑔, 𝑆𝑡𝑎𝑡𝑒𝐴, and 𝑈𝑛𝑖𝐴1
cooperatively build the policy by invoking the L2DART on-chain module to create the roles and the credentials listed in
Section 2.2.4 (step 1). We assume that 𝐸𝑃𝑎𝑝𝑒𝑟𝑠 deployed a smart contract called EPapers ERC20 SC that assigns ERC20
tokens [11] to the users invoking it having the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 , for example as a coupon to spend on
educational material. Alice wants to execute the EPapers ERC20 SC smart contract in order to obtain such tokens,
therefore she needs to prove she has the required role. Using L2DART, Alice queries the off-chain module, executed on
her personal computer, to execute the OFFchainBackwardSearch function to produce the proof to be shown to EPapers

ERC20 SC smart contract (step 2.1). The off-chain module reads the credentials from the on-chain module (steps 2.2
and 2.3), and it executes the algorithm to return to Alice the solution about her that includes her principal name 𝐴𝑙𝑖𝑐𝑒 ,
the trust value𝑤 , and the proof 𝑝𝑟𝑜𝑜 𝑓 𝐴𝑙𝑖𝑐𝑒 (step 2.4). Afterwards, Alice provides the proof and the trust value to the
EPapers ERC20 SC smart contract (step 3.1) that, in turn, invokes the L2DART on-chain module to execute the proof
verification (step 3.2). If the verification does not raise an error, the on-chain module returns a tuple consisting of
a principal 𝑝𝑖 , a 𝑟𝑜𝑙𝑒 , and trust value 𝑤𝑒𝑖𝑔ℎ𝑡 (step 3.3). Finally, the smart contract EPapers ERC20 SC checks that 𝑝𝑖
is equal to 𝐴𝑙𝑖𝑐𝑒 and that 𝑟𝑜𝑙𝑒 is equal to 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟1: if such checks are passed, the smart contract is
executed, thus assigning to Alice the tokens, otherwise the execution is denied and no token is assigned (step 3.4).

As ensured by P2, computational auditability, Alice generates a valid proof (by using the OFFchainBackwardSearch
algorithm), which will be verified on the blockchain without the need to trust EPapers.

4 SYSTEM ARCHITECTURE AND APPROACH

This section describes in details the three phases of the L2DART system workflow, as shown in Figure 6. Section 4.1
describes the first phase of the workflow, the creation a L2DART policy. Section 4.2 describes the second phase, the
1In this policy all weights are equal to 1, therefore we can assume this is not a parameter to check.
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execution of OFFchainBackwardSearch on the off-chain module to generate a result and a proof. Section 4.3 describes the
third phase, the verification of a proof on the blockchain to confirm that a principal is actually member of a given role.

4.1 Phase 1: Build a policy

The on-chain module stores the trust credentials composing the policy. In particular, each principal 𝐴 is enabled to
create only their roles (e.g., 𝐴.𝑟 , 𝐴.𝑠 , etc.), and contributes to build the policy by uploading the RT0 credentials, which
represent their trust relations. For example, several principals participated to build the policy P𝐸𝑃𝑎𝑝𝑒𝑟𝑠 : the principal
𝑈𝑛𝑖𝐴1 creates the role 𝑈𝑛𝑖𝐴1.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 and the credential 𝑈𝑛𝑖𝐴1.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 ← 𝐴𝑙𝑖𝑐𝑒; the principal 𝐸𝑃𝑎𝑝𝑒𝑟𝑠 creates the
role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 and the credential 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 ← 𝐸𝑂𝑟𝑔.𝑚𝑒𝑚𝑏𝑒𝑟 ∩ 𝐸𝑂𝑟𝑔.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 , where
𝐸𝑂𝑟𝑔.𝑚𝑒𝑚𝑏𝑒𝑟 and 𝐸𝑂𝑟𝑔.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 are two roles previously created by the principal 𝐸𝑂𝑟𝑔 in the same policy. Storage
details are described in [25].

4.2 Phase 2: Compute role members and generate the proofs

The off-chain module exposes the OFFchainBackwardSearch function, which takes as input a role name, e.g., 𝐴.𝑟 , and a
policy (represented by its address on the blockchain), it reads the trust credentials representing the policy from the
blockchain querying the on-chain module, and it returns a list of solutions each represented by a triple (𝑝𝑖,𝑤𝑝𝑖 , 𝜏𝑝𝑖 )
meaning that the principal 𝑝𝑖 is a member of the input role 𝐴.𝑟 with weight𝑤𝑝𝑖 and 𝜏𝑝𝑖 is the proof demonstrating it.

In particular, the proof 𝜏𝑝𝑖 is the list of trust credentials that are paired with the arcs of the proof graph that have
been taken into account by the OFFchainBackwardSearch algorithm to determine that the principal 𝑝𝑖 holds the input
role 𝐴.𝑟 . In case there are two, or more, paths in the proof graph proving the same solution (i.e., assigning to a principal
the same role), the algorithm keeps the path that gives to the principal the highest weight.

In the following of this section, we describe how 𝜏𝑝𝑖 is constructed from the policy P while executing the OFFchain-
BackwardSearch(A.r, P) function. For simplicity, in the following we use the symbol P to represent both a policy and
the address of the smart contract that stores it on the blockchain.

We refer to the steps used in the description of the backward search algorithm in Section 2.2.3. When a new principal
𝑝𝑖 is added to the proof graph (step 4 of the algorithm), the solution is represented by a tuple (𝑝𝑖, _, {}) (having an
empty proof) paired to node 𝑛. Each time the solution is propagated through an edge, the solution is updated as follows:

• The first edge that is followed by the algorithm to propagate the solution is always an edge created by a
simple member credential of the form 𝐴.𝑠 ←𝑤 𝑝𝑖: in this case, the initially empty solution is updated to
(𝑝𝑖,𝑤, {𝐴.𝑠 ←𝑤 𝑝𝑖});

• Each time the algorithm propagates the solution by following an edge generated by a credential 𝐴.𝑠 ←𝑤

𝑟𝑜𝑙𝑒𝐸𝑥𝑝𝑟 , the solution (𝑝𝑖,𝑤𝑝𝑖 , 𝜏𝑝𝑖 ) is updated to (𝑝𝑖,𝑤𝑝𝑖 ∗𝑤, 𝜏𝑝𝑖 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝐴.𝑠 ←𝑤 𝑟𝑜𝑙𝑒𝐸𝑥𝑝𝑟 )), where roleExpr
can either be a role 𝐵.𝑡 , a linked role 𝐴.𝑠.𝑡 , or an intersection role 𝐵.𝑠 ∩𝐶.𝑡 ;

• When a I_monitor is activated on an intersection node 𝐵.𝑠 ∩𝐶.𝑡 , the node receives two solutions: (𝑝𝑖,𝑤𝐵.𝑠
𝑝𝑖

, 𝜏𝐵.𝑠
𝑝𝑖
)

from the node 𝐵.𝑠 , and (𝑝𝑖,𝑤𝐶.𝑡
𝑝𝑖

, 𝜏𝐶.𝑡
𝑝𝑖
) from the node 𝐶.𝑡 . The resulting solution is (𝑝𝑖,𝑚𝑖𝑛(𝑤𝐵.𝑠

𝑝𝑖
,𝑤𝐶.𝑡

𝑝𝑖
), 𝜏∩)

where:

𝜏∩ =


𝜏𝐵.𝑠
𝑝𝑖

.𝑐𝑜𝑛𝑐𝑎𝑡 (𝜏𝐶.𝑡
𝑝𝑖
) if 𝑙𝑒𝑛(𝜏𝐵.𝑠

𝑝𝑖
) > 𝑙𝑒𝑛(𝜏𝐶.𝑡

𝑝𝑖
)

𝜏𝐶.𝑡
𝑝𝑖

.𝑐𝑜𝑛𝑐𝑎𝑡 (𝜏𝐵.𝑠
𝑝𝑖
) otherwise

i.e., the resulting solution takes the minimum weight received, and its resulting proof is composed by the longest
proof between 𝜏𝐵.𝑠

𝑝𝑖
and 𝜏𝐶.𝑡

𝑝𝑖
attached before the shortest one;
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EPapers.studentMember

EOrg.member EOrg.student

EOrg.university

StateA.university

UniA1.student

EPapers, EOrg

States

Alice

UniA1

(1)

(2)

(8)
(4.1)

(6.1)

(3.1)

(a)

Universities

I_Monitor

EOrg.member   EOrg.student

L_Monitor

EOrg.university.student

(1) Alice = [(6.1)]

(2) Alice =
[(6.1), (4.1), (3.1)]

σ = [(4.1), (3.1)]

(3) Alice =
[(6.1), (4.1), (3.1), (2)]

(4) Alice = [(8)]

(6) Alice = [(6.1), (4.1), (3.1), (2), (8), (1)]

(5) Alice = [(6.1), (4.1), (3.1), (2), (8)]

Fig. 7. Illustration of the construction of the proof concerning Alice. Red numbers on the edges represent the credentials of P𝐸𝑃𝑎𝑝𝑒𝑟𝑠
(Figure 4), while black numbers represent the evolution of the proof.

• Each time the algorithm propagates the solution by following a derived edge created by a L_monitor (see
step 2 of the algorithm), the solution must include the support set 𝜎 = (𝑤𝜎 , 𝜏𝜎 ) of such derived edge. The
weight 𝑤𝜎 is the resulting weight updates of the credentials 𝜏𝜎 . Hence, the solution (𝑝𝑖,𝑤𝑝𝑖 , 𝜏𝑝𝑖 ) is updated
to (𝑝𝑖,𝑤𝑝𝑖 ∗𝑤𝜎 , 𝜏𝑝𝑖 .𝑐𝑜𝑛𝑐𝑎𝑡 (𝜏𝜎 )). To avoid to rebuild the support set every time a derived edge is followed to
propagate a solution, the algorithm stores in a data structure the support set of each edge when such edge is
created.

For instance, executingOFFchainBackwardSearch(EPapers.studentMember,P𝐸𝑃𝑎𝑝𝑒𝑟𝑠 ) returns 𝑆 = {(𝐴𝑙𝑖𝑐𝑒, 1, 𝜏𝐴𝑙𝑖𝑐𝑒 ), ...}.
We describe the construction of the proof 𝜏𝐴𝑙𝑖𝑐𝑒 beginning with the credential (6.1), which triggers a propagation of the
solution representing Alice (the credential (8) also triggers the propagation and will be processed later in our example).
In this specific case, the solution follows the derived edge (a) included to the proof graph as a result of the resolution of
the linked inclusion, whose support set is composed by credentials (4.1) and (3.1) that are appended to the solution’s
proof. Afterwards, the solution follows the edge generated by the linked inclusion, credential (2), and the algorithm
includes such edge to the proof. If credential (8) was already processed, the solution would activate the I_Monitor,
otherwise the monitor will be activated when credential (8) will be processed. In either cases, when the I_Monitor is
activated, the resulting proof will be the concatenation of the proof stored on the node 𝐸𝑂𝑟𝑔.𝑠𝑡𝑢𝑑𝑒𝑛𝑡 with the proof
stored on the node 𝐸𝑂𝑟𝑔.𝑚𝑒𝑚𝑏𝑒𝑟 . Finally, the credential (1) is appended to the proof when the solution follows the
latest edge, and the propagation terminates on the node 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 since the node has no outgoing edges.
As a result, 𝜏𝐴𝑙𝑖𝑐𝑒 contains the edges computed from the credentials (6.1), (4.1), (3.1), (2), (8), (1), in this order. All weight
computations are omitted because all of them are equal to 1 because the policy is an authorization policy (yes/no
answer). Figure 7, derived from Figure 4, shows the construction of the proof 𝜏𝐴𝑙𝑖𝑐𝑒 in the proof graph.
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4.3 Phase 3: verify a proof

Let (𝑝𝑖,𝑤𝑝𝑖 , 𝜏𝑝𝑖 ) be a solution returned by the 𝑂𝐹𝐹𝑐ℎ𝑎𝑖𝑛𝐵𝑎𝑐𝑘𝑤𝑎𝑟𝑑𝑆𝑒𝑎𝑟𝑐ℎ(𝐴.𝑟,P) function computed by the off-chain
module as previously described. We recall that the verify function is exposed by the on-chain module, which also stores
the policy P used by the off-chain module to compute 𝜏𝑝𝑖 . The execution of the verify function on 𝜏𝑝𝑖 , verify(𝜏𝑝𝑖 ),
returns a tuple (𝑝, 𝑟,𝑤) indicating that, according to 𝜏𝑝𝑖 , the principal 𝑝 is member of the role 𝑟 with weight equal to𝑤 .

If the input proof contains invalid credentials or credentials not belonging to the policy, i.e., it has been constructed
in a wrong or malicious way, the verify function returns an empty solution. Otherwise, the result of the verify function
is then used to perform role-based access control to regulate smart contracts’ function execution as explained in Section
3, i.e., to check that 𝑝 is actually the user who invoked the function execution, that 𝑟 is the role required for executing
such function, and that𝑤 is equal or greater than the minimum weight required. In the scenario of Figure 6, this check
is executed by EPapers ERC20 SC doing: 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 == 𝑟 ∧𝐴𝑙𝑖𝑐𝑒 == 𝑝 ∧𝑤𝐴𝑙𝑖𝑐𝑒 == 1.

Let 𝜏𝑝𝑖 be composed by the list of credentials [𝑐1, 𝑐2, . . . , 𝑐𝑛]. The verify function iterates over 𝜏𝑝𝑖 , it checks each
credential 𝑐𝑖 actually belongs to the policy, and then it applies the function 𝜋 () (shown below) to 𝑐𝑖 . 𝜋 (𝑐𝑖) applies a rule
depending on the type of 𝑐𝑖 , and it keeps an elaboration stack 𝜌 , initially empty, to store intermediate results. Each
element of the stack reflects an element stored in the proof graph that has been visited during the execution of the
OFFchainBackwardSearch function, therefore it is represented as the triple (role, principal, weight). The only rule that
increments the size of the stack is the one processing the simple member credential, which pushes onto the stack the
new principals, while all the other rules pop at least an element from the stack and reduce, or keep unchanged, the size
of the stack. Indeed, the first credential in a proof is always a simple member credential, otherwise 𝜋 () would fail.

The following system shows how each rule of 𝜋 (𝑐𝑖) works, showing on the right hand side the conditions, i.e., the
type of the current credential and the value of the topmost element(s) extracted with the stack pop operation, and on
the left hand side the effect, i.e., how the stack is changed. We use the term 𝜌.𝑝𝑜𝑝 ().𝑝𝑜𝑝 () as a shorthand to extract the
two topmost elements of the stack, i.e., (a, b) = 𝜌.𝑝𝑜𝑝 ().𝑝𝑜𝑝 () where a = 𝜌.𝑝𝑜𝑝 () (1st), and b = 𝜌.𝑝𝑜𝑝 () (2nd).

𝜋 (𝑐𝑖)



𝜌.𝑝𝑢𝑠ℎ((𝐴.𝑟, 𝑝𝑖,𝑤)) if 𝑐𝑖 == (𝐴.𝑟 ←𝑤 𝑝𝑖)

𝜌.𝑝𝑢𝑠ℎ((𝐴.𝑟, 𝑝𝑖,𝑤 ∗𝑤1)) if 𝑐𝑖 == (𝐴.𝑟 ←𝑤 𝐵.𝑠) ∧ 𝜌.𝑝𝑜𝑝 () == (𝐵.𝑠, 𝑝𝑖,𝑤1)

𝜌.𝑝𝑢𝑠ℎ((𝐴.𝑟, 𝑝𝑖,𝑤 ∗𝑤1 ∗𝑤2)) if 𝑐𝑖 == (𝐴.𝑟 ←𝑤 𝐵.𝑠.𝑡)∧

𝜌.𝑝𝑜𝑝 ().𝑝𝑜𝑝 () == ((𝐵.𝑠,𝐶,𝑤2), (𝐶.𝑡, 𝑝𝑖,𝑤1))

𝜌.𝑝𝑢𝑠ℎ((𝐴.𝑟, 𝑝𝑖,𝑤 ∗𝑚𝑖𝑛(𝑤1,𝑤2))) if 𝑐𝑖 == (𝐴.𝑟 ←𝑤 𝐵.𝑠 ∩𝐶.𝑡)∧

𝜌.𝑝𝑜𝑝 ().𝑝𝑜𝑝 () ==

(((𝐵.𝑠, 𝑝𝑖,𝑤2), (𝐶.𝑡, 𝑝𝑖,𝑤1)) ∨ ((𝐶.𝑡, 𝑝𝑖,𝑤1), (𝐵.𝑠, 𝑝𝑖,𝑤2)))

⊥ otherwise

The result returned by verify will be the topmost element of the stack. If 𝜋 (𝑐𝑖) returns ⊥ the function verify immediately
returns an empty element.

EPapers example: The execution steps of verify(𝜏𝐴𝑙𝑖𝑐𝑒 ) and the related stack states are illustrated in Figure 8. The proof
verification requires 6 execution steps, and each of them is represented in Figure 8 by showing on the top the credential
𝑐𝑖 of the proof that is processed in that step, the stack state after applying 𝜋 (𝑐𝑖) (each box represents an element of the
stack), and on the bottom the step number with the rule applied by 𝜋 (𝑐𝑖). In Step 6 where all the credentials in the
Manuscript submitted to ACM
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(UniA1.student, Alice) (UniA1.student, Alice)

(StateA.university,
UniA1)

(UniA1.student, Alice)

(EOrg.university,
UniA1)

(EOrg.Student, Alice) (EOrg.Student, Alice)

(EOrg.member, Alice)

(EPapers.studentMember,
Alice)

EOrg.member        Alice

UniA1.student        Alice StateA.university        UniA1
EOrg.university

StateA.university

EOrg.student

EOrg.university.student

EPapers.studentMember

EOrg.member ∩
EOrg.student

Step 1) SM Step 3) SIStep 2) SM

Step 4) LI Step 6) IIStep 5) SM

Fig. 8. Stack states during the execution of verify(𝜏𝐴𝑙𝑖𝑐𝑒 ). For each step the figure shows on the top the evaluated credential 𝑐𝑖 , the
resulting stack state, and on the bottom the step number with rule applied by 𝜋 () . The weights of credentials have been omitted
since they are all equal to 1.

proof have been processed, the stack includes a single element, (Alice, EPapers.studentMember, 1), which is the result
of the verify function. In this example, credential weights, whose value is 1 for all credentials, are omitted.

5 A PROTOTYPE OF A LAYER-2 DART

This section is aimed at evaluating the cost of executing the L2DART on-chain module in several distinct scenarios, to
compare such costs with the ones of DART presented in [25]. The implementation is available at GitHub [27].

5.1 Prototype implementation

The on-chain module is implemented as a Solidity smart contract [19] that is executed on the Ethereum blockchain,
while the off-chain module is implemented as a Python application which communicates with the on-chain module
through the Web3py library [20]. Since this section is aimed at comparing the cost of executing DART and L2DART on
the blockchain, in the following we focus on the L2DART Solidity implementation details that impact the most the gas
cost. In Solidity, dynamic data structures must be stored in the persistent memory of a smart contract, called storage.
Instead, static data structures can be memorized in the volatile memory, called memory. The cost of writing a data
structure in storage is significantly higher than the cost of writing the same data structure in memory [52]. In DART, the
backward search algorithm is executed on the blockchain. Since this algorithm requires to build the proof graph, whose
size is unknown in advance, the implementation relies on mapping constructs that utilize the smart contract storage. In
L2DART, instead, the backward search algorithm is executed by the off-chain module that, besides the solution, also
returns an integer representing the amount of frames required to store all the triples during the execution of verify
function onto the stack. This integer is passed to the verify function, along with the proof to be verified, and it allows
the function to instantiate an array of fixed size that in Solidity can be stored in memory, thus reducing the amount of
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DART L2DART

Role 43 659 43 786
Simple Member 72 194 87 556
Simple Inclusion 93 443 108 907
Linked Inclusion 136 672 131 441

Intersection Inclusion 138 357 154 130
Table 1. Gas cost storage of roles and credentials.

gas required. Intuitively, the upper-bound of that integer is the number of simple member credentials inside the proof
𝜏𝑝𝑖 . Since the smart contract stores the role-expressions and the members inside Solidity mappings, credentials can be
retrieved in O(1). Storage details are described in [25].

5.2 Experiments and comparison

The deployment of the L2DART smart contract has been observed to cost 2 073 852 units of gas, against 1 351 216 units
of DART. This cost is proportional to the size of the bytecode that is uploaded on the blockchain. However, we recall
that this is a one-time cost, which is paid only when the smart contracts are deployed on the blockchain. Table 1 shows
the cost in gas to create a new role and to store trust credentials, which are comparable in the two implementations.

In the following of the section, we present three test scenarios comparing the cost of finding the solutions in DART
against the cost of verifying them in L2DART. To simplify the description, we use the term ONchainBackwardSearch to
identify the backward search algorithm executed on-chain by DART.

5.2.1 Test scenario A: Access control. Description of the scenario: We executed the OFFchainBackwardSearch to
compute the members of the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 of the policy P𝐸𝑃𝑎𝑝𝑒𝑟𝑠 applied in the access control scenario
described in Section 3.2, and we evaluated the cost to execute the verify function of the L2DART smart contract on the
corresponding proofs (operation 3.2 in Figure 6). We then compared such costs with the cost of finding the members of
the same role according to the same policy obtained by executing ONchainBackwardSearch presented in [25].

Description of the experiment and results: Figure 9(a) shows the gas consumed to execute ONchainBackward-
Search to find the members of the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 [25]. The experiments were conducted varying the
number of Universities and the number of principals (nStudentMembers) holding to the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟

similarly to Alice in Figure 4. The dashed horizontal red line indicates the block gas limit of Ethereum at the time we
conducted the experiments [25], i.e., 12M gas units.

Figure 9(b), instead, shows the sum of the costs to verify all the proofs related to the solutions found by the
OFFchainBackwardSearch. For instance, each point of the plot for nStudentMembers=3 shows the cost to verify 3 proofs.
Obviously, the solution sets returned by the two backward search implementations are the same. Comparing the
results in Figures 9(a) and 9(b) we notice that the cost to execute verify is much lower than the cost of executing the
ONchainBackwardSearch. Taking as example the test case with 20 universities and nStudentMembers equal to 20, we
observe that the execution of ONchainBackwardSearch costs about 12 931 738 units of gas, which exceeds the block gas
limit, while the execution of the verify function on the corresponding 20 proofs costs about 1 649 872 units of gas, i.e.,
almost 8 times less, as shown on the topmost plot of Figure 9(b).

Since in the access control scenario described in Section 3.2 the smart contract EPapers ERC20 SC needs to verify one
proof only (i.e., Alice’s one, see step 3.2 of Figure 6), Figure 9(c) shows the average gas consumed to execute the verify
Manuscript submitted to ACM
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(a) DART, cost in gas to execute ONchainBackwardSearch [25].
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(c) L2DART, average cost in gas of a single verify execution.

Fig. 9. Comparison of cost in gas of test scenario A, access control, varying number of student members and universities.

function on a single proof. For example, the average cost of executing the 𝑣𝑒𝑟𝑖 𝑓 𝑦 function on a single proof in the case
of 6 nStudentMembers and 6 Universities is 82 492 units of gas, with a variance of 2.67 units of gas. The cost is almost
constant because for each principal the set of credentials in the proof to demonstrate the role 𝐸𝑃𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟

does not depend on the number of universities or student members present in the policy.
Discussion of the results: The tests show the cost to verify the proofs of the solutions computed off-chain is

much lower than finding them directly on-chain, especially if the use case requires to verify a single solution. Note
that in our tests the cost to verify a proof is almost constant and equal for all the student members because the set of
credentials held by each student member is similar to credential set of Alice, as shown in Section 2.2.4. The goal of
the experiment is to show that the verification cost does not necessarily grow with the number of credentials in the
policy, because it depends on the length of the proof. This allows to adopt L2DART in real access control scenarios.
Finally, we delve into the underlying causes of the variations in gas consumed by the verify function on a proof related
to the OFFchainBackwardSearch (i.e., see Figures 9(c) and 11(c)). In particular, we investigate the source of these small
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variations by using Sol-Profiler2, a library providing line-by-line gas usage of solidity smart contracts. The profiler
results generated by the tool reveal that such variations in gas are due to the functions’ arguments allocated in the
Calldata area. In this memory area, the gas cost for allocating non-zero bytes is higher than the gas cost for allocating
zero bytes.

5.2.2 Test scenario B: Web of trust. Description of the scenario: This scenario takes into account a policy describing
a generic trust network [25], where each principal 𝑝𝑖 defines their trust relations with the others directly, using simple
member trust credentials (credential T1), and indirectly, using linked inclusion trust credentials (credential T2):

(𝑇 1) 𝑝𝑖.𝑡𝑟𝑢𝑠𝑡 ←𝑤1 𝑝 𝑗 (𝑇 2) 𝑝𝑖.𝑡𝑟𝑢𝑠𝑡 ←𝑤2 𝑝𝑖.𝑡𝑟𝑢𝑠𝑡 .𝑡𝑟𝑢𝑠𝑡

Pe

Pa

Pb Pc

Pd

100

100

100

100

80
64

52 100

80

backwardSearch(Pe.trust, Ptrust)

(a) Trust network generated by P𝑡𝑟𝑢𝑠𝑡 .
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(d) L2DART, cost in gas of a single verify execution.

Fig. 10. Comparison of cost in gas of test scenario B, web of trust.

2https://www.npmjs.com/package/@0x/sol-profiler
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Figure 10(a) shows a trust network involving 5 principals generated by the following policy P𝑡𝑟𝑢𝑠𝑡 :

(𝑇 2.1) 𝑃𝑏.𝑡𝑟𝑢𝑠𝑡 ←80 𝑃𝑏.𝑡𝑟𝑢𝑠𝑡 .𝑡𝑟𝑢𝑠𝑡 ; (𝑇 1.1) 𝑃𝑏.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑎; (𝑇 1.5) 𝑃𝑎.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑏

(𝑇 2.2) 𝑃𝑐.𝑡𝑟𝑢𝑠𝑡 ←80 𝑃𝑐.𝑡𝑟𝑢𝑠𝑡 .𝑡𝑟𝑢𝑠𝑡 ; (𝑇 1.2) 𝑃𝑐.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑏; (𝑇 1.6) 𝑃𝑏.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑐

(𝑇 2.3) 𝑃𝑑.𝑡𝑟𝑢𝑠𝑡 ←80 𝑃𝑑.𝑡𝑟𝑢𝑠𝑡 .𝑡𝑟𝑢𝑠𝑡 ; (𝑇 1.3) 𝑃𝑑.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑐 ; (𝑇 1.7) 𝑃𝑐.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑑

(𝑇 2.4) 𝑃𝑒.𝑡𝑟𝑢𝑠𝑡 ←80 𝑃𝑒.𝑡𝑟𝑢𝑠𝑡 .𝑡𝑟𝑢𝑠𝑡 ; (𝑇 1.4) 𝑃𝑒.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑑 ; (𝑇 1.8) 𝑃𝑑.𝑡𝑟𝑢𝑠𝑡 ←100 𝑃𝑒

Executing the backward search algorithm on P𝑡𝑟𝑢𝑠𝑡 to find the members of the role 𝑃𝑒.𝑡𝑟𝑢𝑠𝑡 , the solution set will
be composed by the following elements: {(𝑃𝑑, 100), (𝑃𝑒, 80), (𝑃𝑐, 80), (𝑃𝑏, 64), (𝑃𝑎, 52)} with 𝜏𝑃𝑎 being (T1.4), (T1.3),
(T1.2), (T1.1), (T2.4), (T2.4), (T2.4). Figure 10(a) shows the network with the dashed arrows representing the solutions,
while the plain arrows representing the credentials of type T1 (the related weights are shown next to the arrows).

Description of the experiment and results:We created a set of trust networks whose topologies are similar to
the one shown in Figure 10(a), and whose length of the longest chain of trust reachable from 𝑃𝑒 ranges from 1 to 19.

Figure 10(b) shows the cost in gas to execute ONchainBackwardSearch(Pe.trust, P𝑙𝑡𝑟𝑢𝑠𝑡 ) (corresponding to the "active
trust network" in [25]) varying the length 𝑙 of the longest chain of trust reachable from 𝑃𝑒 in the trust network produced
by the policy P𝑙𝑡𝑟𝑢𝑠𝑡 . Figure 10(b) shows that the gas consumed is very high, overcoming the current Ethereum block
gas limit (12M units, represented by the horizontal dashed red line) when 𝑙 = 7. Figure 10(c), instead, shows the sum of
the costs in gas to verify all the proofs related to the solutions produced by the execution of OFFchainBackwardChain.
Similarly to the scenario A, the cost in gas to verify all the proofs using the verify function of L2DART is much lower
than the cost to compute the solutions using the ONchainBackwardSearch function of DART. For instance, choosing
𝑙 = 19, the on-chain cost of computing the solutions is about 53 times more than the cost of verifying all the related
proofs. Finally, Figure 10(d) shows the gas consumed to verify a single proof: verifying a proof of length 1 requires
about 31 000 units of gas, and adding one credential to the proof increases the verification cost of about 19 000 units of
gas. Hence, supposing a block gas limit of 12M units, it is possible to verify proofs having lengths up to 60 credentials,
i.e., involving a principal distant 60 steps in the trust network.

Discussion of the results: The experiments conducted in the Web of Trust scenario show us that combining
on-chain storage and off-chain computation is feasible to process a trust network while preserving the computational
auditability of a blockchain, and the applicability of L2DART to scenarios not focused only on access control.

5.2.3 Test scenario C: Book Recommendation System. Description of the scenario: In this scenario (derived from
[50]), a student (Alice) trusts the recommendations from the reviewers of the RecSys recommendation system, which
specifies that only the participants having the role of buyer and expert are able to review an item, and the role of expert
is given to professors of several recognized universities. This is represented by the following policy P𝑅𝑒𝑐 :

𝐴𝑙𝑖𝑐𝑒.𝑟𝑒𝑐𝑜𝑚𝑚𝑒𝑛𝑑𝑎𝑡𝑖𝑜𝑛𝐹𝑟𝑜𝑚 ←1.0 𝑅𝑒𝑐𝑆𝑦𝑠.𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑟

𝑅𝑒𝑐𝑆𝑦𝑠.𝑟𝑒𝑣𝑖𝑒𝑤𝑒𝑟 ←1.0 𝑅𝑒𝑐𝑆𝑦𝑠.𝑒𝑥𝑝𝑒𝑟𝑡 ∩ 𝑅𝑒𝑐𝑆𝑦𝑠.𝑏𝑢𝑦𝑒𝑟

𝑅𝑒𝑐𝑆𝑦𝑠.𝑒𝑥𝑝𝑒𝑟𝑡 ←1.0 𝑅𝑒𝑐𝑆𝑦𝑠.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦.𝑝𝑟𝑜 𝑓 𝑒𝑠𝑠𝑜𝑟

𝑅𝑒𝑐𝑆𝑦𝑠.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 ←1.0 𝑆𝑡𝑎𝑡𝑒𝐴.𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦

To complete policy P𝑅𝑒𝑐 , we need to add the simple member credentials that assign the role of professor and buyer to
principals. We denote with P𝑛,𝑚

𝑅𝑒𝑐
a policy derived from policy P𝑅𝑒𝑐 which selects 𝑛 Eligible Members (i.e., principals) as

professor of𝑚 different universities and randomly assigns also the role of buyer to half of them.
Manuscript submitted to ACM
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(c) L2DART, average cost in gas of a single verify execution.

Fig. 11. Comparison of cost in gas of test scenario C, Recommendation System, varying number of eligible members and universities.

Description of the experiment and results:We set up the experiment to vary the number of Universities,𝑚, in
the range [1,..,20], and the number of principals involved in the policy, 𝑛𝐸𝑙𝑖𝑔𝑖𝑏𝑙𝑒𝑀𝑒𝑚𝑏𝑒𝑟𝑠 , in the set {3, 6, 10, 16, 20}.
Figure 11(a) shows that the amount of gas to execute the ONchainBackwardSearch function to compute the set of
reviewers trusted by Alice according to P𝑛,𝑚

𝑅𝑒𝑐
depends on both the number of universities and the number of eligible

members in the policy. The computation of the results does not exceed the block gas limit (of 12M units) and it achieves
the highest cost (7 767 083 units) when both the number of universities and the number of eligible reviewers are
equal to 20. Figure 11(b), instead, shows the total amount of gas necessary to execute the verify function on all the
proofs related to the solutions produced by OFFchainBackwardSearch, i.e., the set of recommended reviewers trusted
by Alice, while Figure 11(c) shows the average cost to verify only one of these proofs. Similarly to the scenario A, the
amount of gas consumed by L2DART to verify one solution is constant with respect to the number of universities and
nEligibleMembers. Indeed, the cost mainly depends on the length of the path connecting the solution to the specific role
in the proof graph. Summarizing, from Figures 11(a) and 11(b) we observe that the gas cost of computing the solutions
Manuscript submitted to ACM
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with ONchainBackwardSearch is about one order of magnitude greater than the total amount of gas required to execute
the verify functions on the same solutions.

Discussion of the results: As for the other two scenarios, the cost in terms of gas of executing the verify function is
much lower than the cost of executing the ONchainBackwardSearch function, therefore we derive the same conclusions.

6 DISCUSSION

This section discusses relevant aspects of the proposed approach and presents a security analysis of L2DART.

Evaluation. We evaluate whether L2DART is a proper Layer-2 architecture implementing the verifiable computation
protocol as derived from Eberhardt et al. [16] and described in Section 2.1, and we assess the design properties presented
in Section 3.2. L2DART implements the off-chain computation mode: it outsources the heavy execution task, the
computation of the members of a role, to a node external the blockchain while the data, i.e., the policy, is entirely
stored on-chain. The L2DART approach also complies with the verifiable computation protocol [16]: i) L2DART is
non-interactive, i.e., it requires only one message, the proof, from the Prover (Alice) to the Verifier (e.g. the ERC20 SC in
Figure 6); ii) the verification of a solution is much cheaper compared to compute it with the backward search algorithm;
iii) L2DART does not have any strong security assumptions on the Prover, since it is assumed to be untrusted, while the
Verifier is trusted being implemented on the blockchain; iv) since all the data is on the blockchain, no private inputs are
required, this particular implementation of L2DART does not need zero-knowledge properties. Moreover, we derive that
L2DART ensures P1, Data auditability, because the policy is stored on-chain; it ensures P2, Computational auditability,
because it is possible to dispute the off-chain module about the correctness of the results; it ensures P3, Affordable
Fees, because storing the roles and credentials, and the on-chain proof verifications are cheap in terms of gas in our
experiments. In particular, the complexity of the code of the backward search algorithm is cubic with respect to the
number of credentials in a policy [36], while the complexity of the proof verification algorithm is linear with respect
to the number of credentials in the proof. The proof length depends on the policy and, due to the activation of the
monitors I_Monitor and L_Monitor (see Section 2.2.3), a subset of credentials of the policy could be replicated in the
proof. As a result, the number of credentials in the proof might be larger than the number of credentials in the policy.
On the other hand, the verification algorithm iterates over the credentials of the proof, and each step is computationally
light, because it simply applies the rule 𝜋 () to one credential of the proof, as described in Section 4.3. Moreover, we
notice that, in general, a proof does not necessarily contain all the credentials in the policy. For instance, if we take
into account the example of the Test scenario A shown in Section 5.2.1, the length of the proof required to prove that
Alice holds the role 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 is constant, i.e., it consists of 6 credentials (see Figure 7), regardless of the
number of students and of universities, i.e., of the credentials representing them, in the policy (see Section 2.2.4). The
same applies for the test scenario C (see Section 5.2.3). In the example described by the Test scenario B (see Section 5.2.2),
whose policy P𝑡𝑟𝑢𝑠𝑡 represents a trust network, the length of a proof depends on the length 𝑙 of the trust chain that
connects the two principals. Indeed, a proof includes 𝑙 credentials of type T1, and 𝑙 − 1 copies of a credential of type T2.
Hence, the length of a proof is about twice the length of the trust chain, and the length of the latter is always less than
the length of the policy by construction of P𝑡𝑟𝑢𝑠𝑡 . For instance, in the trust network shown in Figure 10(a), the trust
chain between 𝑃𝑒 and 𝑃𝑎 involves 4 principals including 𝑃𝑎, i.e., 𝑙 = 4. In this case, the length of the proof 𝜏𝑃𝑎 (shown
in Section 5.2.2) is 7 because it refers to a trust chain with 𝑙 = 4 and the credential T2.4 is replicated 3 times, while the
policy has 12 credentials. Finally, we also observe that, since the current most popular blockchains impose constraints
on the amount of computation that a smart contract can use in a transaction, the comparison among the backward
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search and the proof verification algorithms must take into account such constraints that limit the maximum number of
credentials that such algorithms can process. In this respect, the experiments we conducted in Section 5.2 have shown
that, within these limits, in the selected scenarios the cost of computing the solutions is always considerably larger
than the cost of verifying even all the related proofs.

Security analysis. In order to analyze the security of the proposed system, we consider the scenario of Figure 6
where Epapers deploys a smart contract EPapers ERC20 SC whose functions can be executed only by users having
the role 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 according to the policy P𝐸𝑃𝑎𝑝𝑒𝑟𝑠 stored by the on-chain module. Hence, the smart
contract EPapers ERC20 SC requires as input parameter a proof 𝜏 proving that the user invoking it holds the role
𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 , and it calls the verify function of the L2DART on-chain module in order to validate such
proof. In particular, the on-chain module computes the role granted by the proof 𝜏 , and EPapers ERC20 SC checks that
such role is equal to 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 and that it is granted to the user who is invoking EPapers ERC20 SC.

In our scenario, Alice is a user who would like to exploit the functions of the smart contract EPapers ERC20 SC. Alice
must provide to EPapers ERC20 SC a proof 𝜏 (normally generated by the off-chain module) which grants her the role
𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 according to the policy P𝐸𝑃𝑎𝑝𝑒𝑟𝑠 . Both Epapers and Alice, as well as the other participants of
the system, are able to interact with the on-chain module which is trusted since it is deployed on a public blockchain.
Instead, the off-chain module is an untrusted component, since it is executed on the local device of Alice. As a matter of
fact, Alice could alter the off-chain component (or even user another tool) to generate malicious proofs. Therefore, the
participants of the system can behave maliciously by generating the following attacks.

• Attack 1: Alice tries to execute the smart contract EPapers ERC20 SC submitting a valid proof that,
however, does not grant her the role Epapers.studentMember. The attack is conducted as follows. Alice
sends to EPapers ERC20 SC’s smart contract a correct proof 𝜏 proving, however, that Alice holds the role
𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑎𝑓 𝑓 𝑀𝑒𝑚𝑏𝑒𝑟 (instead of 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 ). EPapers ERC20 SC’s smart contract calls the verify
function of the on-chain module to verify 𝜏 with respect to the current policy P𝐸𝑃𝑎𝑝𝑒𝑟𝑠 . The verify function
navigates the credentials of the policy and returns that 𝜏 proves that Alice holds the role 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑎𝑓 𝑓 𝑀𝑒𝑚𝑏𝑒𝑟 .
The soundness property (see Section 2.2.3) of the proof graph ensures that the proof 𝑃 resolves to a path
representing a valid solution. Since the role found as result of the execution of the verify function is not the one
required for the execution of EPapers ERC20 SC’s functions, the smart contract EPapers ERC20 SC denies the
execution request received from Alice. Similarly, if Alice submits to EPapers ERC20 SC’s smart contract a valid
proof 𝜏 proving, however, that another user (say Bob) holds the role 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 (instead of Alice),
the smart contract EPapers ERC20 SC would deny the execution request received from Alice as well, because the
proof does not assign any role to her.

• Attack 2: Alice tries to execute the smart contract EPapers ERC20 SC submitting a not valid proof
that pretends to grant her the role Epapers.studentMember. The attack is conducted as follows. Alice
sends to EPapers ERC20 SC’s smart contract an incorrect proof 𝜏 ′ which pretends that Alice holds the role
𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 . For instance, 𝜏 ′ could include a credential that is not part of the policy P𝐸𝑃𝑎𝑝𝑒𝑟𝑠 ,
or it can be incorrectly formatted, or does not correspond to a valid statement. The smart contract EPapers
ERC20 SC invokes the on-chain module to execute the verify function and, as a result, it is notified that 𝜏 ′ is not
valid according to the current policy. Consequently, the smart contract EPapers ERC20 SC does not allow the
execution of the function requested by Alice.
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• Attack 3: Epapers tries to deny the access to the smart contract EPapers ERC20 SC to Alice, although
Alice submits a correct proof that she holds the role Epapers.studentMember. The attack is conducted
as follows. Alice submits to the EPapers ERC20 SC’s smart contract a valid proof 𝜏 that she holds the role
𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 according to the current policy, which can be verified by using the verify function of
the on-chain module. The completeness property (see Section 2.2.3) of the proof graph ensures that if 𝜏 holds
the role 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 , then there exists a path in the proof graph that can be used to prove it. Even
if the proof is correct and states that Alice holds the role 𝐸𝑝𝑎𝑝𝑒𝑟𝑠.𝑠𝑡𝑢𝑑𝑒𝑛𝑡𝑀𝑒𝑚𝑏𝑒𝑟 , Epapers unduly denies the
execution of the smart contract by Alice, pretending that the verification process has failed. Because of the
auditability property provided by the framework, Alice (and also other participants) can reliable detect the
misbehavior of Epapers. Indeed, the code of Epapers’s smart contract, the code of the L2DART on-chain module,
as well as the current policy are available on the blockchain. In addition, since every correct communication
between Alice and the smart contract EPapers ERC20 SC results in a verifiable and permanent transaction stored
on the blockchain, this would serve as a proof to demonstrate the status of the policy at specific point in time.

Finally, any man-in-the-middle attempt on the channel used by the off-chain module to interact with blockchain
nodes can be mitigated by using secured channels that provide confidentiality, integrity, and authenticity. The former
property can be provided by Transport Layer Security (TLS) protocols, while the latter two properties are provided by
digital signatures. Indeed, any blockchain transaction, which writes data, is always digitally signed.

Drawbacks. Besides the important advantages discussed in the previous sections, layer-2 technologies also introduce
some drawbacks. First of all, blockchain layer-2 technologies rely on resources that do not benefit from the same security
and decentralization as the layer 1 nodes participating in the blockchain consensus. As a matter of fact, off-chain nodes
might be more susceptible to attacks, being composed by a much smaller network of nodes or even a single node, and
might require higher trust assumptions depending on who has the governance of such nodes. Moreover, designing a
two layered blockchain application typically requires more effort than designing a blockchain application. Furthermore,
sometime also the modification of the first layer is required. For example, to deploy the Lightning Network Bitcoin had
to perform the SegWit soft fork [7]. Finally, the fact that some blocks could be produced after the off-chain module
has read the data needed for the off-chain computation on the blockchain, but before that the result is verified on the
blockchain, might introduce a race condition problem. For instance, such race condition issue could affect L2DART.
In particular, a L2DART policy P could be modified between the time T1 when a proof 𝜏𝑢 for a user 𝑢 through the
OFFchainBackwardSearch function has been produced and the time T2 > T1 when the proof will be verified to access to
a smart contract 𝑐 . As a consequence, the verification of the proof 𝜏𝑢 , which was valid at time T1 might fail at time
T2 and the execution right could be denied. Although troublesome, denying an access due to these race conditions
is actually the correct behavior. Hence, the users would have to produce a new proof with OFFchainBackwardSearch

with the updated policy, and to ask to execute the smart contract 𝑐 again by submitting this new proof. However, we
note that this problem arises also in a full on-chain implementation due to a vulnerability called transaction-ordering

dependence [37], i.e., when the outcome of two transactions Tx1 and Tx2 depends on their ordering inside a block.

7 RELATEDWORK

Blockchain-based access control mechanisms have been applied to IOT [3, 40], healthcare [46], and cloud storage
[23]. However, the implementations typically involve direct role and attribute assignments, which can be difficult to
apply to trans-organizational scenarios where different entities assign roles that, once combined, can infer other roles
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following a specific set of rules. This section describes a number of existing blockchain-based access control system
implementations not specialized to any use case and in Table 2 we compare the characteristics of such solutions against
the approach we propose in this paper.

OpenZeppelin [39] is a popular framework that provides a solid implementation of the RBAC model in Solidity for
Ethereum where users’ roles are stored on-chain. In particular, each role is stored on-chain in a map data structure
holding the list of accounts with that role. OpenZeppelin does not support role inference, because users are only able to
assign a specific role to an Ethereum account and smart contract functions check if the account has been assigned a
specific role.

Cruz et al. [13] propose a challenge-response based implementation of a RBAC in a trans-organizational environment.
Roles are stored on-chain by using a smart contract and each role is assigned by an institution to a blockchain address
belonging to a user. A service provider asks the user to prove they control an address that holds a specific role. A
challenge-response protocol is executed between the user and the service provider: the service provider sends a message
to the user, and the user must sign the message with the private key that generated the address associated to the role
the user is claiming to have; if the user sends back a valid signature, the service provider is sure the user holds the role
they claim to have.

Di Francesco Maesa et al. [15] codify attribute-based access control XACML policies in smart contracts in order to
benefit from blockchain auditability and easily identify misbehavior from one of the parties. In this approach, users’
roles are represented as attributes. However, this approach does not allow users to make inference over attributes and
off-chain computation is not executed because policies are evaluated on-chain by the related smart contracts.

Summarizing, the main similarity among all the approaches listed in Table 2 is that they allow their users to define
their roles and to assign them to other users (in DART and L2DART, using Simple member credentials, see Section
2.2.1), they store the credentials representing the roles on the blockchain, and they use them in the access control
process to decide whether to grant a privilege to a user or not. However, DART and L2DART differ from the other
approaches because they allow their users to define their trust relations through Simple inclusion, Linked inclusion, and
Intersection inclusion credentials (see Section 2.2.1). Consequently, the access control process of DART and L2DART
uses both the roles that have been directly assigned to the users, as well as the roles that have been inferred exploiting
the trust relations (executing the chain discovery algorithm, see Section 2.2.3, to perform role inference). Hence, the
main advantage of DART and L2DART with respect to the other approaches is the flexibility of not requiring to explicitly
assign all the roles to all the users. As a matter of fact, exploiting the RT framework, DART and L2DART allow their
users to define their roles indirectly, taking into account the roles defined by other users they trust. This is useful, for
instance, in trans-organizational scenarios where roles are assigned by multiple cooperating organizations. Finally, the
main advantage of L2DART with respect to DART is that the latter executes the role inference algorithm on-chain,
while the former executes it off-chain, and produces proofs of the inferred roles that are validated. Hence, L2DART
mitigates the scalability problem of DART, as clearly shown by the results of the experiments we conducted, described
in Section 5.2, while maintaining blockchain data and computational auditability.

8 CONCLUSION AND FUTUREWORK

In this paper we proposed L2DART, a Role Based Trust Management System implemented on top of a public and
permissionless blockchain allowing to infer the roles held by each of its users from the direct and indirect trust
relationships they expressed. L2DART overcomes the limitations of its predecessor, DART, by adopting the off-chain
computation model. In particular, L2DART takes advantage of a verifiable computation protocol to split the role
Manuscript submitted to ACM
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Proposals Credential storage Role inference Off-chain computation
& on-chain verification

OpenZeppelin [39] on-chain ✗ ✗

Cruz et al. [13] on-chain ✗ ✗

Di Francesco Maesa et al. [15] on-chain ✗ ✗

DART [25] on-chain ✓ ✗

L2DART on-chain ✓ ✓

Table 2. Comparison of existing proposals.

calculation process in two different steps: one that is executed off-chain, i.e., the proof computation, and the other that
is executed on-chain, the proof verification.

A prototype we implemented on Ethereum shows that, gas wise, the verification of the proof has a cost much lower
than computing the solutions directly on chain. At the same time, L2DART ensures data and computational auditability
required by a blockchain-based trust management system. Hence, the cost of executing L2DART on the blockchain
is affordable, thus allowing L2DART to be successfully deployed in the real world implementing use cases such as
supporting customers to identify trustworthy service providers [45, 48], or to certify some properties of users (such
as their identities, position, etc. . . ) [9, 30]. Although our prototype has been implemented on Ethereum, the on-chain
computation of L2DART can be implemented by any blockchain whose smart contracts support array and key-value
data structures to store and retrieve roles, credentials, and proofs required to apply the rules to verify a proof. Examples
are EOS.IO, Hyperledger Fabric, and any system based on the Ethereum Virtual Machine, such as Quorum, Hyperledger
Besu, and Polygon.

As future improvements, L2DART can be naturally extended to support more RT credentials and other chain discovery
algorithms. Moreover, the current version of the on-chain verification algorithm does not store intermediate solutions,
meaning that the same role could be re-computed multiple times. Therefore, the on-chain verification algorithm could be
adapted to re-use intermediate solutions in those scenarios that would reduce the on-chain costs. Moreover, the L2DART
design could be adapted to integrate privacy preserving techniques to support access control scenarios involving
sensible user data. Finally, starting from the experience acquired with this research about layer-2 technologies and
off-chain computation, we plan to define a framework to help system designers to design their layer-2 decentralized
applications. The analysis of the set of requirements related to the application (such as scalability, cost, and privacy
needs) provided by the framework will help the designer in choosing the right layer-2 technologies that best satisfy the
requirements, e.g., to understand when an on-chain operation could be outsourced off-chain for reducing the execution
cost.
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