
Mobile implementation and formal verification
of an e-voting system

Stefano Campanelli, Alessandro Falleni, Fabio Martinelli, Marinella Petrocchi, Anna Vaccarelli
IIT–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

Abstract

We propose a mobile implementation of an e-voting pro-
tocol. We also provide a formal analysis to validate a secu-
rity property of our system.

1. Introduction

Technological revolutions in computer and communica-
tion are enabling the deployment of mobile communica-
tion, based on hand-held computing devices and wireless
networking. Connection capabilities are manifold, and per-
formances of new generation machinery become better and
better in terms of computing power and memory size. Their
software is able to offer elaborate and complex services,
and mobile systems may be exploited for novel applications
spread out in a variety of directions.

In this paper, we consider e-voting protocols and their
implementation, see, e.g. [5, 7, 11, 14, 16]. They offer an
interesting field of research, given the challenges arising in
order to make them popular to large communities for, e.g.
national elections, that are rapidly diffusing. As an exam-
ple, the possibility to electronically vote has been offered to
Estonian citizens in the 2005 national elections. Given the
criticality of the application, proofs of the overall system
security should be provided, together with the capability of
a friendly management and usability.

Surveys on the goals of e-voting protocols have been pro-
posed in the past, see, e.g. [11]. Here, we briefly cite some
of them. First, any e-voting system should assure voter pri-
vacy while avoiding opportunities for fraud. Also, possible
errors in the final tally should be detected (soundness), no-
body must vote twice (unreusability), and valid votes must
not be removed from the final tally. On the other hand, in-
valid votes must not be added (completeness). For prevent-
ing vote buying and extortion, no voter can prove to have
voted in a particular way, uncoercibility, [3, 14].

Here, we focus on the so called mobility property [7].
We show how a complex system like one implementing an
architecture for polling and voting can be made available for

mobile devices, enlarging the number of potential voters.
Indeed, a mobile e-voting system will allow the maximum
freedom with respect to the location from which a user can
cast its vote.

In particular, we show the portability of an e-voting pro-
tocol, based on the Sensus protocol, [7], and already defined
for polling from a fixed location [2], on mobile devices. We
call our mobile voting system M-SEAS, i.e. the Mobile Se-
cure E-voting Applet System. We will give details of our
mobile implementation. Also, we perform a formal verifi-
cation of the protocol.

Indeed, the architecture of M-SEAS has been thought
to fix a well-known vulnerability of Sensus, that basically
allows one of the entities involved in the election process
to cast votes of eligible users that, although registered, ab-
stain to vote. These illegitimate votes would fall into the
final tally. In order to prove the correctness of M-SEAS
with respect to this vulnerability, we will formally analyze
it. Indeed, formal methods have been extensively used for
the specification and analysis of cryptographic protocols. In
particular, in the area of e-voting protocols, recent research
has proved their effectiveness, and some security proper-
ties have been analyzed, [8, 15]. Here, we will exploit our
analysis approach, based on the use on a CCS-like process
algebra to model the system, and a model checker for the
analysis, based on partial model checking techniques, [1].

The paper is structured as follows. After this introduc-
tion, we describe the M-SEAS protocol in Section 2. In Sec-
tion 3 we then present our prototype implementation, and
we give hints of its performances, after which we formally
analyse a security property of the protocol in Section 4. Fi-
nally, Section 5 contains our conclusions.

2. Protocol Description

Before presenting M-SEAS, we briefly explain some no-
tation. We assume the reader to be familiar with the basics
of cryptographic primitives.

Sending and reception of a message msg from A to B is



0a) P −→T : {(h(pk1
P , ID1))blind, ID2}pk2

P
−1

0b) T −→P : {(h(pk1
P , ID1))blind}pk−1

T

0c) P −→T : {h(pk1
P , ID1)}pk−1

T
, pk1

P , ID1

Figure 1. M-SEAS registration phase

represented as:

i A−→B : msg

where i is the i-th communication channel, on which the
exchange takes place. Notation throughout the paper is as
follows:

{...}pki := message encrypted
by public key of party i

{...}ek := message encrypted
by encryption key ek

(...)blind := blinded message
h(m) := digest of message m

Along with standard cryptographic mechanisms, e-
voting protocols make often use of blind signatures, intro-
duced in [4], that, basically, makes it possible to sign a mes-
sage without being aware of its content. Upon applying
a blind signature, making message m not understandable,
party i can apply a signature, obtaining {(m)blind}pk−1

i
.

Then, who has originally applied the blinding can also re-
move it (notation ←), though maintaining the signature.
The following qualitative equation holds: {m}pk−1

i
←

{(m)blind}pk−1
i

.
There are three entities involved in the protocol. The

pollster P , representing the set of hardware/software mod-
ules through which a voter can cast its ballot; the validator
V , a server that first checks the eligibility of the pollster
P and the uniqueness of its submission, and then it vali-
dates the submitted vote; the tallier T , a server that counts
all the validated votes. The overall architecture is shown in
Fig. 3(a).

M-SEAS consists of two phases, the first is the registra-
tion, described in Fig. 1:

1. P registers a first public key pk1
P and an associated

identifier ID1 with T. To do this, P blinds the digest
of the pair pk1

P , ID1, it adds a second identifier ID2,
it signs everything and it sends the result to T.

2. The tallier knows pk2
P and ID2, they are public val-

ues contained in the list l2 of eligible voters. It
verifies the signature by using pk2

P . Then, it signs
(h(pk1

P , ID1))blind and sends it to P . To trace the
electors whose blind pairs have been signed, T updates
l2.

1) P −→V : {(h({B}ek))blind}pk2−1
P

, ID2

2) V −→P : {(h({B}ek))blind}pk−1
V

3) P −→T : {h({{B}ek)}pk−1
V
}

pk1−1
P

, {B}ek, ID1

4) T −→P : rec#, {{B}ek}pk−1
T

5) P −→T : rec#, dk

Figure 2. Second phase of M-SEAS

3. The pollster removes the blinding, obtaining a message
digest digitally signed by the tallier, and sends it back
to T , along with the pair as a plaintext. The tallier
verifies the validity of its own signature. If the veri-
fication succeeds, then T records the pair (pk1

P , ID1)
in the special list l1, a list designed to contain pairs
(pk1

P , ID1).

The introduction of the registration phase is necessary to
prevent illegitimate ballots from being included in the final
tally, as it will be clear in the following.

The protocol continues as specified in Fig. 2. Messages
1 and 2 are devoted to validate ballot B, i.e. the validator
checks the credentials of the aspirant pollster. It first verifies
the signature sent in message 1, by applying the public key
paired with pk2−1

P . After verifying the signature, it checks
if i) ID2 belongs to the list l2 of eligible and registered vot-
ers; ii) it is the first time that the voter identified by ID2

sends a vote. If all these checks succeed, V applies its dig-
ital signature to the digest and it returns the signature to P .
The pollster sends its vote to the tallier (message 3). In par-
ticular, the digest of the encrypted ballot is signed by the
validator and by the pollster too, through its second private
key, pk1−1

P . To complete message 3) the pollster adds its
second identifier ID1. Upon the reception of message 3),
the tallier must verify that ID1 belongs to l1 and that it is
the first vote issued by the voter identified by ID1. It veri-
fies the outer signature through the public key associated to
ID1 l1. Note that this signature does not allow the tallier to
know the identity of the voter, since ID1 was first registered
through blind signatures (0a, 0b, 0c). Then, it verifies the
validator signature. In message 4, T verifies V ’s signature,
computes an own digest on {B}ek and verifies its equality
with what received. Then, it inserts {B}ek into l2. Finally,
T signs the encrypted ballot and sends it back to P with a
receipt number, to pair the ballot decryption key with the
ballot itself. T also updates l2 by inserting the receipt num-
ber. In message 5, P verifies the T ’s signature of message
4, and it sends the ballot decryption key dk to the tallier.
The tallier uses the key to decrypt the ballot, adds the vote
to the final tally and it pairs the decryption key with the cor-
respondent entry in l2. At the end of the voting session, the



tallier publishes l2 and the final tally.
All the communications are assumed to be encrypted

with the public key of the receiver. Consequently, all the
receivers have at first to retrieve the plaintexts by applying
their own private keys to the received messages. In fact,
dk does not travel as a clear text. Step 0c, 3,and 5 assume
the use of an anonymous communication channel. This is
required to avoid that the tallier establishes a link between
the pollster and its sensitive information by a simple traffic
analysis.

M-SEAS message exchange is partly based on Sensus.
However, it does not fall in the well-known vulnerability
of Sensus, that allowed the validator to cast its own ballot
BV , in place of who abstained. In fact, this ballot will be
signed with a private key, say pkx−1. T will accept it if
the correspondent public key, say pkx, has been previously
registered. The identity of who supplied that public key can
be verified through the tallier signature, see step 0b. Hence,
the only way for the validator to have its vote accepted is to
be a registered user. If so, it cannot cast its vote twice.

3. Implementation

To build up a portable system not dependent on the
underlying platform, we choose Java as the implementa-
tion language. Further, given the huge diffusion of mo-
bile devices supporting the Java language (Java Micro Edi-
tion [12]), we realize the pollster module, i.e. the module
running at the elector’s side, as a Java MIDlet. The MIDlet
can be executed over whatever platform supporting a Java
Virtual Machine.

The MIDlet is composed by two main modules. The first
module lets the user cast its vote. It implements all the com-
munications with T and V , together with the cryptographic
operations, on behalf of the user. For the cryptographic op-
erations we use ”SignIT Mobile”, a JME cryptographic li-
brary developed by our team, which gave us the possibility
to use advanced mechanisms like blind signature.

The second module is the friendly user interface which
also contains an XML parser, to interpret the ballot, whose
structure is indeed defined by a XML document. Parsing
an XML file needs the Java Web Services API (JSR 172)
which provides some basic parsing features.

Exploiting XML for the ballot structure makes the over-
all system very flexible. Indeed, elections with multiple and
nested choices may be easily implemented. If one consider
a survey on, e.g. favorite athletes, the system could first
present a first level of choice, asking for the selection of
the favorite sports activity. Then, the system could reach
deeper levels of details. For example, the voter may select
the particular team, Fig. 3(b) and finally the favorite athlete.

Also, we developed another MIDlet to transfer in a se-
cure way a digital certificate in PKCS#12 format from a pc

(a)

(b)

Figure 3. (a) Architecture of M-SEAS - (b)
Running MIDlet at pollster’s side



to a mobile device using Bluetooth channels. Credentials
of PKCS#12 are stored into the device, as a digital certifi-
cate plus the associated private key. They are encrypted by
following guidelines of PKCS#8. PKCS#i are “de facto”
standards, issued by RSA Labs and made public and modi-
fiable, for the deployment of public key cryptography.

3.1. Performances

The Java MIDlet representing the pollster module
has been tested over a NOKIA E61, firmware version
n.3.0633.09.04. The application results to be stable w.r.t.
all its functionalities.

In particular, we consider, as an important element for
the prototype evaluation, the application usability. Having
in mind mobile solutions, it is important not only to have a
practical, friendly, user interface, but also to complete the
whole process, i.e. registering and casting a vote, as soon as
possible, say within few seconds. The most critical phase
during execution takes place after the client identification.
In fact, the MIDlet must generate two pairs of asymmetric
keys, pk1

P , pk1−1
P and pk2

P , pk2−1
P . This takes about 20 sec-

onds. In our first experimentations, this operation brought
to an extraneousness of the user, due to long waits. To some
extent, this has been solved by lay this calculation phase on
the interactive phase during which the elector gives its pref-
erences, by assigning a different thread to each operation.

Parsing the XML document and visualizing the ballot
takes no appreciable time.

4. Formal Verification

This section presents the formal verification of the M-
SEAS protocol, with respect to a validator trying to insert
its own votes replacing the votes of who abstained.

For our analysis, we adopt the approach of [18]. This is
based on the observation that a security protocol under anal-
ysis can be described as an open system: a system in which
some component has an unspecified behaviour (not fixed in
advance). Subsequently one assumes that, regardless of the
unspecified behaviour, the system works properly (i.e. satis-
fies a certain property). In case of an e-voting protocol, one
can imagine the presence of a hostile adversary trying to in-
terfere with the normal execution of it, in order to achieve
some kind of advantage. The adversary could be also one
among the honest participants, that decide to maliciously
act by not following the protocol guidelines. Such an adver-
sary is added to the specification of the e-voting protocol, as
a component with a behaviour that is defined only implicitly
by the semantics of the specification language.

We assume the adversary to act in Dolev-Yao fashion [9]
by using a set of message manipulating rules that model

cryptographic functions like encryption and decryption. En-
cryption is opaque, i.e. a message encrypted with the public
key of one of the participants cannot be decrypted by any-
one but the person who knows the corresponding private
key (unless the decryption key is compromised of course).
As is common in this branch of computer security, we adopt
a black-box view of cryptography by assuming all crypto-
graphic primitives involved in the network protocol to be
perfect. Like the honest participants, the adversary is able to
send and receive messages to other participants. However,
it can also intercept and forge messages and, to a certain
degree, derive new messages from the set of messages that
it has come to know. This set consists of all messages the
adversary knows from the beginning (its initial knowledge)
united with the messages it can derive from the ones inter-
cepted during a run of the protocol. To analyze whether a
system works properly, at a certain point in the run the ad-
versary’s knowledge is checked against a security property.
If the adversary has come to know information it was not
supposed to know, then the analysis has thus revealed an at-
tack w.r.t. that particular property, i.e. a sequence of actions
performed by the adversary that invalidates the property.

We use model checking to perform the analysis. Model
checking is an automatic technique to verify whether or not
a system design satisfies its specifications and certain de-
sired properties [6].

The specification language that we use is Crypto-
CCS, [10], a CCS-like process algebra with cryptographic
primitives, and the analysis is performed with the model
checker PaMoChSA v1.0 [13]. PaMoChSA requires the
following input:

• a file with the protocol specification in Crypto-CCS;

• a logic formula expressing the property to be verified;

• the adversary’s initial knowledge.

We considered an adversary X and set its initial knowledge
to the set of public messages that it knows at the start of the
protocol, i.e. the public keys of the pollster P, its own public
and private key denoted by pkX and pk−1

X , its ballot BX , its
encryption key ekX , and cryptographic material to perform
hash functions. Note that, in order to check if the validator
is able to insert its own votes in the final tally, the pair of
public/private keys known by the adversary may coincide
with pkV /pk−1

V , as well as B may coincide with BV , and
ekX with ekV . Indeed, the not specified component in the
considered open system is V .

The input and result of the analysis we performed are as
follows:

• Specification file: M-SEAS.exp

• Logic formula: special



Figure 4. Screenshot of PaMoChSA’s interface.

• Initial knowledge: {pkX , pk−1
X , pk1

P , pk2
P , BX , ekX ,

public hash}

• Result: No attack found

Figure 4 shows the graphical interface of the tool, with the
loaded experiment and the result.

To verify whether or not V is able to insert its
own votes in place of who abstained, we add in the
Crypto-CCS specification M-SEAS.exp a special action:
send(public, special). This represents sending the message
special on a public channel. Given the adversary model dis-
cussed at the beginning of this section, once this action is
performed, the adversary automatically has in its knowl-
edge message special. This special action is inserted in
the specification immediately after that the tallier received
a voted ballot casted by the adversary. Given sequentiality
of actions in a specification, if special falls in the adver-
sary’s knowledge, this means also that the adversary was
been able to cast its vote.

To verify the logic formula specified above, the tool set
out to find a run of the protocol with the following charac-
teristic: at the end of the run, the adversary knows message
special. Such a run does not exist. Hence M-SEAS is cor-
rect w.r.t. the analyzed security property, i.e. it does not fall
to an insertion of a not legitimate vote in the final tally.

To complete the analysis, also the Sensus protocol has
been specified into Crypto-CCS, and the specification has
been given as input to the tool. As expected, an attack has
been found.

The insertion of special actions into the formal specifica-
tion of a protocol does not affect the modeling and analysis.
Special actions are just inserted for analysis purposes, and

it is a common practice in security analysis, see, e.g. , [17],
for what concerns authentication properties.

5. Concluding Remarks

In this paper, we presented M-SEAS, a mobile e-voting
protocol that enables people to cast their votes from the
majority of mobile devices, obviously including cellular
phones, at the only, basic condition that Java technology
is enabled.

The implementation of M-SEAS exploits mechanisms
for mobile communication security. This contributes to the
development of mobile applications exploitable in everyday
life. Actually, our prototype system allows users to easily
participate into opinion polls and statistical surveys, having
the process ultimated within a handful of seconds. The pro-
totype has been developed having in mind surveys/polls for
relatively small communities, whose members may range
up to dozens of thousands. However, a successful outcome
in these specific areas could increase the user confidence in
such technologies, leading to a major trust towards the ap-
plication of e-voting systems, also to large scale elections.

Our implementation strictly fulfils one of the most im-
portant goal of an e-voting protocol, i.e. mobility. Indeed,
such systems should reduce as much as possible limitations
about the location from which the elector can cast its vote.

Finally, formal methods and tools are popular means
for the analysis of security aspects of computer protocols.
Here, we have exploited our analysis approach to strengthen
our confidence in the M-SEAS security architecture, by
having analyzed the protocol and tested the absence of the
Sensus vulnerability.



Acknowledgment

This research is partly supported by the EU project SEN-
SORIA (IST-2005-016004).

References

[1] H. R. Andersen. Partial model checking. In LICS: IEEE
Symposium on Logic in Computer Science, 1995.

[2] Baiardi et al. Seas, a secure e-voting protocol. Computers
& Security, 24(8):642–652, 2005.

[3] J. Benaloh and D. Tuinstra. Receipt-Free Secret-Ballot Elec-
tion. In Proc. of ACM STOC’94, pages 544–553, 1994.

[4] D. Chaum. Blind Signatures for Untraceable Payments. In
Proc. of Crypto’82, pages 199–203. Plenum, NY, 1983.

[5] D. Chaum, P. Y. A. Ryan, and S. A. Schneider. A practical
voter-verifiable election scheme. In ESORICS, pages 118–
139, 2005.

[6] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Check-
ing. MIT Press, 1999.

[7] L. Cranor and R. K. Cytron. Sensus: A Security-Conscious
Electronic Polling System for the Internet. In Proc. of
HICSS’97, 1997.

[8] S. Delaune, S. Kremer, and M. Ryan. Coercion-resistance
and receipt-freeness in electronic voting. In CSFW, pages
28–42, 2006.

[9] D. Dolev and A. C.-C. Yao. On the security of public
key protocols. IEEE Transactions on Information Theory,
29(2):198–207, 1983.

[10] R. Focardi and F. Martinelli. A uniform approach for the
definition of security properties. In Proc. FM’99, volume
1708 of LNCS, pages 794–813. Springer, 1999.

[11] A. Fujioka, T. Okamoto, and K. Ohta. A Practical Se-
cret Voting Scheme for Large Scale Election. In Proc. of
Auscrypt’92, volume LNCS 718, pages 244–260, 1992.

[12] http://java.sun.com/javame/index.jsp. SUN - Java Micro
Edition.

[13] http://www.iit.cnr.it/staff/fabio.martinelli/pamochsa.htm.
Partial Model Checking Security Analyzer PaMoChSA
v1.0.

[14] A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant
electronic elections. In WPES, pages 61–70, 2005.

[15] S. Kremer and M. Ryan. Analysis of an electronic voting
protocol in the applied pi calculus. In ESOP, pages 186–
200, 2005.

[16] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang, and S. Yoo.
Providing receipt-freeness in mixnet-based voting protocols.
In ICISC, pages 245–258, 2003.

[17] G. Lowe. A hierarchy of authentication specification. In
CSFW, pages 31–44, 1997.

[18] F. Martinelli. Analysis of security protocols as open sys-
tems. TCS, 290(1):1057–1106, 2003.


