
reprinted from Proceedings of ICCS 2002: LNCS 2331 pages 898-907

Computational Science In High School Curricula:
The ORESPICS Approach

P. Mori and L. Ricci

Dipartimento di Informatica,Università di Pisa
Corso Italia 40, 56125-Pisa (Italy)
{mori,ricci}@di.unipi.it

Abstract. This paper presents a new approach for the introduction of compu-
tational science into high level school curricula. The approach is based on the
definition of an ad hoc environment, including a programming language, suitable
for this target of age. The language includes a set of simple constructs supporting
both concurrency and the management of a graphical interface. The solutions of
some classical problems are shown.

1 Introduction

Computational science is a new interdisciplinary research area which applies concepts
and techniques from mathematics and computer science to solve real life problems.
Computational science has introduced a new methodology to investigate real life prob-
lems. Instead of defining a theory of a physical phenomenon and verify it through a
set of experiments, a computational model of the phenomenon that can be simulated
through the computer is defined. In this way, the phenomenon can be monitored di-
rectly through the computer. This methodology is currently supported by sophisticated
environments resulting from the recent advances in computer technology.

Several university curricula include computational science courses. Furthermore,
a set of proposals for the introduction of computational science into the high school
curricula have also been presented [4, 8]. The goal of these proposals is to increase
the interest of a larger number of students in scientific disciplines: the rationale is that
students are more interested in learning mathematical concepts if these can be applied
to real life problems. Furthermore, the use of the computer makes the learning even
more appealing. Yet, the introduction of computational science into the high school
curricula and/or in the undergraduate courses requires to settle some issues. First of all,
the basic mathematical skills to support a first training in computational science are to
be defined. These skills should support the development of models for a minimal, yet
significative, kernel of applications. These applications should be characterized either
by simple mathematical models or by a complex one that may be simplified without
loosing its connection with real life. A further critical issue is a software environment
suitable for young students. This issue is one of the most challenging because most
current tools to develop computational software have been defined for expert users only.
As a matter of fact, most applications are developed through FORTRAN or C extended
with a set of libraries supporting concurrency and visualization of scientific data. These

1



libraries are often tied to a specific operating system and the user needs some knowledge
of this system as well.

We believe that a more friendly environment, including a programming language,
should be developed specifically for these introductory courses. In this way, all the con-
structs are integrated in the same language, rather than spread across several libraries.
The language should preserve the main features of existing ones, like concurrency and
graphical interface support. On the other hand, the set of constructs should be reduced
to a minimal kernel.

The didactic language should be concurrent because concurrency is a powerful tool
to simplify the description of the applications. Several phenomena can be modeled as a
set of concurrent, interacting entities. Consider, for instance, the simulation of the dy-
namics of a fluid or of a gas which can be modeled as a set of interacting molecules.
An example in shown in sect. 3. Furthermore, most scientific applications are devel-
oped on highly parallel systems because of their high computational needs and the
software development for these systems usually requires the knowledge of a concur-
rent language. Hence, the basic concepts of concurrency should be acquired as soon as
possible. However, libraries such as MPI, PVM [11, 13], or OpenMp are not suitable,
because of their complexity. As a matter of fact these libraries include several seman-
tic equivalent primitives differing, for instance, only because of their implementation.
A didactic environment should introduce a single construct for each different concept
of the language. The didactic language should support a simple graphical interface as
well, so that the student can monitor the behaviour of the concurrent activities directly
on the screen. Complex visualization techniques based on sophisticated mathematical
techniques, like rendering or textures, are not required in an introductory didactic en-
vironment. However, the teacher can exploit the basic mechanisms of the language to
implement more sophisticated visualization techniques.

The remainder of this paper presents the ORESPICS environment, the new didac-
tic environment we propose to support the teaching of computational science in high
schools. The environment includes a new language, ORESPICS-PL that integrates a
minimal set of graphical primitives with a minimal set of concurrent constructs. The
graphical primitives are mostly taken from the Logo language [2], while the concurrent
part of the language is based on the message passing paradigm. The environment and
the language are fully described in [5, 6]. Sect. 2 briefly recalls the main constructs of
the language and describes the ORESPICS environment. To describe how ORESPICS
can be exploited in an introductory course, sect. 3 and 4 show some simple, yet signi-
ficative problems and their ORESPICS solutions. Sect. 5 presents some related work.
Sect. 6 draws some preliminary conclusions.

2 The ORESPICS Language and Development Environment

The sequential part of Orespics-PL includes traditional imperative constructs (repeat,
while, if,...), the turtle primitives of the Logo language [2] to control the agents’ move-
ments and a set of primitives to modify the external aspect of an agent and to create
sounds. The language supports all the elementary data types (integer, boolean,..) and
the only data structure is the list.



An Orespics-PL program includes a set of agents, interacting through messages
exchange. It is possible both to pair each agent with a different code and to define a
breed of agents characterized by the same behaviour. Each agent belonging to a breed
may be identified by a set of indexes. In this way, a SPMD programming style can be
exploited.

Agent interact through a minimal, but complete set of communication primitives.
Two basic kinds of communication modes, corresponding respectively to synchronous
and buffered communication modes of MPI, are available. The corresponding sends are:

SendAndWait msg to agent
SendAndnoWait msg to agent

Buffer management for buffered communications is delegated to the run time support.
Orespics-PL does not define other communication modes. This is consistent with

the choice to include constructs corresponding only to the basic mechanisms of the
message passing paradigm. Other communication modes in fact, like blocking, ready
or persistent modes of MPI, can be considered optimized versions of the previous ones,
to enhance the performance of parallel programs.
The receive construct:

WaitAndReceive msg from agent
waits until a message is received from the selected agent. Orespics-PL also defines an
asymmetric version of the receive:

WaitAndReceiveAny msg from agent
In this case, the receiver selects, according to a non deterministic strategy, one of the
messages sent by any active agent of the microworld. Furthermore, the function

inmessage(agent)
allows polling of incoming messages, without actually receiving them. Inmessage(A)
returns true if there is at least an incoming message from agent A. The message can be
received through a WaitAndReceive command. The function Inmessage(Any) tests the
presence of messages incoming from any agent. The set of collective communications
includes the synchronization barrier:

Waitagents()
and two versions of the broadcast send, respectively synchronous and asynchronous:

SendAllAndWait()
SendAllAndnoWait()

Each agent involved in a broadcast communication executes a different primitive, a
broadcast send, or a receive. A single primitive with distinct semantics relating to the
agent executing it, could be confusing. Other collective communication, like MPI scat-
ter, gather or reduce, can be emulated through point to point or broadcast communi-
cations. Since Orespics-PL provides a mechanism to define macros, the students can
develop their own implementation of these primitives.

Collective communication involving subsets of agents, can be defined in Orespics-
PL by associating a set of properties with each agent. The simplest kind of property is
its breed. The breed of an agent is defined during the initialization phase and can be
exploited in the communication commands to restrict the set of senders/receivers in a
communication. Each agent belonging to a breed can be further identified by a set of
properties. The value of these properties may be statically initialized in the declarative



part of the agent’s code, through the property construct. Afterwards it can be dynami-
cally updated. The property mechanism is fully described in [6] and it will be exploited
in the applications of section 3.

The Orespics environment supports the development of Orespics-PL programs. The
user may define the appearance and the kind of each agent and pair a set of animations
and/or sound with it. Furthermore, the user defines the execution environment, i.e. a
microworld where the agents moves and interact. The kind of an agent A defines if
there is a single instance of A or if it belongs to a breed and, in this case, how many
instances of A should be created. Even if Orespics associates a default icon with each
agent, the user can change this icon or choose a new one from a predefined set of images.
Furthermore, several images can be defined for each agent. We will see an example of
this in sect. 4. Each image is uniquely identified by its name, and each agent, at run time,
can select its image through the setimage command. An agent may be paired with an
animation as well. This is realized by selecting a set of frames which can be displayed
cyclically or from the first to the last one and on the other way round, continuously. It
is also possible to associate a sound with any agent. Each sound is uniquely identified
and can be selected by an agent through the setsound command.

The execution environment is initialized by choosing the background image and
music. At the microworld initialization, the standard icons of all the agents are dis-
played. The user defines the initial position of each agent by simply dragging and
dropping its icon, whilst the initial position of the agents belonging to a breed is au-
tomatically decided by the system, but it can be updated through the ORESPICS-PL
positioning commands. The whole environment is based on a friendly interface, based
on a set of windows. A detailed description of the environment is presented in [6].

3 A Cellular Automata

This section and the following one show how ORESPICS should be exploited in
introductory computational science courses. The first example, presented in this section,
shows a cellular automata simulating the dynamic behaviour of a gas. Sect. 4 discusses
the solution of searching and optimization problems.

The definition of models for fluid or gas dynamics is an active area in computa-
tional science. Computational fluid dynamics describes physical phenomena through
partial differential equation, like the Navier-Stokes ones, whose solution requires non
trivial mathematical techniques which are generally acquired in advanced mathematical
course. Nevertheless, simpler models result from solving these equations through finite
differencing methods that introduce a set of discrete approximations and these mod-
els are closer to the real phenomena. These models can be exploited to present basic
concepts of computational fluid dynamics in introductory courses. As an example of
a simple, yet realistic, problem consider the diffusion of heat on a square metal sheet.
The temperature at an inner point can be computes as the average of the temperatures
of the four neighboring points. In ORESPICS, it is rather simple to define a data
parallel concurrent program, where the agents corresponds to the points of the sheets:
the program could display the temperature of the sheet by pairing distinct temperature
values with distinct colors.



Agent Particlei,j

property mypos
setimage Particle
initial-positioning()
repeat

Waitagents()
\∗ Movement
forward 1
mypos← pos()
mydir← heading()
Waitagents()
\∗ Directions Echange
SendAllAndNoWait mydir toBreed (Particles) withProp (position=mypos)
Waitagents()
\∗ Conflict Resolution
count← 0
turn← false
while inmessage() fromBreed(Particles)

WaitAndReceive dir fromBreed(Particles)withProp (position=mypos)
count← count +1
if abs(mydir-dir)= 180◦ then turn← true

endwhile
if (count=1 and turn) then left 90◦

forever

Fig. 1. The cellular automata

Another class of computational models for molecular dynamics is that of lattice gas
automata [12, 7] that model a fluid as a system of particles moving on the edges of a
lattice, according to a set of rules. In general, these models assume that at most one
particle enters a given node of the lattice, from a given direction. The particles move
at discrete time steps, at a constant speed. Particles entering the same node at the same
time step may collide: the rules to solve collisions guarantee the conservation of the
total number of particles and of the angular moment. Several lattice gas automata have
been proposed. The simplest one, based on the HPPmodel [7], exploits a square lattice
and it considers only a simple collision rule: when exactly two particles enters the same
lattice vertex from opposite directions, a collision is detected and the particles change
their direction by turning left 90◦ . In all other case, for instances when the directions
of two particles are orthogonal or when more that two particles find themselves at the
same vertex, the particles do not change their direction.

In Fig. 1, we show an ORESPICS agent implementing a single particle: all the par-
ticles are characterized by the same behaviour.

Each agent is characterized by a property, defining its coordinates on the screen: the
value of the property is dynamically updated whenever the agents moves. Initially, each
agent places itself at a lattice node and chooses a direction. The initial positioning must



Fig. 2. Evolution of the cellular automata

guarantee that at most a particle is positioned at a vertex with a given direction. Af-
ter the initialization phase, each agent iteratively executes three distinct phases. In the
movement phase, it moves one step along its direction. In the second phase, all particles
lying in the same node exchange their directions. The last step implements the inter-
actions among particles: each particles collects all the incoming messages and detects
any possible collision. If a collision is detected, each particle involved in the collision
changes its direction, by a 90◦ left turn. These phases are separated by synchronization
barriers, implemented through the Waitagents() primitive, to guarantee that each phase
is initiated by any agent only when all others agents have completed the previous phase.
For instance, the second barrier guarantees that each particle at node N starts collecting
the messages only after any particle at N has sent its direction. In this way, all messages
will be received.

ORESPICS supports a straightforward implementation of both the concurrent be-
haviour of the automata and the graphical interface. As far as concerns concurrency,
the property mechanism is exploited in the second phase, to select the proper set of
receivers, i.e. the set of particles lying at the same vertex. The graphical interface ex-
ploits the LOGO turtle graphics to show the evolution of the automata. We recall that, in
LOGO, each turtle is characterized by its position, i.e. its coordinate on the screen and
by its heading which is measured in degrees clockwise from North. Since two particles
may collide if and only if their headings are directed against each other, the collision
may be detected by checking if the absolute value of the difference of the headings’
values is 180◦. Furthermore, each particle involved in a collision, simply turns towards
its own left through 90◦.

Fig. 3 shows how the evolution of the system in the various phases can be monitored
in ORESPICS. The left snapshot shows the initial situation, the central one the situation
after the movement of the particles, the left one the situation after conflict resolution.

To model a realistic situation, some constraints have to be added to this simple
model. For instance, consider a gas constrained in a container. The container is divided
into two parts, separated by a wall with a hole. Initially, the gas particles are confined
in the bottom part of the container, then they start flowing through the hole to the upper
part till an equilibrium is reached. The behaviour of the particles bumping against the
walls of the container is modeled by adding a new rule to the automata: a particle



Fig. 3. Time evolution of a HPP gas

bumping against a wall, bounces back from where it came. The student can monitor the
evolution of the system as shown in Fig. 3.

The code shown in Fig. 1 can be easily modified to implement more complex lattice
models. For instance, in the FHH model [12] the particles moves along the edges of an
hexagonal lattice. Even if a larger number of conflict situations have to be considered,
each conflict can be simply implemented by changing the direction of a particle through
ORESPICS graphical commands.

4 Searching and Optimization Problems

Another class of computational science problems are search and optimization ones.
The heuristic techniques usually exploited in this class, e.g. branch and bound, hill
climbing, simulated annealing, genetic algorithm, often present a simple mathematical
formulation and can be applied to real life problems. Hence, these problems are suitable
for our target.

This section shows how the hill climbing search technique can be introduced through
a real life problem. The problem is proposed in [3] as follows:

The recently discovered planetoid, Geometrica, has a most unusual surface. By all
available observation, the surface can be modeled by the function h(θ, ρ):

h = 35000sin(3θ)sin(2ρ) + 9700cos(10θ)cos(20ρ)− 800sin(25θ + 0.03π) +
550cos(ρ + 0.2π)

where h is the height above or below sea level, θ is the angle in the equatorial plane
(defines longitude on earth), and ρ is the angle in the polar plane (defines latitude on
Earth). A space-ship has landed on Geometrica. The main goal of the astronauts is to
find the (θ, ρ) position of the highest point above the sea level on Geometrica surface.

To reach the topmost point of Geometrica, an astronaut may adopt an hill climbing strat-
egy and move always uphill. Obviously, this does not guarantee that the highest point
will be reached, because the astronaut can be stucked at the top of a low hill. To in-
crease the probability of reaching the top of Geometrica, the national minister for space



Agent Hikeri

WaitAndReceive (xmin,xmax) from Master
x← random(xmin ,xmax)
goto (x, h(θ, x))
setimage Astronaut
∆← ε

stop← false
repeat

h← h(θ, x)

if h(θ, x + ∆) > h then
pendown
x← (x + ∆)

goto (x, h(θ, x))
else

if h(θ, x−∆) > h then
pendown
x← (x−∆)

goto (x, h(θ, x))
else

setimage Flag
SendAndnoWait h to Master
stop← true

endif
endif

until stop

Fig. 4. Hill climbing

missions engages a large number of astronauts: each astronaut should start climbing at
a different position, chosen randomly. The chief of the mission remains on space-ship
and collects the results from the hikers, thus determining the global maximum.

It is worth noticing that this example could be exploited also to introduce Monte
Carlo numerical techniques because the basis of these techniques is the use of a large
set of randomly generated values used to define different, independent computations.

To simplify the ORESPICS’s implementation of the previous problem, we con-
sider an equivalent 2D problem, by fixing the parameter θ = θ in the h function. Fur-
thermore, each hiker performs a single exploration in its area. The resulting implemen-
tation is shown in Fig. 4. The code of the master is not shown because it is very simple.
It partitions the area to be searched among the different astronauts, collects the results,
and computes the maximum height. This corresponds to a static assignment of the tasks
to the astronauts. Each hiker receives the coordinates of its area and puts itself in a po-
sition of the area chosen randomly. Then, it tries to move uphill: if this is not possible,
it puts a flag on the top of the hill, to show it has been visited. This is implemented
through the setimage command which changes the aspect of the hiker. At this point, the
hiker can stop (as in Fig. 4) or continue the exploration choosing a new starting point.



Fig. 5. Hill Climbing

The evolution of the search is shown in Fig. 5. Segments representing areas as-
signed to distinct hikers are represented through different line styles. We can note that
some astronauts may have a longer way than others to reach their local peak, or some
astronauts may climb faster because they are younger. For instance, in Fig. 5 the hiker
assigned to the central area has completed its exploration, while the others are still
climbing. This can be solved through a dynamic assignment. The master partitions the
area into smaller segments and initially assign a segment to each astronaut. When an
astronaut reaches a local peak, it asks for a new area. When no more areas to search are
left, the master sends a termination message to each astronaut.

5 Related Work

Several proposals to introduce computational science in high level schools have been
proposed. In [8] a set of proposals for the introduction of computational science educa-
tion in high school curricula is presented. This paper discusses also how the introduction
of supercomputers and high-performance computing methodology can be instrumental
in getting the attention of the teenagers and attracting them to science. A presentation
of more recent proposals can be found in [4].

Like ORESPICS, Starlogo [9] is a programming environment which is based on
an extension of LOGO. This language has been proposed to program the behavior of
decentralized systems. A student may program and control the behavior of hundreds
of turtles. The world of the turtles is alive: it is composed of hundreds of patches that
may be thought of as programmable entities but without movement. Turtles move par-
allel to one another and use the patches to exchange messages. Since the underlying
concurrency paradigm is the shared memory one, this completely differentiates Starl-
ogo from Orespics. The main goal of the Starlogo is the analysis and the simulation of
the decentralized systems of the world, in contrast with more traditional models based
on centralized ones. It helps users to realize that the individuals of a population may
organize themselves without the presence of a centralized point of control.

Recently, several visual environments [1, 10] have been defined to support the de-
velopment of parallel programs. These proposals do not define a language designed for
didactic purposes, but provide support for editing and monitoring the execution of par-
allel programs written in C with calls to the PVM or MPI library. No particular support



is provided to program real life situations: the user has to link some classical graphical
library to the C program.

6 Conclusions

In this paper, we have presented ORESPICS, a programming environment supporting
the learning of computational science in high school curricula. We are currently ex-
perimenting the system with a group of students and the first results are satisfactory.
Problems from different areas, i.e. cellular automata programming, genetic program-
ming, simulated annealing, have been programmed through ORESPICS. The system
has also been adopted to introduce some classical computational science algorithms,
like algorithms from matrix algebra, or graph algorithms. As an example, we have de-
fined a set of animations to introduce systolic algorithms for matrix manipulation, like
matrix multiplication, transposition and transitive closure computation. Currently, we
are improving the system in several directions. A richer set of functionalities to monitor
the execution of the programs will be defined. Furthermore, we are defining a library, in-
cluding a set of complex visualization techniques through ORESPICS basic constructs.
Finally, we plan to extend the language with constructs to support the shared memory
paradigm as well.

References

1. A.Beguelin, J.Dongarra, A.Geist, and V.Sunderam. Visualization and debugging in a hetero-
geneous environment. IEEE Computer, 26(6), June 1993.

2. B.Harvey. Computer Science Logo style. MIT press, 1997.
3. B.Wilkinson and M.Allen. Parallel Programming techniques and applications using net-

worked workstations and parallel computers. Prentice Hall, 1999.
4. C.Swanson. Computational science education. In www.sgi.com/education/whitepaper.dir/.
5. G.Capretti, M.R.Lagana’, and L.Ricci. Learning concurrent programming: a constructionist

approach. Parallel Computing Tecnologies, PaCT, 662:200–206, September 1999.
6. G.Capretti, M.R.Lagana’, L.Ricci, P.Castellucci, and S.Puri. Orespics: a friendly environ-

ment to learn cluster programming. IEEE/ACM International Symposium on Cluster Com-
puting and the Grid, CCGRID 2001, pages 498–505, May 2001.

7. J.Hardy, Y.Pomeau, and O.de Pazzis. Time evolution of two-dimensional model system.
Invariant states and time correlation functions. Jour.Math.Phys., 14:1746–1759, 1973.

8. M.Cohen, M.Foster, D.Kratzer, P.Malone, and A.Solem. Get high school students hooked
on science with a challange. In ACM 23 Tech. Symp. on Computer Science Education, pages
240–245, 1992.

9. M.Resnick. Turtles, termites and traffic jam: exploration in massively paralle micro-world.
MIT Press, 1990.

10. P.Kacsuk and al. A graphical development and debugging environment for parallel program-
ming. Parallel Computing Journal, 22(13):747–770, February 1997.

11. P.Pacheco. Parallel programming with MPI. Morgan Kauffmann, 1997.
12. U.Frish, B.Harlacher, and Y.Pomeau. Lattice-gas automata for the navier-stokes equation.

Physical Review Letters, 56(14):1505–1508, 1986.
13. V.Sunderam. PVM: a framework for parallel distributed computing. Concurrency;Practice

and experience, 2(4):315–339, 1990.


