reprinted from Proceedings of HPCN 2000: LNCS 1823 pages 71-80

Parallelization of Irregular Problems Based on
Hierarchical Domain Representation

Fabrizio Baiardi, Sarah Chiti, Paolo Mori, and Laura Ricci

Dipartimento di Informatica, Universita di Pisa
Corso Italia 40, 56125 - PISA
{baiardi, chiti, mori, ricci}@di.unipi.it

Abstract. Irregular problems require the computation of some proper-
ties for a set of elements that are irregularly distributed in a domain. The
distribution may change at run time in a way that cannot be foreseen in
advance. Most irregular problems satisfy a locality property because the
properties of an element e depend on the elements that are ”close” to e.
We propose a methodology to develop a highly parallel solution based
upon a load balancing strategy that respects locality because e and most
of the elements close to e are mapped onto the same processing node.
We also discuss the update of the mapping at run time to recover an un-
balancing, together with strategies to acquire data on elements mapped
onto other processing node. The proposed methodology is applied to the
multigrid adaptive problem and some experimental results are discussed.

1 Introduction

Several problems in computer science require the computation of some prop-
erties, i.e. speed, position, temperature, illumination etc., for each element in
a domain of interest. The computation is iterated either to simulate the sys-
tem evolution in an interval of time or to improve the accuracy of the results.
A problem is irregular if the elements are distributed in the domain in a non
homogeneous and dynamic way that cannot be foreseen in advance.

Some important examples of irregular problems are: the Barnes-Hut method
for n-body problems [3], the adaptive multigrid method for the solution of partial
differential equations [6] and the hierarchical radiosity methods to determine the
global illumination of a scene [9].

In all these problems, the properties of an element e; depend upon those of
some other elements, the neighbors of e;. A problem dependent neighborhood
relation determines which elements affect the properties of e;, but the probability
that e; affects the properties of the e; is inversely related to the distance between
e; and e;. In the following, this property will be denoted as locality.

A key point in the development of a highly parallel solution of an irregular
problem is a load balancing strategy that maps the elements onto processing
nodes (p-nodes) while respecting locality, i.e. that maps most of the neighbors
of e; onto the same p-node of e; . Furthermore, the strategy should also define
how the mapping is updated when and if the distribution changes.

Several techniques have been developed to parallelize irregular problems
on parallel architectures with distributed memory. Two different parallelization
strategy called Costzone and Orthogonal Recursive Bisection have been described
in [14], [16] and [17]. These techniques are based on two different kind of hierar-
chical decomposition of the domain. The ordering of domain elements throught
space-filling curves has been adopted in [8], [11] and [19]. Another paralleliza-
tion approach for irregular problems, called CHAOS, is described in [10] and
[15]. This approach requires that the program consists of a sequence of clearly
demarcated concurrent loop-nests.

This paper proposes a parallelization methodology for irregular problems
that integrates two strategies: a load balancing strategy that respects locality
and one to collect remote data, i.e. data of elements mapped onto a distinct
p-node. The methodology is independent of the distributed memory parallel
architecture, and it only assumes that the p-nodes are connected by a sparse
interconnection network. The rest of the paper is organized as follows: sect.
2 describes a hierarchical representation of the domain, sect. 3 discusses the
data mapping and the load balancing technique, sect. 4 presents the strategy
to collect remote data. The application of our methodology to the adaptive
multigrid method and some experimental results are presented in Sect. 5. The
application to the Barnes-Hut method has already been described in [2]

2 A Hierarchical Representation of the Domain

In the following, we assume that the problem domain belongs to a space with
n dimensions. The proposed methodology exploits a hierarchical representation
of the problem domain. At each level the domain is partitioned into a set of
n-dimensional spaces. The procedure that partitions a space S is recursive and it
starts from the space that represents the whole domain. If a problem dependent
condition is satisfied, S is partitioned by halving each side to produce 2™ equal
subspaces, and the procedure is applied to each resulting space. The spaces in-
cluding a large number of elements are partitioned into finer spaces than the
other ones. The whole decomposition is represented through the Hierarchical
Tree, H-Tree. Each node of the H-Tree, hnode, represents a space and the root
represents the whole problem domain. Each space S considered in the decom-
position is represented by one hnode and this hnode records information on the
elements in S. Larger spaces are paired with abstract information, while smaller
ones are paired with a more detailed information. In the following, space(N) de-
notes the space represented by the hnode N, while node(S) denotes the hnode
representing the space S. We notice that each hnode either is a leaf or has 2"
sons. If Nis a leaf, space(N) is not decomposed.

Because of the non uniform distribution of the elements, two distinct sub-
trees rooted in the same hnode may have different heights. If the number of
elements and/or their distribution change during the computation, the partition
of the domain and the H-Tree are to be updated according to the current distri-

bution. As soon as space(N) is partitioned, 2™ sons of N are inserted, while as
soon as space(N) is no longer partitioned, the sons of N are pruned.

Our methodology assumes that the H-Tree cannot be replicated in each p-
node, because of its memory requirement. Instead, we consider np + 1 subset of
the H-Tree, where np is the number of the p-nodes. One subset is the replicated
H-Tree, replicated in all the p-nodes. Each of the other subsets is stored in one
p-node only and it is the private H-Tree of the p-node.

3 Data Mapping and Runtime Load Balancing

To take locality into account, we propose a three step mapping: i) spaces order-
ing; i) determination of the computational load of every hnode and i) order
preserving mapping of the spaces onto the p-nodes.

The spaces are ordered through a space filling curve built on the spaces hier-
archy representing the domain decomposition. Space filling curves are a family
of curves that visit any point of a given space [12]. The curve is built starting
from the lowest level spaces, i.e. from the first partition of the problem do-
main. These spaces are visited in the order stated by the characteristic figure
of the adopted curve. If a space has been partitioned, then all its subspaces are
visited in a recursive way, before the next space at the same level. Any space
filling curve sf also defines a visit v(sf) of the H-Tree that returns a sequence
S(v(f)) = [No, N1,, Np] of hnodes. Alternative space filling curves may be
adopted because the curve dependent aspects of v(sf) may be encapsulated into
a function nezt_son(N), that determines the next son of N to be visited. If im-
plemented through a table look-up, nezt_son(N) is computed in a constant time.

The computational load of a hnode N is a problem dependent metric that
evaluates the amount of computations on the elements in space(N). According
to the considered problem, the load can be i) constant during the computation
and equal for all the hnodes, i) constant during the computation but distinct for
each hnode, or 4ii) variable during the computation and distinct for each hnode.

The np p-nodes of the distributed memory architecture are ordered too. A
p-node P; immediatly precedes Py in the ordered sequence SP, if the cost of an
interaction between P; and Py is not larger than the cost of the same interaction
between P; and any other p-node. Since each p-node executes one process, Py
also denotes the process executed on the kth p-node of SP.

To preserve the ordering among the spaces, they are mapped by partitioning
the hnodes through a blocking strategy. The sequence S(v(sf)) is partitioned
into np segments, i.e. into np subsequences of consecutive hnodes. The overall
load of a segment should be as close as possible to average_load, i.e. to the ratio
between the overall computational load and the number of p-nodes. We cannot
require that the load of each segment is equal to average_load, because each
hnode, and its load, is assigned to one process only. In the following, = (S, C),
where S is a segment and C' is a constant, denotes that the load of S is as close
as possible to C. Due to the large number of elements, the difference between
average_load and the assigned workload is negligible. Then, the first segment

is mapped onto the p-node Py, the second onto P; and so on. The resulting
mapping satisfies the range property: if the hnodes N; and N;1; are assigned to
process Py, then all the hnodes in-between N; and N;i; in S(v(sf)), are assigned
to Py, as well.

After the data distribution, each process Py, builds the replicated H-Tree and
its private H-Tree. The private H-Tree of P}, includes a hnode N if space(N) is
assigned to Pj,. The replicated H-Tree is the union of the paths from the H-
Tree root to the root of each private H-Tree. Each hnode N of the replicated
H-Tree records the position of space(N) in the domain and the identifier of the
owner process. In some problems, the intersection among the private H-Tree
and the replicated H-Tree includes the roots of the private H-Tree only. In other
problems, the private H-Trees and the replicated H-Tree are partially overlapped.

In all the problems that either emulates the evolution of a system or achieves
the required accuracy of the results through iteration, the data mapping chosen
at the «th iteration could result in an unbalanced load at a later iteration. We
define a procedure to correct an unbalance while minimizing the correspondly
overhead. To detect when the procedure has to be applied, each process peri-
odically broadcasts its workload, and it computes maz_unbalance, the current
maximum load unbalance, that is the largest difference between average_load
and the workload of each process. If maz_unbalance is larger than a tolerance
threshold T, then each process executes the procedure. The threshold avoids
that the procedure is executed to correct a very low unbalance. Let us sup-
pose that the workload of P; is average_load + C, C' > T, while that of P;,
i < j, is average_load - C. To solve the unbalance P; cannot send to P; a set
S of hnodes where = (5, C') because the resulting allocation violates the range
property. The correct procedure can be sketched as a shift of the spaces that
involves all the processes in-between F; and P;. Let us define Prec; as the set
of processes [FPy...P;_1] that precede P; in the sequence SP, and Succ; as the
set of processes [P;y1...Pp] that follow P; in SP. Furthermore, Sbil(Prec;) and
Sbil(Suce;) are, respectively, the global load unbalances of the sets Prec; and
Suce;. If Sbil(Prec;) = C > T, i.e. processes in Prec; are overloaded, P; receives
from P;_q a segment S where = (S5, C). If, instead, Sbil(Prec;) = C < =T, P;
sends to P;,—; a segment S where = (S,C). The same procedure is applied to
Sbil(Suce;) but, in this case, the hnodes are either sent to or received from P; 1.

To respect the range property, if [INy....N;] is the segment of hnodes it has
been assigned, P; sends to P,_; a segment [N,....Ng], with ¢ < s < r, while it
sends to P;;1 a segment [N;....N,], with ¢ <t <r.

4 Fault Prevention

Each process computes the properties of all the elements in the spaces it has been
assigned. To compute the properties of e, the process needs those of the neighbors
of e that may have been allocated onto other p-nodes. A simple and general
strategy to collect such remote data is request/answer. During the computation,
as soon as P}, needs data of a space S assigned to Py, it suspends the computation

and sends a request to Pg. This strategy requires two communications for each
remote data, one from P, to Py, and one from Py to Pj.

To reduce this overhead, we introduce the fault prevention strategy. Py, the
owner of the space S, determines, through the neighborhood stencil, which pro-
cesses require the data of S, and it sends to these processes the data, without
any explicit request. To determine all the data to be sent to P, P exploits
the information in the replicated H-Tree on the subspaces assigned to Pp. In
general, P, approximates the data that P, requires, because the replicated H-
Tree records a partial information only. The approximation is always safe, i.e. it
includes any data P, needs.

Fault prevention requires at most one communication for each other p-node
to collect the remote data but, if the accuracy of the approximation is low, most
of the data sent are useless. In some problems, the information in the replicated
H-Tree enables Py to determine a set of data that is not much larger than the
one required by P,. In other problems, instead, to improve the accuracy of the
approximation, processes exchange some information about their private H-Trees
before the fault prevention phase. Also the time to compute the data to be sent is
rather important, because it cannot be larger than the one to explicitly request
the data to the other p-nodes.

5 Adaptive Multigrid Methods

Adaptive multigrid methods are fast iterative methods based on multi level
paradigms to solve partial differential equations in two or more dimensions [6],
[7]. They may be applied to compute the turbulence of incompressible fluids
[5], for macromolecular electrostatic calculation in a solvent [18], to solve plane
linear elasticity problems [4] and so on.

The adaptive method builds the grid hierarchy during the computation, ac-
cordingly to the considered partial differential equation. Each grid of the hier-
archy partitions the domain, or some parts of it, into a set of square spaces; the
value of the equation is computed in the corners of each square. The hierarchy
is built during the computation starting from an uniform grid, the level 0 of
the hierarchy. Let us suppose that, at a level [, a square A has been discretized
though the grid g. To improve the accuracy of the values in A, a grid finer than
g is added at level I+1. Also the new grid represents A, but it doubles the points
of g on each dimension. This doubles the accuracy of the discretization in A. As
the computation goes on, finer and finer grids may be added to the hierarchy
until the desidered accuracy has been reached in each square.

5.1 Multigrid Operators and V-cycle

In the following, we consider the solution of the second order Poisson differential
equation in two dimensions, subject to the Dirichlet boundary conditions:

Pu dPu

_ﬁ_d_zﬂ:f(%y) N=0<z<1 0<y<l1 (1)

u(z,y) = h(z,y) (z,y) €002 (2)

To solve the considered equation, multigrid operators are applied on each grid
of the hierarchy in a predefined order, the V-cycle. We briefly describe the main
multigrid operators and the V-cycle; for a complete description see [7].

The smoothing (or relazation) operator usually consists of some iterations of
the Gauss-Seidel method or the Jacobi one and it is applied on each grid ¢ to
improve the approximation of the current solution on g.

The restriction operator maps the current solution on the grid at level [onto
the grid at level [-1. The value of each point p on the grid at level [-1 is a weighted
average of the value of the neighbors of p in the grid at level .

The prolongation operator maps the current solution on the grid at level I-1
onto the grid at level [. If a point exists on both grids, its value is copied. The
value of any other points at level [is an interpolation of the value of the neighbor
of p on the grid at level [-1.

The refinement operator, if applied to a grid, or to a part of it, at level [,
adds a new grid to the hierarchy at level I+1. The new grid represents the same
square but it doubles the number of points on each dimension.

The V-cycle includes a downward phase and an upward one. The downward
phase applies the smoothing operator to each grid, from the highest level to the
one at level 0. Before applying this operator to the grid at level /, the restriction
operator maps the values on the grid at level [+1 onto the one at level I. The
upward phase is symmetric to the downward one; the smoothing operator is
applied to each grid, from that at level 0 to the highest level ones. Before applying
the smoothing operator to a grid at level [, the prolongation operator maps the
values of the grid at level [-1 to the one at level L

At the end of the V-cycle, the results are evaluated through an error estima-
tion criteria. The refinement operator is applied to all the squares violating the
criteria before starting another V-cycle.

5.2 Data Mapping

The resolution of partial differential equations through the adaptive method is
an irregular problem, because the discretization of the domain and, consequently,
the distribution of the points, are not uniform and not foreseeable. Moreover,
adaptive methods are highly dynamic because the grid hierarchy is a function
of the considered domain.

The load balancing procedure should take into account two aspects of locality
because the value of a point p on the grid g at level [is function of the values of
the neighbors of p i) on the same grid ¢ for the smoothing operator (intra-grid
or horizontal locality) i) on the grids at level [+1 (if it exists) and I-1 for the
prolongation and restriction operators (inter-grid or vertical locality).

To apply the proposed methodology to this problem, the square spaces of all
the grids of the hierarchy are ordered by visiting the domain through a space
filling curve, and they are mapped as shown in sect. 3.

In the adaptive method, the hnodes at level [represent all the squares of the
grids at level [, each hnode has either 4 sons or none and the squares associated
to the sons of the hnode N represent the same square of N, but the number of
points on each dimension is doubled.

To determine the computational load of an hnode we notice that the number
of operations is the same for each point of a grid and does not change during
the computation. Hence, the same computational load is assigned to each point,
i.e. to each hnode, and we assign to each p-node the same number of squares.

In general, the domain subset assigned to each process is a set of squares that
belong to grids at distinct levels. We denote by Do(P},) the subdomain assigned
to process Pj. For each square it has been assigned, a process has to compute
one point, the rightmost downward corner of the square.

The private H-Tree of process P, includes all the hnodes representing the
squares assigned to P, while the replicated H-Tree includes all the hnodes on
the paths from the root of the H-Tree to the roots of the private H-Trees .

A hnode can belong to more than one tree, because the computation is exe-
cuted both on intermediate hnodes and on the leaves. To show that the replicated
H-Tree and the private H-Tree are not disjoint, consider a hnode N assigned to
the process Pj. If one of the descendant of N has been assigned to Py, h # k,
N belongs to the private H-Tree of P}, because Pj, computes the value of the
points in space(N), and to the replicated H-Tree because it belongs to the path
from the H-Tree root to the root of the private H-Tree of Pj.

5.3 Fault Prevention

Each process P, applies the multigrid operators, in the order stated by the
V-cycle, to the points of the squares in Do(P,).

Let us define Pe(P},), the boundary of Do(Py), as the sets of the squares
in Do(P,) such that one of the neighbors does not belong to Do(Py,). Pe(Py)
depends upon the neighborhood relation of the operator op that is considered.
To apply op to the points in Pe(Py), P, has to collect the values of points in
squares assigned to other processes. Let us define Iy, op v as the set of squares of
the domain not belonging to Do(P},) and including the points whose values are
required by P, to apply op to the points in the subgrid at level liv of Do(P,).
Each of these squares belongs to Pe(P,), for some z # h. The values of points
in Ip op,1iv are exchanged among the processes just before the application of op,
because they are updated by the operators applied before op in the V-cycle.

If fault prevention is adopted, P}, does not compute Ij op 1iv; instead, each
process Py, determines the squares in Pe(Py) belonging to In op iiv, VR # k. Py
exploits the information in the replicated H-Tree about Do(P},) to determine
Ih,op,1iv- Since this information could be not detailed enough, P computes an
approximation Al of Iy op 1iv; in order to make a safe approximation, Py includes
in AT all the points that could have a neighbor at level liv in Do(P},) according
to the neighborhood stencil of op. Then Pj sends to P, without any explicit
request, the values of the points in Al. To show that, due to the approximation,
some of these values may be useless for Py, suppose that Do(Py) and Do(Fy)

share a side, that Do(Py) and Do(P,) have been uniformly partitioned until,
respectively level [and level I-m, and that the neighborhood stencil of op for the
point p involves only the points on the same level of p. Since Pj, does not know
l-m, it could send to P}, some of its square on Pe(Py) at level higher than [-m
that are useless for P}, because it has no point on these levels.

To reduce the amount of useless data, we introduce informed fault prevention.
If Do(Py,) and Do(Py) share a side, Py, sends to Py, before the fault prevention
phase, the depth of each square in Pe(P},) that could have a neighbor in Pe(Py),
[-m in the previous example. This information allows P} to improve the approx-
imation of the set of points to be sent to Pj. The information on the depth of
the squares in Pe(Py) is sent by Py at the beginning of each V-cycle and it is
correct until the end of the V-cycle, when the refinement operator may add a
new grid. If the load balance procedure, that updates Pe(Py), is applied, then
at the beginning of the V-cycle Py has to send the depth of all the squares on
Pe(Py;). Otherwise, since the refinement operator cannot remove a grid, each
process has to send information on the squares of the new grids only.

The informed fault prevention technique is applied to the refinement oper-
ator too, but in this case the set of data to be sent to each process is always
approximated. In fact, whether the process P, that owns the square of a point
p, needs or not the square of the point ¢, owned by Pk, depends upon the value
of p. Since Py, at the beginning of the V-cycle, sends to Py the depth of squares
in Pe(Py), but not the values of the points, it could receive some useless values.

5.4 Experimental Results

We present some experimental results of the parallel version of the adaptive
multigrid algorithm resulting from our methodology. The parallel architecture
we consider is a Cray T3E [1]; each p-node has a DEC 21164 EV5 processor and
128Mb of memory. The interconnection network is a torus. The programming
language is C extended with the Message Passing Interface primitives [13].

The simulations solve two problems derived from the equation (1), with
f(z,y) = 0 and two different boundary conditions (2), denoted by hl and h2:

sinh(27(z + y + 2))

hi(z,y) = 10 h2(w,y) = 10cos(2n(z —y) —— 3 1

The solution of the Poisson equation is simpler than other equations such as the
Navier-Stokes one. Hence, the ratio between computational work and parallel
overhead is low and this is a significant test for a parallel implementation.

Figure 1 compares the remote data collecting techniques. We plot the total
number of communications for request/answer (req/ans), for fault prevention
(fp) and for informed fault prevention (ifp). In both problems, the number of
communications of fault prevention and of informed fault prevention are, re-
spectively, less than 61% and 52% than those of request/answer. As previously
explained, because of the refinement operator, the number of communications
of informed fault prevention is larger than 50% of the request/answer one, but
the amount of useless data is less than 2%.

140000 T T T 450000
130000
120000
110000
100000

90000 250000

80000 1
20000 | 200000 f m
60000 ; : 150000 s ;

reg/ans fp ifp reg/ans fp ifp
remote data collection technique remote data collection technique

problem 1 | 400000 problem 2
350000

300000

number of communications
number of communications

Fig. 1. A Comparison of remote data collection techniques

95

problem1 ——
90 problem 2 -
85
80

75
70 |
65
60
55
50

efficiency

4 6 8 10 12 14 16
processing nodes

Fig. 2. Efficiency for problems with fixed data dimension

Figure 2 shows the efficiency of the parallel multigrid algorithm for the two
problems, for a fixed number of initial points, 214, the same maximum grid level,
12, and a variable number of p-nodes. These simulations exploit informed fault
prevention. The low efficiency resulting in the second problem is due to an highly
irregular grid hierarchy. However, even in the worst case, our solution achieves
an efficiency larger than 50% even on 16 p-nodes.

6 Conclusions

This paper has presented a methodology for the parallelization of irregular prob-
lems based upon the hierarchical structuring of the domain, a mapping strategy
based upon space-filling curves and a technique, fault prevention, that reduces
the communications overhead by preventing the data faults. This methodology
has been previously applied to parallelize the n-body problem [2]. The results of
our numerical experiments show that this approach achieves good performances
on high parallel distributed memory architectures.

We plan to extend the approach by considering other irregular problems,
such as hierarchical radiosity, in order to define a package that simplify the
developement of parallel solutions to irregular problems. A further development
concerns the evaluation of our approach in the case of networks of workstations.

References

[1] E.C. Anderson and J.P. Brooks and C.M. Gassi and S.L. Scott. Performance
Analysis of the T3E Multiprocessor SC’97: High Performance Networking and
Computing: Proceedings of the 1997 ACM/IEEE SC97, 1997.

[2] F. Baiardi, P. Becuzzi, P. Mori, and M. Paoli. Load balancing and locality in hi-
erarchical N-body algorithms on distributed memory architectures. Lecture Notes
in Computer Science, 1401:284-293, 1998.

[3] J.E. Barnes and P. Hut. A hierarchical O(nlogn) force calculation algorithm. Na-
ture, 324:446-449, 1986.

[4] P. Bastian, S. Lang, and K. Eckstein. Parallel adaptive multigrid methods in plane
linear elasticity problems. Numerical linear algebra with applications, 4(3):153-176,
1997.

[6] P. Bastian and G. Wittum. Adaptive multigrid methods: The UG concept. In
Adaptive Methods — Algorithms, Theory and Applications, volume 46 of Notes on
Numerical Fluid Mechanics, pages 17-37, 1994.

[6] M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differ-
ential equations. Journal of Computational Physics, 53:484-512, 1984.

[7] W. Briggs. A multigrid tutorial. STAM, 1987.

[8] M. Griebel and G. Zumbusch. Parallel multigrid in an adaptive PDE solver based
on hashing and space-filling curves. Parallel Computing, 25(7):827-843, 1999.

[9] P. Hanrahan, D. Salzman, and L. Aupperle. A rapid hierarchical radiosity algo-
rithm. Computer Graphics, 25(4):197-206, 1991.

[10] Y.S. Hwang, R. Das, J.H. Saltz, M. Hodoscek, and B.R. Brooks. Parallelizing
molecular dynamics programs for distributed-memory machines. /EEE Computa-
tional Science & Engineering, 2(2):18-29, 1995.

[11] M. Parashar and J.C. Browne. On partitioning dynamic adaptive grid hierar-
chies. In Proceeding of the 29th annual Hawaii international conference on system
sciences, 1996.

[12] J.R. Pilkington and S.B. Baden. Dynamic partitioning of non—uniform structured
workloads with space filling curves. IEEFE Transaction on parallel and distributed
systems, 7(3):288-299, 1996.

[13] M. Prieto, D. Espadas, I.M. Llorente, and F. Tirado. Message passing evaluation
and analysis on Cray T3E and SGI Origin 2000 systems. Lecture Notes in Computer
Science, 1685:173-182, 1999.

[14] J.K. Salmon. Parallel hierarchical N-body methods. PhD thesis, California Institute
of Technology, 1990.

[15] S. Sharma, R. Ponnusamy, B. Moon, Y. Hwang, R. Das, and J. Saltz. Run-
time and compile-time support for adaptive irregular problems. In Proceedings of
Supercomputing, pages 97-106, 1994.

[16] J.P. Singh. Parallel hierarchical N-body methods and their implications for multi-
processors. PhD thesis, Stanford University, 1993.

[17] J.P Singh, C. Holt, T. Totsuka, A. Gupta and J.L. Hennessy. Load balancing and
data locality in adaptive hierarchical n-body methods: Barnes-Hut, Fast Multipole
and Radiosity Journal of Parallel and Distributed Computing, 27(2):118-141, 1995.

[18] Y.N. Vorobjev and H.A. Scheraga. A fast adaptive multigrid boundary element
method for macromolecular electrostatic computations in a solvent. Journal of
Computational Chemistry, 18(4):569-583, 1997.

[19] M.S. Warren and J.K. Salmon. A parallel hashed oct-tree N-body algorithm. In
Proceedings of Supercomputing 93, pages 12-21, 1993.

