
Blockchain Based Access Control Services
Damiano Di Francesco Maesa, Paolo Mori

Istituto di Informatica e Telematica
Consiglio Nazionale delle Ricerche, Pisa, Italy

Email: d.difrancesco@for.unipi.it, paolo.mori@iit.cnr.it

Laura Ricci
Department of Computer Science

University of Pisa, Italy
Email: laura.ricci@unipi.it

Abstract—This paper presents a new design approach for
Access Control services leveraging smart contracts provided
by blockchain technology. The key idea of our proposal is to
codify Access Control policies as executable smart contracts on
a blockchain. This transforms the policy evaluation process into
completely distributed smart contract executions. In our fully
blockchain based approach also the Attribute Managers required
for the evaluation of the Access Control policies are managed by
the blockchain, i.e., they are implemented as smart contracts as
well. To study the feasibility of our proposal we present a working
reference implementation using XACML policies and Solidity
written smart contracts deployed on Ethereum. Finally we
evaluate the advantages and drawbacks of the proposal, making
also use of experimental results of our reference implementation.

I. INTRODUCTION

Nowadays, most digital resources such as data or services
are exposed on the Internet and they need to be protected
by a proper security support granting access only to those
subjects actually holding the corresponding rights. Access
Control systems are meant for this and they express the rights
of subjects to access resources by means of Access Control
policies, which are evaluated against the current access context
each time an access request is received to make the access
decision [1]. In some scenarios, the right of performing the
access is even continuously verified for the whole duration of
the access itself, in order to interrupt a previously authorized
access as soon as this right expires because of a change of the
access context [2]. Several models have been presented in the
scientific literature to define different kind of controls. Among
them, the Attribute-based Access Control (ABAC) model
[3] represents the access context through a set of attributes
describing the relevant features of the subjects, resources and
environment, and the Access Control policies consist of a set
of conditions over these attributes.

The Access Control systems can be deployed, managed and
run by the resource owners on their premises or by third parties
trusted by the resource owners. The management of an Access
Control system could represent a relevant cost for the resource
owner, who, to avoid these costs, can outsource the evaluation
of its security policies to external systems. For instance, in the
last years, a number of Access Control systems implemented
as independent services on top of the Cloud following the
Software as a Service (SaaS) paradigm have been proposed
(e.g., [4], [5]). These services often use an open-platform
API, in a way such that users are not locked to a specific

implementation, and they can exploit them to have a uniform
management of policy enforcement for all the resources they
own. As for the other Cloud services, each user pays the usage
of the Access Control Services on a per use basis.

This paper proposes an alternative design for Access Control
systems provided as a Service which is based on blockchain
technology. In our proposal, the Access Control policy is rep-
resented as a smart contract which is stored on the blockchain
through a proper transaction, and it is executed through other
transactions each time an access request needs to be evaluated
to make an access decision. The blockchain is also exploited
to manage a number of attributes which are required for
the evaluation of the Access Control policy. The proposed
approach presents some relevant advantages w.r.t. traditional
Access Control Services. For instance, the subjects issuing
access requests are guaranteed against unduly denial of access.
In fact, adopting a traditional Access Control system, the party
which actually evaluates the policy and enforces the result on
the resource could maliciously force the system to deny the
access to a subject although the policy would have granted it.
Instead, in our blockchain scenario, the subjects are enabled
to verify how the policy was enforced when they performed
an access request which has been suspiciously denied.

The paper is structured as follows: Section II presents a
brief background, focusing on the XACML standard architec-
ture presentation, as well as the few available related work.
We do not provide a background on blockchain technology,
assuming a basic knowledge of its concepts. In Section III
we describe the general architecture of our blockchain-based
Access Control system, while Section IV presents our proof-
of-concept implementation based on Ethereum. In Section V
we discuss the advantages and disadvantages of our approach
and, finally, Section VI presents our conclusions and future
work.

II. BACKGROUND AND RELATED WORK

A. XACML Standard

This section gives a very brief description of the eXtensible
Access Control Markup Language (XACML, defined by the
OASIS consortium [6]) reference architecture (shown in Fig-
ure 1), which will be referred in the rest of the paper. For a
detailed description of the XACML standard and its reference
architecture see [6].



Fig. 1. XACML reference architecture.

1) Policy Enforcement Point (PEP): The Policy Enforce-
ment Point is the component, paired with the resource to be
protected, which is able to intercept the access requests, it
triggers the decision process, and enforces the related result
by actually allowing or denying the execution of the access.

2) Policy Administration Point (PAP): It is the component
in charge of managing Access Control policies.

3) Attribute Managers (AMs): AMs are the components
that manage the attributes of subjects, resources, and environ-
ment, allowing to retrieve and update their values. They could
run in the authorization service itself, or they could be run in
other machines in the same domain, in other administrative
domanins, or even by third parties.

4) Policy Information Points (PIPs): The set of attributes
required for the policy evaluation are, in general, managed by
distinct Attribute Managers. Policy Information Points are the
interfaces for interacting with Attribute Managers allowing to
retrieve the latest values of such attributes and to update them.

5) Policy Decision Point (PDP): The Policy Decision Point
is the evaluation engine that takes a policy, an access request,
and the attribute values as input, evaluates the policy and
returns the decision (i.e., access permitted or denied).

6) Context Handler (CH): The Context Handler is the
component which acts as orchestrator of the decision process,
interacting with the other components of the architecture to
manage the workflow of the decision process.

B. Related Work

At the best of our knowledge, due to the novelty of the topic,
only a few proposals of blockchain related Access Control
systems have been presented. In [7] the authors combine
blockchain and off-chain storage to build a personal data
management platform focused on privacy. [8] proposes a
new framework for blockchain based Access Control focused
on IoT. A blockchain based lightweight and robust Access
Control framework addressing the security and privacy issues
in Big Data is introduced in [9].

III. BLOCKCHAIN-BASED ACCESS CONTROL SERVICE

This paper proposes a novel and alternative approach to
implement Access Control Services exploiting blockchain
technology. Outsourcing the Access Control functionalities to
third party Access Control services is quite common today,
because this relieves the resource owner from the burden of

Fig. 2. Architecture of the blockchain based Access Control Service.

configuring and maintaining complex Access Control systems
that would cause relevant costs both for acquiring the hard-
ware and software equipments and for their management and
administration.

The basic idea underlying our approach is to build an
Access Control Service on top of a blockchain, i.e., to exploit
a blockchain both to store Access Control policies and to
perform the access decision process (i.e., to evaluate the
relevant policies every time an Access Control request is issued
by a user who wants to access a resource). To this aim, we
represent an Access Control policy through a smart contract,
called SMART POLICY, which is stored on the blockchain
with a proper transaction when the resource owner creates (or
updates) it. Since the blockchain is an append only ledger, once
uploaded on the blockchain a SMART POLICY will be stored
on it forever. However, it can be updated or even disabled
with a proper transaction. Each time a subject issues an access
request, a proper transaction on the blockchain is created by
our service. This transaction includes a reference which causes
the evaluation of the SMART POLICY and the production of the
related access decision (e.g., Permit or Deny). The evaluation
of such policy is completely executed on the blockchain, as we
detail in the following. For the sake of simplicity, here and in
the following we say that “the policy evaluation is executed on
the blockchain” meaning that this SMART POLICY execution
is replicated among the miners elaborating the new block to
be added to the blockchain.

The solution we propose in this paper is focused on ABAC
policies, although we think that it could be easily extended
to cover other Access Control models. An ABAC policy
consists of a set of rules (see Section I) that are combined
exploiting proper combining algorithms (e.g., simple logical
operators such as AND, OR, or other algorithms) and they
must be satisfied accordingly in order to grant the requested
access. For the policy writing, we adopt XACML because
it is a very expressive language allowing to write complex
ABAC policies. Moreover, since it is a well known standard,
some tools for policy editing and management are available
from both academic and business organizations. An XACML



policy is properly translated into a smart contract, the SMART
POLICY, in order to store it on the blockchain and execute
it when necessary. Hence, the SMART POLICY can be seen
as an executable version of the XACML policy. In other
words, following the XACML naming, we could say that
the SMART POLICY embeds a Policy Decision Point (PDP)
customized for the execution of a specific Access Control
policy. The attributes required for the evaluation of the poli-
cies are stored on the blockchain as well, and they are
managed by a set of proper smart contracts. Following the
XACML naming, the entities which created those contracts
are the Attribute Providers, and the contracts storing the set
of attributes released by the same entity can be seen as the
Attribute Managers of such Attribute Providers. Hence, we
will call such smart contracts SMART AMS. A SMART AM
is invoked by a SMART POLICY to retrieve the current values
of the attributes it manages. Moreover, the part of the SMART
POLICY which invokes the SMART AMS could be seen as the
Policy Information Points (PIPs), i.e., the components of the
XACML reference architecture devoted to the management of
the attributes required for the evaluation of the policy.

The architecture of the proposed system is depicted in
Figure 2. In the following of this section, we describe in
details how we represent Access Control policies, how we
create and store them on the blockchain and how we evaluate
them by retrieving the required attributes to produce an access
decision as a consequence of an access request. In particular,
with reference to Figure 1, we describe how the architectural
components in charge of the previous tasks according to the
XACML standard are defined on top of blockchain technology
in the proposed system. Do note that in our framework, the
traditional coordination tasks of the CH are split between
two components: an off chain component and the blockchain
protocol itself (respectively, CHO and CHB in Figure 2).

The architecture of our Blockchain-based Access Con-
trol system is independent from the underlying blockchain
technology chosen, provided that such blockchain supports
smart contracts (the proposed implementation, however, is
based on a specific blockchain, Ethereum). In a traditional
Access Control system, the only information the resource
owner has to provide to initialize the Access Control system
is the XACML policy. However, although the usage of our
system does not require technical knowledge of the underlying
blockchain technology, further data could be required to use
it depending on the blockchain chosen. For example in an
Ethereum style blockchain, gas needs to be paid [10]. Any user
that wants to use such a system needs to own a wallet holding
some funds. So the user needs to provide a XACML policy
alongside some (not sensible) wallet informations, and it will
be required to perform additional operations (e.g. signing
blockchain transactions) to use the system functionalities.

A. New policy creation

The first step of the system life cycle is the policy creation.
First of all, the resource owner writes an XACML policy
which defines the access rights on the resource(s). The policy

is submitted to the PAP with the task of storing it on the
blockchain. A simple solution would be to simply store the
policy expressed in XACML (even compacted or referenced)
on the blockchain (as proposed in [11]). In this paper, instead,
we leverage smart contracts capabilities to define a more
powerful solution. In particular, before storing the policy on
the blockchain, the PAP translates the logic expressed by the
XACML policy into a smart contract, the SMART POLICY. The
SMART POLICY is not a simple rewriting of such policy, but
it contains all the logic for its execution as well. For instance,
each XACML statement referring to an attribute is translated
inserting into the smart contract a function call to retrieve
the current attribute value from the corresponding attribute
manager each time the SMART POLICY is invoked. This is
possible because in our approach the Attribute Managers are
represented as smart contracts stored on the blockchain as
well, the SMART AMS. Furthermore, the SMART POLICY
also encapsulates the logic for the policy evaluation process.
Summarizing, codifying a policy as a SMART POLICY allows
us to write blockchain executable policies from XACML ones.
Such SMART POLICIES perform the tasks that in traditional
Access Control systems are delegated to the PDP and PIP.
In fact, the decision process of the PDP is now performed
through the smart contract execution, and the attribute values
retrieval process of the PIP is achieved through smart contract
function calls. In order to be revoked, the SMART POLICY also
contains a self destruct function callable only by the owner.
Do note that in an immutable blockchain a deleted contract is
not actually removed, but rather marked as not callable.

Once the PAP finishes translating the XACML encoded
policy into a SMART POLICY, such smart contract is compiled
and deployed on the blockchain by the CHO. The expenses
related to the SMART POLICY deployment are paid by the
policy creator. This is correct since the policy creator is the
entity that benefits from having a controlled access on the re-
source. Finally, when the SMART POLICY gets accepted by the
blockchain, its address (or any other form of contract linking
provided by the specific blockchain technology adopted) is
stored by the PAP on the SMART POLICY Table (SPT) in the
entry corresponding to the resource it refers to.

B. Access request time

Once a SMART POLICY has been created and stored on
the blockchain, the blockchain based Access Control service
starts waiting for access requests. The PEP is embedded in
the piece of code which implements the interface to access
the protected resource in such a way that it intercepts each
new access request. The component in charge of bridging the
request with the underlying blockchain, instead, is the CHO.
Hence, when the PEP intercepts an access request, it forwards
it to the CHO. The CHO interacts with the PAP sending it the
ID of the resource in the access request to identify the SMART
POLICY to be invoked on the blockchain. The PAP returns to
the CHO the address of this SMART POLICY by retrieving it in
the SPT exploiting the ID of the resource as index to locate the
right entry in the table. In order to trigger the execution of such



SMART POLICY, the CHO translates the access request in the
proper format. This usually means simply encoding it into a
message (i.e., blockchain transaction) to be sent to the SMART
POLICY, set with the correct parameters. This message will
be processed by the blockchain triggering the SMART POLICY
to be executed (possibly executing other smart contracts of
the AMs needed) and eventually producing a Permit or
Deny result. The CHO reads back from the blockchain the
decision and informs the PEP that then will actually enforce
the decision by granting or denying the request accordingly.
The expenses of the evaluation transaction are paid by the
subject making the request (since the subject will be the entity
benefiting from the granted access). This prevents subjects
from spamming requests to the system, since they are limited
by the value they own. The drawback is that the subject
needs to manage a wallet holding value on the underlying
blockchain.

IV. PROOF OF CONCEPT IMPLEMENTATION ON ETHEREUM

In order to validate and evaluate the proposed approach,
we have developed a proof of concept implementation of the
blockchain based Access Control System presented in this
paper. We have chosen the Ethereum blockchain protocol (as
of December 2017), because it is strongly focused on smart
contracts and because it is nowadays a widely used smart
contract ready blockchain protocol. We then chose Solidity
[12] as programming language to write our smart contracts
and Java to write the off-chain side of our framework.

To deploy and test our system, we used the International
Educational blockchain academic testnet (part of the Open
Blockchain initiative [13]). This is an Ethereum based private
testnet with nodes currently run by North American and Euro-
pean universities, and it allowed us to have an environment at
the same time controlled and somewhat realistic. To interact
with the testnet blockchain we used one of the most used
Ethereum clients: geth [14]. We did not use the Ethereum
main chain because of the obvious cost constraints, and also
to avoid to burden the immutable Ethereum main chain with
our test data that are intended to be temporary.

To allow our Java client to interact with geth we used the
web3j [15] Java library. web3j is a lightweight library that,
among its many functionalities, supports all of the JSON-RPC
API offered by geth.It provided us with the needed tools to
bridge the blockchain components of the system with the off-
chain components.

We note that our system implements many utility function-
alities for the system manager and the users (for example
to obtain the list of the last n submitted access requests),
but in the following we will only focus on the two main
operations of new policy creation and access request, due to
space constraints.

A. PEP

The PEP is written in Java and it is the component of the
system interacting with the protected resource. Our system is
designed as a program pluggable to already existing Access

Control scenarios. This is why the PEP is inserted in the
access interface of the resource and provides an API with
a method to submit an access request (written in XACML)
which returns a response (written in XACML as well). The
PEP was left intentionally lightweight since its main task
is to bridge our system with the resource and subjects. The
logic functionalities of blockchain interaction are delegated to
other internal components. This is why the PEP only forwards
the received requests to the CHO, possibly enriched with
additional information, if available.

B. PAP

The PAP is written in Java and it is the software component
in charge of policy management and retrieval. Its main tasks
are to transform an XACML Access Control policy written by
the resource owner into a SMART POLICY, and to remember
the mapping between SMART POLICIES and resources. As a
matter of fact, the PAP embeds a XACML parser that translates
the policy in a smart contract written in Solidity. The smart
contract generated contains some utility functions which are
the same for all policies (e.g., a suicide function that is invoked
to revoke the SMART POLICY) and data (e.g., the address of the
resource owner, marked as private field). The main function of
the SMART POLICY is called evaluate and represents the
executable version of the XACML policy. In the following,
we show how the XACML policy is translated in Solidity to
produce the body of the evaluate function.

An XACML policy consists of a policy Target and a set
of rules, each including their Targets and Conditions [6]. We
focus our description on the translation of the Targets and
rules of the policy, being the translation of the Conditions very
similar. A Target is a combination of <Match>..</Match>
elements, each such element will be called MATCHE in
the rest of this paper. Each MATCHE is translated as a
check of the evaluate function. The type of the Solidity
function to be used to implement the check is derived from
the XACML MatchId field and the data type from the
XACML DataType field of <AttributeValue> and
<AttributeDesignator>. Each check, to be performed,
needs the current value of an attribute at access request time.
Hence, the SMART POLICY must be also able to retrieve
these values in order to compute the decision result. This
would be a task of a PIP in a traditional XACML system.
In our proposal we assume the existence of an ecosystem of
SMART AMS (the smart contracts having the function of AMs
deployed, maintained and advertised by third parties), and we
integrate the PIPs functionalities in the SMART POLICY. For
example the smart contract of an institution could offer public
informations about its employees (e.g. their role). SMART
AMS could also require some way of payment (either in
or off chain) for the use of their services, so a market of
AMs could naturally emerge. For the sake of simplicity, in
this paper we assume to deal with static attributes only, i.e.,
attributes which rarely change their values as a consequence of
administrative actions typically requiring human intervention.
Any resource owner who creates a new policy needs to specify



Fig. 3. Simplified XACML to Solidity parser example.

in such policy the AMs to be queried to retrieve the required
attribute values. To this aim, for each MATCHE the resource
owner chooses the SMART AM to be called by specifying
in the <AttributeDesignator /> tag the SMART AM
function name through the AttributeId field and the
SMART AM address through the Issuer field.

Finally, the evaluate function needs to return the result
of the decision process to the CHO. One solution would be to
simply save the result as data in the state of the contract, but,
instead, we opted for firing an event containing the request
id (i.e., the id of the transaction encoding the access request)
paired with the corresponding result. Events are data saved on
the EVM log instead of the contract storage space, exploiting
them to return the result of the evaluation function is a
cheaper way of storing the decision for every request, at the
expense of making such decisions invisible ad so unusable
to the contracts. In our current system this limitation is not
a problem, but this approach could of course be changed if
needed.

Once the PAP has finished creating the contract it sends it
to the CHO to be compiled and deployed on the blockchain,
and waits for an answer from the CHO. If the contract
deployment phase from the CHO (see later) is successful,
the CHO communicates to the PAP the address of the newly
deployed contract. The PAP then stores in the SPT a new
entry consisting of the resource ID and the received address.

C. CH

The off-chain side of the CH (i.e., CHO) is a component
written in Java, and it has the task of managing the access
to the blockchain on behalf of the PAP and PEP. At policy
creation time, when the CHO receives from the PAP a SMART
POLICY written in Solidity it compiles the Solidity code
to EVM bytecode [10] using the solc compiler [16]. The
CHO then uses web3j to wrap it into a transaction for the
deployment on Ethereum through the geth node. At this
stage the CHO can optionally perform additional checks on the
contract deployment transaction. For example, it could query
the blockchain (using the geth node) to check whether the
policy creator has enough credit (i.e., ether) in its account to
pay for the expected gas cost, or it could check whether the
SMART AMS invoked in the SMART POLICY do actually exist
on the chain.

An important consideration is that the contract deployment
transaction needs to be signed by the user who is paying for
it. In particular, once the transaction is ready to be signed,
it is made visible to the resource owner who can check it
(possibly with an automatic tool), sign it, and then commu-
nicate the signed transaction back. In our implementation the
user interacts with the system through an interactive interface
where it is first required to insert the policy it wants to add,
then it is informed of the derived smart contract and relative
deployment transaction waiting to be signed. The user can
then check that the transaction correctly represents the policy
it intended and, if it is satisfied, communicate the signed
version of the transaction. Once the CHO receives the signed
transaction it checks the signature, and if it is correct it sends
it to the geth node to broadcast it to the network. The user
receives a confirmation or error message depending if the
deployment was successful or not. This approach guarantees
that the private information about the users wallets are not
disclosed to our framework. Once the transaction is actually
inserted by a miner in a block, i.e., the SMART POLICY is on
the blockchain, the CHO receives back from geth the contract
address, which is returned to the PAP to be stored in the SPT.

At access request time, the CHO receives an XACML access
request from the PEP. The CHO parses such request to retrieve
the resource ID and the other attribute values, and it queries the
PAP for retrieving the address of the SMART POLICY paired
with that resource. Then, the CHO wraps the request into a
transaction encoding a call to the evaluate function of the
SMART POLICY referenced by the address retrieved from the
PAP. This transaction needs to be signed by the subject that
submitted the access request (as explained in Section III-B).
This step exploits the same signing process detailed above
but with the difference that the accessing subject, and not
the resource owner, is the one in charge of checking and
signing the transaction. Once the transaction is signed, it
is passed by the CHO to geth, that will broadcast it on
the Ethereum network. Once the transaction is mined the
evaluate function fires an event with the evaluation result.
This event is read by geth that passes it to the CHO which,



in turn, communicates the result to the PEP.

D. PDP & PIPs

The traditional tasks of PDP and PIPs are merged together
into the SMART POLICY. This contract is dynamically gener-
ated by the PAP from an XACML policy and, once deployed,
resides on the Ethereum blockchain in EVM bytecode. The
decision process of the PDP is performed by the decentralized
execution of the evaluate function of the contract and the
attribute value retrieval is performed by internal calls of the
contract directly to SMART AMS on the same chain. All the
communication is achieved through smart contract function
calls and event firing that are implicitly managed by the
Ethereum protocol, so we can say that the SMART POLICY
also performs some CH tasks (i.e., CHB).

V. DISCUSSION AND EXPERIMENTS

The main advantage of our proposal is that the policy evalu-
ation process is performed by smart contracts on a blockchain.
This allows our decision system to inherit the blockchain
technology advantages, i.e., always available, distributed (so
no single point of failure or attack), tamper resistance, etc.
An interesting property is auditability, which is derived from
the immutability and transparency properties of blockchain
technology. Since the smart contract execution is performed
by the blockchain (i.e., replicated among the miners), it
is beyond the control of both the resource owner and the
subject making the request. So neither of them can forge a
false decision. Moreover both the policy and the Permit or
Deny evaluation result linked to the request identifier are
stored on the blockchain as well, so they are both publicly
visible. Any user whose access is fraudulently denied by the
resource owner can prove that the access right should have
been granted instead through the public data on the blockchain.
Since the blockchain is immutable this also holds for old
SMART POLICIES. Even if a SMART POLICY has been revoked,
its code and entire access request log remain still accessible
on the blockchain.

Do note that in our reference implementation the resource
owner could still fraudulently ignore access requests before
any trace of them is left on the blockchain, by simply
modifying the PEP to discard some of them. This issue could
be avoided by having the resource owner advertise publicly
the address of the SMART POLICIES allowing the subjects to
directly send transactions to such contracts to obtain the access
to the resources.

A clear consequence of auditability is a potential privacy
issue. Some solutions to properly mask the publicly available
information stored on the blockchain might be needed in a
real world application.

One disadvantage of our proposal can be that blockchain
is still a novel technology, and so most users have never
used such technology, nor they have familiarity with the basic
concepts of it. Although the proposed system automatically
interacts with the underlying blockchain, users still need a
basic understanding of the protocol, since they are required

to own a wallet to sign and pay for transactions. Even if
transaction checking and signing (described in Section IV-C)
as well as auditability checks described in the previous section
are operations that can be performed automatically by a secure
third party program, this would still require the user to trust
such software. Hence the problem of trust would just be moved
and not solved. The lack of user familiarity may be an issue
for initial widespread adoption.

Another main concern about blockchain technology is per-
formances. The need for a distributed consensus introduces an
overhead non-existent in a centralised model where the system
state updates are managed by a single (trusted) entity. More-
over, the replication of the shared state and replication of new
data validation across all the nodes determines an additional
burden for the participants. Because of these observations if we
want to base our proposed system on a public blockchain we
expect to incur in an inevitable loss of performances compared
to a traditional centralised system, i.e., an increase in resource
needed to run the Access Control system and an increase in the
evaluation time to obtain an access decision. We also remark
that, usually, public blockchain protocols introduce a cost per
transaction (i.e., fees and gas).

To investigate this aspect, we evaluated the performance of
our reference implementation. We analyzed the performance
with three measurements: time, resources and monetary cost.
We do note that even the centralised side of our reference
implementation is different from a traditional system, mainly
for the need of a XACML to Solidity parser. Nevertheless the
parser complexity is guaranteed linear in the size of the policy
(and easily parallelizable in case of policy sets).

1) Time: The time overhead introduced by on-chain opera-
tions of our implementation for the policy creation is caused by
the SMART POLICY deployment phase, while at access request
time, it is instead caused by the SMART POLICY execution.
We do not consider the time needed for the user to check
and sign a transaction since it is completely user dependent
(and can be very short in comparison if automated). Both
the SMART POLICY deployment and execution times mainly
consist in the time elapsed for the corresponding transaction to
be mined into a block. So, both operations times are roughly
equal on average to the transaction confirmation time, that
depends on the underlying blockchain chosen. In our case,
the Ethereum blockchain is designed to add a new block on
average every 14 seconds. This means that, as long as there
is enough free space in new blocks, a new transaction will
take at most 14 seconds on average. In practice this is com-
plicated by transaction propagation times (that might become
comparable to mining time for poorly connected nodes). In
case of transaction congestion in blocks the transaction can
actually take longer to be included in a block. But this time
can be manipulated by our system as well as by the other
blockchain users by choosing a more competitive gas price
(i.e., choosing to pay more for faster confirmation). Due to this
possible manipulation of confirmation time by the users there
is no simple way to determine how many blocks on average
a new transaction takes to be confirmed. We performed the



corresponding measurements for our implementation, but our
testnet was never congested and so transactions were almost
always added on the first available block. This unsurprisingly
proved our assumption correct without giving us any insight
on a more general case. The main chain is currently (Ethereum
block 4 853 654) experiencing a more relevant congestion
problem, with almost all the latest blocks between 90 and 99%
full. This results in an higher confirmation time, with a median
over the last 1500 blocks of 5 blocks wait for transactions to
be mined [17].

2) Resources: In our framework, the main need for com-
putational resources is for running the blockchain client. Our
reference implementation is based on the Ethereum client
geth, that nowadays runs fine on standard hardware (i.e.,
two or more CPU cores, 4 or more GB of RAM memory,
and a good network connection) but it requires some storage
space (currently more than 255 GB for storing the main
Ethereum blockchain). However, since we delegate the storage
of policies to the blockchain, we save the storage space
required by traditional PAP implementations, although the size
of this space is not comparable to the space needed to save
the entire blockchain. The storage space requirement can be
an issue in some scenarios. To solve this issue two different
solutions are possible. The first solution relays on a third
party that will manage the blockchain side of the client. Of
course this introduces a new cost in the system as well as a
point of centralization that needs to be trusted. The second
solution, instead, is to use a light client to interact with the
blockchain. This would result in a reduction of the storage
requirements from hundreds of GB of memory to a few GB,
at the expense of potential trust requirement in other full nodes
(depending on how the light node is actually implemented).
Currently geth provides a ’light node mode’ but it is still
in beta version. Choosing a light client based implementation
would allow to deploy our system on most of the nowadays
common machines.

3) Monetary Cost: Using fee (or gas) based blockchain
technology introduces a monetary cost for every transaction
that is mined. Our reference implementation is based on the
Ethereum protocol, in which gas is spent by transactions.
This cost can be thought as the one charged by a third
party service to use its services. To estimate such a cost
we evaluated the gas cost of our two kinds of transactions:
SMART POLICY deployment transactions and SMART POLICY
evaluation execution transactions.

SMART POLICY deployment transactions: The gas cost of a
transaction deploying a new contract (GasD) can be expressed
as follows:

GasD = FixedCostD + CodeCost+ InitCost

Where FixedCostD represents the fixed cost of a contract
deployment, CodeCost represents the cost to store the actual
data of the contract (i.e., the code) on the blockchain and
InitCost represents the computational cost incurred to run
the constructor instructions and initialize the contract. In our
implementation each contract representing a policy has a

fixed core of utility methods and variables that contribute
as a constant amount to both CodeCost and InitCost. For
instance, to save the address of the contract creator in the
constructor we require a store operation (which currently
costs 20 000 gas) that contributes to InitCost, while adding
functions to revoke the SMART POLICY increases CodeCost
because it increases the code length. The policy dependent
contributions to CodeCost and InitCost are mainly due to
the number of rules, their complexity and the number of
different SMART AMS they require.

Obviously, more rules and more complex rules require more
code to be stored and managed. Since each rule consists of
a set of MATCHES, we measure the complexity of a policy
as a function of the number of MATCHES and of their
complexities. Less obvious is the contribution of the number of
SMART AMS. This is due to the fact that the SMART POLICY
stores the addresses of the SMART AMS needed to retrieve
required attributes. These addresses are known at deployment
time and are saved in contract variables by the constructor, so
each address to be remembered causes a costly store operation.
Do note that the internal complexity of the SMART AMS
does not influence the deployment cost of a contract requiring
them (but it will influence its execution cost). In our test
we experienced that to deploy an empty policy (i.e., always
Permit), we consumed about 175 000 gas, while to deploy
a policy with one simple rule performing the comparison of
the value of one attribute with a constant (i.e., invoking one
SMART AM) we consumed about 280 000 gas. Adding each
additional SMART AM consumes approximately 26 000 gas
and each additional simple MATCHE in the policy consumes
about 46 000 gas (but complex MATCHES may consume more
gas). These are very rough estimations, and should only be
considered as a lower bound of the actual cost. Knowing
our current gas limit of about 4 700 000 for each block, it
is possible to estimate the maximum size (i.e. number of
different SMART AMS and MATCHES) of a deployable policy.
According to our optimistic estimation, for example, a policy
using 10 different SMART AMS and 90 MATCHES would
be about the maximum size that could fit in one block.
We do remark that this is just a constraint of our reference
implementation and not of the proposal itself.

SMART POLICY evaluation transaction: To evaluate a
SMART POLICY we use a transaction calling the evaluate
function of the contract (See Section IV). The gas cost of such
transaction (GasE) can be expresses as follows:

GasE = FixedCostE + EvalFunctionCost

Where FixedCostE represents the fixed cost of the transac-
tion performing the call (and carrying the function parame-
ters), and EvalFunctionCost represents the cost to execute
the evaluate function. As explained in Section IV-B, the
evaluate function is a disjunction or conjunction of boolean
functions representing a MATCHE each. Furthermore each
encoded MATCHE usually invokes one (or more) SMART
AM to retrieve attribute values. This means that the cumu-
lative evaluation cost depends not only on the number of



MATCHES and their individual complexity, but also on the
complexity of the SMART AMS invoked. The gas cost estima-
tion is further complicated by the use of short circuiting logical
operations. Hence, the execution of the same expression could
have very different costs depending on the actual values at
execution time. To test this we performed some experiments
where we evaluated a policy using three different SMART
AMS and eighty MATCHES in conjunction. The first time we
purposely choose attribute values to satisfy all the MATCHES,
obtaining a Permit result consuming 210 643 gas for the
relative transaction. Instead, setting the attribute value of the
first MATCHE to fail the condition, the entire expression
short circuits to false without evaluating all the remaining
MATCHES, resulting in a Deny decision consuming 32 267
gas only for the relative transaction. The second execution
consumed approximately 15% of the amount of gas consumed
by the first execution. Moreover two thirds of this cost where
due to the fixed cost of the transaction itself (more than
20 000 gas), considering EvalFunctionCost alone for both
the second execution cost about 5.6% compared to the first.

Due to all this it is difficult to get a general estimation of
the cost of the evaluation function. To give an estimation of
the gas cost of an evaluation we deployed the SMART POLICY
of a simple policy of 90 MATCHES referencing ten SMART
AMS. The original policy was a conjunction of simple boolean
conditions that we knew being true with the values returned by
the SMART AMS chosen (decided to avoid short circuiting).
The resulting cost of an evaluation transaction (returning a
Permit) in this controlled environment is of approximately
230 000 gas. This shows how the evaluation cost (in the worst
case that all MATCHES need to be executed) is a lot lower
than the initial deployment cost. For example, for the policy
of the above example the evaluation transaction cost about
5% of the gas consumed by the corresponding deployment
transaction. Of course this is just a rough estimation, it is
very easy to change such estimations by using a very costly
SMART AM to arbitrary increase the evaluation cost without
influencing the initial SMART POLICY deployment cost (that is
independent of it). Given a reference policy invoking a single
SMART AM and built by a conjunction of n simple single
attribute MATCHES crafted to be always true over the SMART
AM returned values, we depicted in Figure 4 the deployment
and execution costs for increasing values of n.

VI. CONCLUSIONS

This paper presents an approach to integrate a traditional
Access Control system with blockchain technology.

By leveraging blockchain technology properties, our ap-
proach enables the subjects requesting access to the resources
to verify that the policy has been correctly evaluated, dis-
closing malicious or faulty third parties fraudulently denying
access to subjects. We have presented a proof of concept
implementation, which exploits Ethereum to map a subset of
the basic functionalities of the reference XACML architecture
to smart contracts executed on the blockchain.

Fig. 4. Gas cost of deployment and evaluation of the reference policy with
increasing number of MATCHES n. The last point (n=100) is obtained by
artificially increasing the block gas limit.

We plan to investigate alternative mappings of the XACML
reference architecture logical modules to blockchain and off-
chain functionalities. We will also address the potential privacy
issues of the current implementation. Finally, we also plan to
extend our approach in order to deal withthe Usage Control
model [2], which is an extension of the Access Control one
for mutable attribute management.

REFERENCES

[1] Sandhu, R.S., Samarati, P.: Access control: principle and practice.
Communications Magazine, IEEE 32(9) (1994) 40–48

[2] Lazouski, A., Martinelli, F., Mori, P.: A prototype for enforcing usage
control policies based on XACML. In: Trust, Privacy and Security in
Digital Business. TrustBus 2012. Lecture Notes in Computer Science,
vol 7449, Springer-Verlag Berlin Heidelberg (2012) 79–92

[3] Vincent C. Hu, David, F., Rick, K., Adam, S., Sandlin, K. Robert, M.,
Karen, S.: Guide to attribute based access control (ABAC) definition
and considerations (2014)

[4] Lang, U.: Openpmf scaas: Authorization as a service for cloud & SOA
applications. In: Second International Conference on Cloud Computing
(CloudCom 2010). (2010) 634–643

[5] R. Wu, X. Zhang, G.J.A.H.S., Xie, H.: ACaaS: Access control as
a service for iaas cloud. In: International Conference on Social
Computing. (2013)

[6] OASIS: eXtensible Access Control Markup Language (XACML)
version 3.0 (January 2013)

[7] Zyskind, G., Nathan, O., et al.: Decentralizing privacy: Using blockchain
to protect personal data. In: Security and Privacy Workshops (SPW),
2015 IEEE, IEEE (2015) 180–184

[8] Ouaddah, A., Abou Elkalam, A., Ait Ouahman, A.: Fairaccess: a new
blockchain-based access control framework for the internet of things.
Security and Communication Networks 9(18) (2016) 5943–5964

[9] Es-Samaali, H., Outchakoucht, A., Leroy, J.: A blockchain-based access
control for big data. International Journal of Computer Networks and
Communications Security 5(7) (2017) 137–147

[10] Wood, G.: Ethereum: A secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper (2014)

[11] Di Francesco Maesa, D., Mori, P., Ricci, L.: Blockchain based access
control. In: IFIP International Conference on Distributed Applications
and Interoperable Systems, Springer (2017) 206–220

[12] Solidity documentation. https://solidity.readthedocs.io/en/develop/
[13] Open Blockchain initiative. https://github.com/ethereum/solidity/releases
[14] geth client. https://github.com/ethereum/go-ethereum/wiki/geth
[15] Svenson, C.: Blockchain: Using cryptocurrency with java. Java

Magazine, January/February (2017) 36–46
[16] Solidity compiler releases. https://github.com/ethereum/solidity/releases
[17] Ethereum gas station. https://ethgasstation.info


