
SPaCIoS
Secure Provision and Consumption in the Internet of Services

STREP Project number: 257876

Objective ICT-2009.1.4 c: Technology and Tools for Trustworthy ICT

01 Oct 2010 − 30 Sep 2013

www.spacios.eu

Alexander Pretschner, POFI 2011, Pisa, June 8 th, 2011
jww J. Oudinet, M. Büchler, SPACIOS consortium

Agenda

� Motivation
� Consortium
� Project structure
� Resarch Core (KIT perspective)
� Conclusions

3

Services and their main stakeholders

� Services provide business functionalities

� Business functionalities are typically the result of composing distributed services

� Services include web-based applications and web services

� Services do not imply any specific technology for implementing them

� Four main service stakeholders (having their own se curity requirements)

� Producers : design and implement services

� Providers : provide and deploy services

� Consumers : consume services at runtime

� Intermediaries : provide services to consumers by collecting services by providers

– have specific trust relationships with consumers and providers

– e.g., service brokers, service aggregators, etc

� State of the art

� Security analysts : offer consultancy to stakeholders to analyze security requirements

� Existing tools : not integrated, not based on a scientific approach, not at all automated, etc.

4

D
esign/

Im
plem

.
D

eploym
ent/P

rovision
C

onsum
ption

B
usiness

R
equ.

P
roduction

P
rovision and C

onsum
ption

S1
S1

S1
S1

S1
S1

S1
S1

S1

Service
Producer

Service
Producer

Service
Producer

Service
Provider

Service
Provider

Service
Provider

Service
Intermediary

Service
Intermediary

Service
Consumer

Service
Consumer

Service
Consumer

Security
analysts

SPaCIoS

Security
analysts

Security
analysts

SPaCIoS

Security
analysts

SPaCIoS

Scope of advancements wrt. state of the art

AVANTSSAR analysis of Google SAML SSO: also for attackers!
Physician

Google

Hospital
(Identity Provider IdP)

Other healthcare
related services

Health
insurance

SSO

A malicious
service

provider can
access the
data of the
physician

located at all
other services
connected via
Google SSO

Technical Motivation: Google SAML-based Single Sign -On (SSO)

Motivation: SSO

SAML SSO

Deploying “secure” SAML-based services is not an easy task

� ..a few but critical fields neglected in the IdP SSO service provisioned by Google..

� ..so that any SP can access to the Google’s resources of IdP’s members!

by Google

Abstract flaw automatically detected via automated reasoning (AVANTSSAR)

Attack manually tested on Google Apps. Is it possib le to automate?

1. SAML-based SSO for Google Apps (May 2008)

A worked-out example: SAML SSO

Deploying “secure” SAML-based services is not an easy task

Abstract flaw automatically detected via automated reasoning (AVANTSSAR)

Consequent XSS discovered via human inspection (manual testing)

Can we automate this validation process?

1. SAML SSO authentication vulnerability and its exploitations (e.g., XSS in SAML-

based SSO for Google Apps, July 2009)

� C and SP interact twice. If no binding among these two interactions � vulnerability

� vulnerability makes C consuming a resource from SP2, while C asked for a resource from SP1

� serious or not serious? severity depends from how the abstract vulnerability can be exploited

� serious for SAML-based SSO x Google Apps where the vulnerability could be exploited as
launching pad for cross-Site Scripting (XSS): malicious SP able to get client cookies and
unrestricted access to Google Apps under client’s identity

� not serious for other providers where the vulnerability could not be exploited like above

A worked-out example: SAML SSO

What can we learn and what can we do?

� AVANTSSAR is excellent in discovering abstract service vulnerabilities on relevant
deployment environments foreseen at design phase..

� ..but it is of little help in (i) assessing if an abstract vulnerability has serious
exploitations in the real world, and (ii) detecting low-level pitfalls (e.g. XSS)

SPACIOS: combine automated reasoning with sophisticated
testing techniques

A worked-out example: SAML SSO

� A Hospital wants

a) to outsource its basic IT services like email, calendar, etc to an external service provider
that is offering specialized services in that area

� In outsourcing its basic IT services, the Hospital wants

a) to keep the control of its identity management,

b) to not add burden on its employees when they are using these services, and

c) to have business continuity with its business partners (e.g., Medical Insurance)

� Aware that all its business partners (e.g., Medical Insurance) already offer a SAML SSO
access, the Hospital decides:

� to establish a SAML environment where it’ll play as IdP to answer to both b), c) and d)

� to use OpenSSO to deploy the SAML IdP service on its machines

� to use Google Apps for a): Google Apps can be accessed via a SAML SSO

Deployment environments and security requirements d ifficult to be foreseen

when Google and OpenSSO are producing their own SAM L services

A worked-out example: SAML SSO

Deployment environments and security requirements d ifficult to be foreseen

when Google and OpenSSO are producing their own SAM L services (cont.)

� The Hospital (H) just deploys IdP functionalities in its environment by means of OpenSSO

� Is the overall environment where H’s IdP service is deployed secure wrt the H’s requirements?

� patient info must not be disclosed to unauthorized entities � e.g., Google email account of doctor X should be accessed by
doctor X only

IdP deployed via
OpenSSO

A worked-out example: SAML SSO

Deployment environments and security requirements d ifficult to be foreseen

when Google and OpenSSO are producing their own SAM L services (cont.)

� A new service may be deployed at runtime and made available for consumption

� Are consumers’ security requirements met? E.g.,

� assume Medical Insurance was providing a few services not dealing with sensible information and suddenly it deploys a new
service dealing with consumer’s sensible data

� Clearly that new service will have to offer more security guarantees to the Hospital (i.e., Consumer)

IdP deployed via
OpenSSO

A worked-out example: SAML SSO

What can we learn and what can we do?

� AVANTSSAR is excellent in discovering abstract service vulnerabilities on relevant
deployment environments foreseen at design phase..

� ..but it is of little help in (i) assessing if an abstract vulnerability has serious
exploitations in the real world, and (ii) detecting low-level pitfalls (e.g. XSS)

SPACIOS: combine automated reasoning with sophisticated
testing techniques

� Not all deployment environments can be foreseen at design phase by Producers

� Intermediaries, Providers and even Consumers may bring in new security
requirements

SPACIOS: validation has to be performed also at later stages
(Deployment/Provision/Consumption)

Problems:

� To achieve the needed guarantees to providers, intermediaries, and consumers
of distributed services, rigorous security validation techniques must be applied.

� State-of-the-art security validation technologies fail to realise their full potential
because they are typically used in isolation.

� Security validation in the Internet of Services (IoS) must be performed
not only at production time, but also at deployment and consumption times.

Project objectives and approach:

� Improve IoS security by laying technological foundations of a new generation of
security analysers for service deployment, provision and consumption.

� Develop the SPaCIoS Tool combining state-of-the-art technologies for penetration
testing, model-based testing, model checking, and automatic learning.

� Assess the SPaCIoS Tool by running it against a set of security testing problem cases
drawn from industrial and open-source IoS application scenarios .

� Migrate SPaCIoS technology to industry (SAP and Siemens business units),
as well as to standardisation bodies and open-source communities.

Project objectives and approach

15

• Automated security validation

• Formal methods and testing

• Security engineering

Academia
�Università di Verona (I)

�ETH Zurich (CH)

�Grenoble INP (F)

�KIT Karlsruhe (D)

�Università di Genoa (I)

Industry
�SAP AG (D)

�Siemens AG Munich (D)

Expertise
• Service-oriented architectures

• Security solutions

• Standardization and industry migration

The Consortium

The Tool

Technical core : WPs 2 and 3
coreSUV

Test
generator

Attacker/vulnerability
models

Security goals/properties

Model of SUV

Input for pen
testing tools

TC spec

Inferred
restSUV model

restSUV

Tests
α/γ: WP2.5, 2.1

WP 2.1

WP 2.3: instances, language

WP 2.4: instances WP 3.3

WP 3.3

WP 3.1: language

WP 3.1: technology

WP 2.2

α/γ: WP2.5, 3.4

WP 3.2

Scientific Core (KIT view)

� From models to systems
◦ What abstractions do we apply, and what does this mean?
◦ Bridge layers of abstraction between model and SUT (drivers)

� Property-based testing
◦ Structural criteria don‘t correlate with failure detection. Period.

� Exploit model learning techniques
� Understand which technology is useful at which stages and where

combinations are promising

� Is maybe modeling alone the key?

19

Current work at KIT

Security Mutants for Property Based
Testing

source code
related
errors

model
related
errors

MC

Attack
Trace

Mutant
Violates

Sec.
Property?

YES

NO

1. 2.

3.4.

HLPSL

Current status of the mutant -based
approach

� What we have done so far:
◦ Applied to HLPSL: list of potential vulnerabilities and how to introduced

them into the HLPSL model.
◦ Note: A small number of attack traces generated.

� What we are currently working on:
◦ Identify vulnerabilities than can be expressed in ASLan/ASLan++
◦ Ex: In WebGoat lesson about stored XSS (cross site scripting), simple

authentication implemented without using cookies.

Hotspot: Concolic Testing For
Security Vulnerabilities

1. Reach Hotspot
2. Try potential attacks from here

0

2

1

3

4

5

Hotspot

0 1 3

ASLan++

CEGAR for XSS Discovery

1. Assume non-sanitized inputs and outputs
2. Use model checker to find a trace that crosses an input and its

corresponding output (def-use-coverage)
3. Try XSS attacks on this path
4. If no failure found, refine the model to mark this path as sanitized (no XSS

possible on this path), and repeat steps 2 - 4

0

2

1 3 4 5

def x; use x;

use y;

def y;

0

2

1 3 4 5

def x; use x;

use y;

def y;

R
ef

in
em

en
t

Wrap-Up

� Goal of SPACIOS:
Bring the results from AVISPA and AVANTSSAR to the system level –
„from models to systems“

� Abstractions conceptually and implementation-wise
� Understand how and where to combine tools

