
Computational Science In High Schools: Defining
Curricula And Environments

Paolo Mori and Laura Ricci

Dipartimento di Informatica,Università di Pisa Corso Italia 40, 56125-Pisa (Italy)
email{mori,ricci}@di.unipi.it

Abstract

The paper presents a new approach for the introduction of computational science into high
level school curricula. It also discusses a set of real life problems that are appropriate
for these curricula because they can be described through simple models. The computer
based simulation of these systems require an ad hoc environment, including a program-
ming language, suitable for this target of age. The paper proposes a new environment, the
ORESPICS environment, including a new programming language. The sequential part of
the language integrates the classical imperative constructs with a simple set of graphical
primitives, mostly taken from the Logo language. The concurrent part of the language is
based on the message passing paradigm. The solutions of some classical problems through
ORESPICS are shown.

Key words: Computational Science; Parallel Programming; Didactic Language; Message
Passing;

1 Introduction

Computational science is a new interdisciplinary research area which applies con-
cepts and techniques from mathematics and computer science to real life problems.
Computational science has introduced a new methodology to investigate real life
problems because, instead of defining a theory of a physical phenomenon and ver-
ify it through a set of experiments, a computational model of the phenomenon that
can be simulated through the computer is defined. In this way, the phenomenon and
its evolution can be monitored by visualizing the program output. This methodol-
ogy is currently supported by sophisticated environments resulting from the recent
advances in computer technology.
Several university curricula include computational science courses. Furthermore,
a set of proposals for the introduction of computational science into high school
curricula have also been presented [5,9]. The goal of these proposals is to increase

reprinted from Future Generation Computer Systems 19(8) (2003) 1349–1361



the interest of a larger number of students in scientific disciplines: the rationale is
that students are more interested in learning mathematical concepts if these can be
applied to real life problems. Furthermore, the adoption of the computers makes the
learning even more appealing. Yet, the introduction of computational science into
high school curricula and/or undergraduate courses requires to settle some issues.
First of all, the basic mathematical skills to support a first training in computa-
tional science have to be defined. These skills should support the development of
models for a minimal, yet significative, kernel of applications. The applications in
this kernel should be characterized either by a simple mathematical model or by a
complex one that may be simplified without loosing its connection with real life.
A further critical issue is a software environment suitable for young students. This
issue is one of the most challenging because most current tools to develop compu-
tational software have been defined for expert users only. As a matter of fact, most
applications are developed through FORTRAN or C extended with a set of libraries
supporting concurrency and visualization of scientific data. These libraries are of-
ten tied to a specific operating system, and the user needs some knowledge of this
system as well.
We believe that a more friendly environment, including a programming language,
should be developed specifically for these introductory courses. In this way, all
the constructs are integrated in the same language, rather than spread across several
libraries. The language should preserve the main features of existing ones, like con-
currency and graphical interface support. On the other hand, the set of constructs
should be reduced to a minimal kernel.
The didactic language should be concurrent because concurrency is a powerful tool
to simplify the description of the applications. Several phenomena can be modeled
as a set of concurrent, interacting entities. Consider, for instance, the simulation
of the dynamics of a fluid or of a gas which can be modeled as a set of interact-
ing molecules. Furthermore, most scientific applications are developed on highly
parallel systems because of their high computational needs and the software devel-
opment for these systems usually requires the knowledge of a concurrent language.
Hence, the basic concepts of concurrency should be acquired as soon as possible.
However, libraries such as MPI, PVM [12,15], or OpenMp are not suitable, because
of their complexity. As a matter of fact, these libraries include several semantic
equivalent primitives differing only because of their implementation. A didactic
environment should introduce a single construct for each different concept of the
language. Furthermore, the didactic language should support a simple graphical
interface as well, so that the students can monitor the behavior of the concurrent
activities directly through an user friendly interface. Complex visualization tech-
niques based on sophisticated mathematical techniques, like rendering or textures,
are not required in an introductory didactic environment. However, the teacher can
exploit the basic mechanisms of the language to implement more sophisticated vi-
sualization techniques.
The remainder of this paper presents the ORESPICS environment, the new didactic
environment we propose to support the teaching of computational science in high
schools. The environment includes a new language, ORESPICS-PL, that integrates



a minimal set of graphical primitives with a minimal set of concurrent constructs.
The graphical primitives are mostly taken from the Logo language [2], while the
concurrent part of the language is based on the message passing paradigm. The
environment and the language have been introduced in [6,7]. Sect. 2 introduces the
main constructs of the language and briefly describes the ORESPICS environment.
To describe how ORESPICS can be exploited in an introductory course, Sect. 3
introduces some simple, yet significative problems and it shows their ORESPICS
solutions. The environment is fully described through the development of one prob-
lem. Sect. 4 presents some related works. Sect. 5 draws some conclusions.

2 The ORESPICS Environment

The ORESPICS environment has been defined starting from a programming lan-
guage, ORESPICS-PL, to support the development of simple models of real sys-
tems. ORESPICS-PL is an imperative language and its concurrent part is based
upon the message passing paradigm [4].
An ORESPICS-PL program includes a set of agents, interacting through messages
exchanged within a microworld. Each agent may be paired with a distinct code,
while the same code may be associated with a breed of agents characterized by
the same behavior. In this case, the agents are programmed according to a SPMD
programming style. The development of an ORESPICS application requires an ini-
tialization phase, where the user defines the kind of the agent, i.e. single, belonging
to a breed,...,etc, pairs each agent with a set of predefined images and defines the
main features of the microworld where the agents interact.
The sequential part of ORESPICS integrates the traditional imperative constructs
(repeat, while, if,...), with the turtle primitives of the Logo language [2]. These
primitives are exploited by the agents to move inside the screen. Both turtle-relative
commands, i.e. command to move forward and backward and to turn left and right,
and cartesian-style graphics commands are defined. The sequential part of the lan-
guage includes also a set of commands to choose, during the execution, the aspect
of an agent from a set of predefined images and the set of sounds emitted by the
agent. All elementary data types (integer, boolean,..) and the list data structure are
supported by the language.
Agents interact through a minimal, but complete set of communication primitives.
Two basic kinds of communication modes, corresponding respectively to synchronous
and buffered communication modes of MPI, are available. The corresponding send
commands are:

SendAndWait msg to agent

SendAndnoWait msg to agent

Buffer management for buffered communications is delegated to the run time sup-



port. The semantics of the asynchronous send S guarantees that if the correspond-
ing receive R is executed after the completion of S, i.e. after S has stored its mes-
sage in the system buffer, R gets the message. ORESPICS-PL does not support any
other communication modes. This is consistent with the choice to include only con-
structs corresponding to the basic mechanisms of the message passing paradigm.
Other communication modes in fact, like blocking, ready or persistent modes of
MPI, can be considered optimized versions of the previous ones, to enhance the
performance of parallel programs but are not required to introduce computational
science. The receive construct:

WaitAndReceive msg from agent

waits until a message is received from the selected agent. ORESPICS-PL also de-
fines an asymmetric version of the receive:

WaitAndReceiveAny msg

In this case, the receiver selects, according to a non deterministic strategy, one of
the messages sent by the active agents of the microworld. Furthermore, the function

Inmessage(agent)

supports the polling of incoming messages, without actually receiving them. Inmes-
sage(A) returns true if there is at least an incoming message from agent A. Then,
one message can be received through a WaitAndReceive command. The function
Inmessage(Any) tests the presence of messages incoming from any agent. The set
of collective communications includes two versions of the broadcast communica-
tion, respectively, synchronous and asynchronous. The corresponding sends are,
respectively

SendAllAndWait()

SendAllAndnoWait()

Each agent involved in a broadcast communication executes a different primitive,
a broadcast send, or a receive. A single primitive whose semantics depends upon
the agent executing it, could be confusing. Other collective communications, like
MPI scatter, gather or reduce, can be emulated through point to point or broadcast
communications. Since ORESPICS-PL supports a mechanism to define macros,
the students can develop their own implementation of these primitives. Collective
communications involving subsets of agents, can be defined in ORESPICS-PL by
associating a set of properties with each agent. The simplest kind of property is its
breed. The breed of an agent is defined during the initialization phase and can be
exploited in the communication commands to restrict the set of senders/receivers
of a communication.



Example 2.1 Let us consider a system including two kind of particles, respectively,
the α and the β ones . The behavior of the system is defined by a single rule. If at
least 2/3 of the particles belong to the same kind, these particles “dominate” the
system and “expel” the other ones. The resulting system is stable.
A microworld including two breeds of agents, the alpha and the beta ones, may be
exploited to describe the system. Each agent notifies its existence to the other ones
through a message. This is implemented by a broadcast send. Then, each agent
determines the number of particles of each breed by counting the number of mes-
sages received from agents of that breed. At first, each agent tests the presence of
messages incoming from a breed, for instance from the alpha breed

Inmessage fromBreed (alpha)

and, if some message is present, it gets the message from the agent of the corre-
sponding breed:

WaitAndReceiveAny () fromBreed(alpha)

this is iterated until no more messages from the considered breed exist. This pro-
cedure is iterated for each breed. Then, each expelled agent leaves the system by
moving outside the screen. ♦

Each agent belonging to a breed can be further identified by a set of properties. The
value of these properties may be statically initialized in the declarative part of the
agent’s code, through the property construct. Afterwords the value is dynamically
updated.

Example 2.2 Let us consider the example 2.1 again, and suppose that the particles
of the system are randomly partitioned into a sequence of groups. Let us suppose
that initially all the groups but the first are stable. When a particle is expelled by a
group, it moves to the next one. In this way, a group that is initially stable may later
become an unstable one.
To distinguish among agents belonging to distinct groups, agents belonging to the
same breed are further identified by a property defining the identifier of the group
the agent belongs to. The property is defined in the declarative part of the agent

Property Group

where Group is the name of the property. The value of the property is initialized
with the identifier of the group, that is chosen randomly by the agent when execution
starts. This value is dynamically updated, when an agent moves from one group to
the next one. The wait command is modified as follows:

WaitAndReceive () fromBreed(alpha) withProp (Group=Mygroup) ♦



The set of collective communications includes the synchronization barrier

Waitagents()

The following example shows how the synchronization barrier can be exploited to
guarantee the correctness of previous examples.

Example 2.3 Consider the systems described in the previous examples again. In
both cases we have to guarantee that any message has been inserted into the system
buffer, before any receive is executed. This can be guaranteed if the send phase and
the receive one are separated by a global synchronization barrier. ♦

3 Didactic Strategies

This section shows how ORESPICS should be exploited in introductory computa-
tional science curricula. These curricula should propose the modeling of a set of
phenomena characterized by a simple mathematical model or by a complex model
that can be simplified without loosing the connections with the real phenomenon.
This section discusses a set of systems characterized by these models and shows
how ORESPICS supports the modeling of these systems.
A classical area of computational science is related to the development of models
for fluid or gas dynamics. Computational fluid dynamics describes physical phe-
nomena through partial differential equations, like the Navier-Stokes ones, whose
solution requires non trivial mathematical techniques which are generally acquired
in advanced mathematical course. Nevertheless, simpler models result from solving
these equations through finite differencing methods that introduce a set of discrete
approximations. However, the resulting models are still close to the real phenom-
ena. These models can be exploited to present basic concepts of computational fluid
dynamics in introductory courses. As an example of a simple, yet realistic, problem
consider the diffusion of heat on a square metal sheet. The temperature at an inner
point can be computed as the average of those of the four neighboring points. In
ORESPICS, it is rather simple to define a data parallel concurrent program, where
the agents correspond to the points of the sheets. The program could display the
temperature of the sheet by pairing distinct temperature values with distinct colors.
Section 3.1 shows a cellular automata simulating the dynamic behavior of a gas.
Another interesting class of computational science problems consists in search and
optimization ones. The heuristic techniques usually exploited in this class, e.g.
branch and bound, hill climbing, simulated annealing, genetic algorithm, often
present a simple mathematical formulation and can be applied to real life prob-
lems. Hence, these problems are suitable for our target. Section 3.2 discusses the
solution of a searching problem.
A field that has recently received considerable attention is that of artificial life.
This research area attempts to recreate biological and social phenomena within the



computer. In this case, several life-like behaviors such as growth, adaptation, repro-
duction, socialization, and death are simulated through the computer. In this case,
it is interesting to study how social structures and behaviors arise from the inter-
actions of a large set of individuals. [10] presents a set of classical examples, like
the behavior of termites gathering wood chips into piles, the movement of cars on
a highway and forming traffic jam, the bird flocks and so on. All these systems
are characterized by simple models and can be easily modeled in ORESPICS. Sec-
tion 3.3 shows how ORESPICS can be exploited to model the behavior of a simple
social system.

3.1 A Cellular Automata

An important class of computational models for molecular dynamics is that of lat-
tice gas automata [14,8] that model a fluid as a system of particles moving on the
edges of a lattice, according to a set of rules. In general, these models assume that
at most one particle enters a given node of the lattice, from a given direction. The
particles move at discrete time steps, at a constant speed. Particles entering the
same node at the same time step may collide: the rules to solve collisions guaran-
tee the conservation of the total number of particles and of the angular moment.
Several lattice gas automata have been proposed. The simplest one, based on the
HPPmodel [8], exploits a square lattice and it considers only a simple collision
rule: when exactly two particle enters the same lattice vertex from opposite direc-
tions, a collision is detected and the particles change their direction by turning left
90◦. In all other case, the particles do not change their direction.
Fig. 1 shows an ORESPICS agent implementing a single particle: all the particles
share the same behavior. Each agent is characterized by a property, defining its co-
ordinates on the screen: the value of the property is dynamically updated whenever
the agents moves. Initially, each agent places itself at a lattice node and chooses a
direction. The initial positioning guarantees that at most a particle is positioned at
a vertex with a given direction. After the initialization phase, each agent iteratively
executes three distinct phases. In the movement phase, it moves one step along its
direction. In the second phase, all particles lying in the same node exchange their
directions. The last step implements the interactions among particles: each particle
collects all the incoming messages and detects any possible collision. If a colli-
sion is detected, each particle involved in the collision changes its direction, by a
90◦ left turn. These phases are separated by synchronization barriers, implemented
through the Waitagents() primitive, to guarantee that each phase is initiated by any
agent only when all others agents have completed the previous phase. For instance,
the second barrier guarantees that each particle at node N starts collecting the mes-
sages only after any particle at N has sent its direction. In this way, all messages
will be received before analysing collisions.
ORESPICS supports a straightforward implementation of both the concurrent be-
havior of the automata and the graphical interface. As far as concerns concurrency,



Agent Particlei,j

property position

setimage Particle

initial-positioning()

repeat

Waitagents()

\∗ Movement

forward 1

mypos← pos() mydir← heading()

position← mypos

Waitagents()

\∗ Directions Echange

SendAllAndNoWait mydir toBreed (Particles) withProp (position=mypos)

Waitagents()

\∗ Conflict Resolution

count← 0 turn← false

while inmessage() fromBreed(Particles)

WaitAndReceive dir fromBreed(Particles)withProp (position=mypos)

count← count +1

if abs(mydir-dir)= 180◦ then turn← true

endwhile

if (count=1 and turn) then left 90◦

forever

Fig. 1. The cellular automata

the property mechanism is exploited in the second phase, to select the proper set of
receivers, i.e. the set of particles lying at the same vertex. The graphical interface
exploits the LOGO turtle graphics to show the evolution of the automata. We recall
that, in LOGO, each turtle is characterized by its position, i.e. its coordinate on the
screen, and by its heading measured in degrees clockwise from North. Since two
particles may collide if and only if their headings are directed against each other,
the collision may be detected by checking if the absolute value of the difference
of the heading values is 180◦. Furthermore, each particle involved in a collision,
simply turns toward its own left through 90◦.
Fig. 2 shows how the evolution of the system in the various phases can be mon-



Fig. 2. Evolution of the cellular automata

Fig. 3. Time evolution of a HPP gas

itored in ORESPICS. The left snapshot shows the initial situation, the central one
the situation after the movement of the particles, the left one the situation after con-
flict resolution. To model a realistic situation, some constraints have to be added
to this simple model. For instance, consider a gas constrained in a container. The
container is divided into two parts, separated by a wall with a hole. Initially, the gas
particles are confined in the bottom part of the container, then they start flowing
through the hole to the upper part till an equilibrium is reached. The behavior of
the particles bumping against the walls of the container is modeled by adding a new
rule to the automata: a particle bumping against a wall, bounces back from where it
came. The student can monitor the evolution of the system as shown in Fig. 3. The
code shown in Fig. 1 can be easily modified to implement more complex lattice
models. For instance, in the FHH model [14] the particles moves along the edges
of an hexagonal lattice. Even if a larger number of conflict situations have to be
considered, each conflict can be simply implemented by changing the direction of
a particle through ORESPICS graphical commands.

3.2 Searching and Optimization Problems

This section shows how the hill climbing search technique can be introduced through
a real life problem. The problem is proposed in [3] as follows:

The recently discovered planetoid, Geometrica, has a most unusual surface. By all
available observation, the surface can be modeled by the function h(θ, ρ):



Agent Hikeri

WaitAndReceive (xmin,xmax) from Master

x← random(xmin ,xmax)

goto (x, h(θ, x))

setimage Astronaut ∆← ε stop← false

repeat

h← h(θ, x)

if h(θ, x + ∆) > h then

pendown

x← (x + ∆)

goto (x, h(θ, x))

else

if h(θ, x−∆) > h then

pendown

x← (x−∆)

goto (x, h(θ, x))

else

setimage Flag

SendAndnoWait h to Master

stop← true

endif

endif

until stop

Fig. 4. Hill climbing: the code

h = 35000sin(3θ)sin(2ρ) + 9700cos(10θ)cos(20ρ)− 800sin(25θ + 0.03π) +
550cos(ρ + 0.2π)

where h is the height above or below sea level, θ is the angle in the equatorial plane
(defines longitude on earth), and ρ is the angle in the polar plane (defines latitude
on Earth). A space-ship has landed on Geometrica. The main goal of the astronauts
is to find the (θ, ρ) position of the highest point above the sea level on Geometrica
surface.

To reach the topmost point of Geometrica, an astronaut may adopt an hill climbing



Fig. 5. Hill Climbing

strategy and move always uphill. Obviously, this does not guarantee that the highest
point will be reached, because the astronaut can be stucked at the top of a low hill.
To increase the probability of reaching the top of Geometrica, the national minis-
ter for space missions engages a large number of astronauts: each astronaut should
start climbing at a different position, chosen randomly. The chief of the mission
remains on the space-ship and collects the results from the hikers, thus determining
the global maximum.
It is worth noticing that this example could be exploited also to introduce Monte
Carlo numerical techniques, because these techniques exploit a large set of ran-
domly generated values to define alternative, independent computations.
To simplify the ORESPICS’s implementation of the previous problem, we consider
an equivalent 2D problem, by fixing the parameter θ = θ in the h function. Fur-
thermore, each hiker performs a single exploration in its area. The resulting imple-
mentation is shown in Fig. 4. The master simply partitions the area to be explored
among the different astronauts, collects the results, and computes the maximum
height. This corresponds to a static assignment of the tasks to the astronauts. Each
hiker receives the coordinates of its area and puts itself in a position of the area
chosen at random. Then, it tries to move uphill: if this is not possible, it puts a flag
on the top of the hill, to show it has been visited. This is implemented through the
setimage command which changes the aspect of the hiker. At this point, the hiker
can stop (as in Fig. 4) or continue the exploration by choosing a new starting point.
The evolution of the microworld can be monitored in the execution window, as
shown in Fig. 5. In this figure, each astronaut performs two explorations before
stopping. Segments representing areas assigned to distinct hikers are represented
through different line styles. We can note that some astronauts may have a longer
way than others to reach their local peak, or some astronauts may climb faster
because they are younger. In Fig. 5, the hiker assigned to the central area has com-



Fig. 6. The Orespics Environment

pleted its exploration, while the others are still climbing. The resulting load unbal-
ance can be solved through a dynamic assignment. The master partitions the area
into smaller segments and initially assigns a segment to each astronaut. When an
astronaut reaches a local peak, it asks for a new area to be explored. When no more
areas are available, the master sends a termination message to each astronaut. Note
that the window includes buttons to start the execution, to stop it and a further but-
ton displays debug information.
Fig. 6 shows the main features of the ORESPICS development environment. The
toolbar shown on the top of the figure includes buttons to create a new project, to
define the agents, to compile and execute a project and other utilities. The character-
istics of each agent are defined in the AgentBrowser window, the leftmost window
in Fig. 6. The agent browser includes a folder for each agent of the microworld,
i.e. the master and the hiker agent. Initially, each folder is empty and is gradually
updated as soon as a new feature of the agent is defined. For instance, the agent
browser shows that two agents have been created, the Master Agent and the Hiker
one, and summarizes the main characteristics of each agent. The master is a single
agent, while the hiker agent belongs to a breed, i.e. it is a generic agent. Even if
ORESPICS associates a default icon with any agent upon its creation, the user can
modify the icon or choose a new one. Furthermore, several icons can be defined
for the same agent. For instance, a single icon, named shuttle is associated with
the Master agent. Two different icons, instead, are associated with the Hiker Agent.
The astronaut icon describes the hiker while it is climbing. The flag icon, instead,
is displayed when a local maximum is found. Each icon is uniquely identified by a



name. This name may be exploited by the agent to select the proper image during
the simulation, through the setimage command. ORESPICS supports animation as
well. For instance, an animation can be defined to show the hiker jumping when it
reaches the top of an hill. Each agent may be also paired with a set of sounds to
make the microworld more realistic. For instance, the effort made by the hiker in
climbing the hill can be modeled by a sound which mimics a labored breath.
The microworld definition window can be displayed by selecting the Position but-
ton in the agent Browser. It is possible to choose the size of the microworld, a
background image and music. Furthermore, the user defines the initial position of
each agent by simply dragging and dropping its icon, whilst the initial position of
the agents belonging to a breed is automatically defined by the system.
The rightmost windows in Fig. 6 are the Code definition window (the top one)
and the Project window (the bottom one). The Code definition window includes a
folder for each agent, identified by the standard icon of the agent. The figure shows
the code of the Hiker agent. Different primitives of ORESPICS-PL are displayed
by exploiting different colors and these colors can be defined in the ORESPICS
preferences.
Finally, the Project window displays the message produced by the system. For in-
stance, the window is exploited to display the output of the compiler. If the compi-
lation is not successful, the errors are displayed in a distinct folder for each agent.

3.3 Social Systems Modeling

Let us consider again the Example 2.2. The example is exploited in [13] to describe
a social system. Let us suppose that the agents are no longer particles in a physics
system, but people at a cocktail party. The alpha particles represent men, whilst
the beta particles represents women. The behavior of each individual is the same
of the particles in 2.2. The resulting system models a situation where if one group
has a majority of one gender, people of the other gender are not at ease and move
to a neighboring group. Obviously people are not expelled, but leave the group
voluntarily. The final effect is that most groups in the cocktail party, at the end,
include only men or only women.

4 Related Work

[16] observes that concurrency can be introduced in introductory courses on pro-
gramming, since concurrency is not harder than sequential computing, if it is in-
troduced by a proper environment. The proposed environment integrates the CSP
programming model with the JAVA language.
The introduction of computational science in high level schools has previously been
proposed. In [9] a set of proposals for the introduction of computational science



education in high school curricula is presented. This paper discusses also how the
introduction of supercomputers and high-performance computing methodology can
be instrumental in getting the attention of the teenagers and attracting them to sci-
ence. A presentation of more recent proposals can be found in [5].
Like ORESPICS, Starlogo [10] is a programming environment which is based on
an extension of LOGO. This language has been proposed to program the behav-
ior of decentralized systems. A student may program and control the behavior of
hundreds of turtles. The world of the turtles is alive and it consists of hundreds of
patches that may be seen of as programmable entities but without movement. Tur-
tles move parallel to one another and use the patches to exchange messages. Since
the underlying concurrency paradigm is the shared memory one, this completely
differentiates Starlogo from ORESPICS. The main goal of the Starlogo is the anal-
ysis and the simulation of the decentralized systems of the world, in contrast with
more traditional models based on centralized ones. It helps users to realize that the
individuals of a population may organize themselves without a centralized point of
control.
Recently, several visual environments [1,11] have been defined to support the de-
velopment of parallel programs. These proposals do not define a language designed
for didactic purposes, but provide support for editing and monitoring the execution
of parallel programs written in C with calls to the PVM or MPI library. No particu-
lar support is provided to program real life situations. To this purpose, the user has
to link some classical graphical library to the C program.

5 Conclusions

This paper has presented ORESPICS, a programming environment supporting the
learning of computational science in high school curricula. We are currently exper-
imenting the system with a group of students and the first results are satisfactory.
Problems from different areas, i.e. cellular automata programming, genetic pro-
gramming, simulated annealing, have been programmed through ORESPICS. The
system has also been adopted to introduce some classical computational science
algorithms, like algorithms from matrix algebra, or graph algorithms. As an exam-
ple, we have defined a set of animations to introduce systolic algorithms for matrix
manipulation, like matrix multiplication, transposition and transitive closure com-
putation. Currently, we are improving the system in several directions. A richer set
of functionalities to monitor the execution of the programs will be defined. Further-
more, we are defining a library, including a set of complex visualization techniques
through ORESPICS basic constructs. Finally, we plan to extend the language with
constructs to support the shared memory paradigm as well.



References

[1] A.Beguelin, J.Dongarra, A.Geist, and V.Sunderam. Visualization and Debugging in a
Heterogeneous Environment. IEEE Computer, 26(6), June 1993.

[2] B.Harvey. Computer Science Logo Style. MIT press, 1997.

[3] B.Wilkinson and M.Allen. Parallel Programming Techniques and Applications Using
Networked Workstations and Parallel Computers. Prentice Hall, 1999.

[4] C.A.R.Hoare. Communicating Sequential Processes. In ACM Communications,
volume 21, pages 666–677, 1978.

[5] C.Swanson. Computational science education. In
www.sgi.com/education/whitepaper.dir/.

[6] G.Capretti, M.R.Lagana’, and L.Ricci. Learning concurrent programming: a
constructionist approach. Parallel Computing Tecnologies, PaCT, 662:200–206,
September 1999.

[7] G.Capretti, M.R.Lagana’, L.Ricci, P.Castellucci, and S.Puri. ORESPICS: a Friendly
Environment to Learn Cluster Programming. IEEE/ACM International Symposium on
Cluster Computing and the Grid, CCGRID 2001, pages 498–505, May 2001.

[8] J.Hardy, Y.Pomeau, and O.de Pazzis. Time Evolution of Two-Dimensional Model
System. Invariant States and Time Correlation Functions. Journal Mathematics
Physics, 14:1746–1759, 1973.

[9] M.Cohen, M.Foster, D.Kratzer, P.Malone, and A.Solem. Get High School Students
Hooked On Science With a Challange. In ACM 23 Tech. Symposium on Computer
Science Education, pages 240–245, 1992.

[10] M.Resnick. Turtles, termites and traffic jam: exploration in massively paralle micro-
world. MIT Press, 1990.

[11] P.Kacsuk and al. A Graphical Development And Debugging Environment For Parallel
Programming. Parallel Computing Journal, 22(13):747–770, February 1997.

[12] P.Pacheco. Parallel Programming with MPI. Morgan Kauffmann, 1997.

[13] Mitchel Resnick and U.Wilensky. Diving into Complexity: Developing Probabilistic
Decentralized Thinking through Role-Playing Activities. Journal of Learning Science,
7(2).

[14] U.Frish, B.Harlacher, and Y.Pomeau. Lattice-Gas Automata for the Navier-Stokes
Equation. Physical Review Letters, 56(14):1505–1508, 1986.

[15] V.Sunderam. PVM: a Framework for Parallel Distributed Computing. Concurrency:
Practice and Experience, 2(4):315–339, 1990.

[16] P. H. Welch. Process Oriented Design For JAVA: Concurrency for all. In International
Conference on Computational Science, volume 2330, pages 687–687. Keynote
Tutorial.


