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Abstract

In this paper we describe an approach based onopen system analysisfor thespecification, verificationandsynthesisof secure
systems. In particular, by using our framework, we are able to model a system with a possible intruder and verify whether
the whole system is secure, i.e. whether the system satisfies a given temporal logic formula that describes its secure behavior.
If necessary, we are also able to automatically synthesize a process that, by controlling the behavior of the possible intruder,
enforces the desired secure behavior of the whole system.
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1 Overview

In the last few years, research on the definition of formal methods for the analysis and the
verification of security properties of systems has increased greatly. This is mainly due to
the practical relevance of these systems and moreover to preliminary encouraging results
achieved by the application of formal methods to security analysis.

Here we describe a logical approach forspecification, verificationandsynthesisof se-
cure systems by summarizing some results of the works [14,16,17].

The specificationis the first step of the analysis of a system. The language for the
description of properties and the one for the description of systems must have a clear formal
semantics. We consider for specification both declarative languages as temporal logic, in
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particular equationalµ-calculus, and operational ones as process algebras, in particular
CCS (see [20]).

We then specify the security of a system as the specification of a property of anopen
system, by following the approach given in [14,16]. As a matter of fact the analysis of
security properties is based on the idea that potential attackers should be analyzed as if
they were un-specified components of a system. In this way we reduce security analysis
to the analysis of open systems. The behavior of an open system may be not completely
specified and may present some uncertainty. The main idea underling this approach is
the following: at the beginning we have a systemS and a temporal logic formulaφ that
describes a security property. It is possible that an intruderX works in parallel withS or
it is also possible thatX is a malicious component ofS. In each of these cases we require
thatS composed withX (S‖X) satisfiesφ whateverX is.

The verificationphase requires to check for anyX that (S‖X) satisfies the property
φ. In principle, this corresponds to an unbounded number of classical model checking
problems in closed systems4 . Indeed, the universal quantification on all possible intruders
makes this problem difficult to manage. In order to solve it we use thepartial model
checkingtechnique. It is introduced by Andersen in [1] in order to deal with compositional
analysis of concurrent system. By using this technique, we may focus only onX and
the previous problem becomes a validity checking problem. As a matter of fact by using
the partial model checking technique, the propertyφ is projected on another one, says
φ′ = φ//S

, depending only onS andφ, that only the componentX must satisfy. Here,
there is still the universal quantification, but the problem is now a validity checking one,
that has been solved for many logics, includingµ-calculus.

We consider the followingsynthesisproblem. Assume to have a systemS that is secure
in isolation, but that in composition with a certain componentX does not enjoy the desired
security property, sayφ. Then, we are able to synthesize a processY that controlling the
componentX guarantees the whole system withS works correctly, i.e. it satisfiesφ.

Hence we have extended the line of research of [14,16] with a method for automati-
cally enforcing the desired security properties (see [17,18,19] ). We define process algebra
operators calledcontroller operatorsand denoted byY . X whereY is thecontroller pro-
gram i.e. the process that controls the un-specified componentX. In particular we define
controller operators that are able to model security automata described in [3,4,22] for en-
forcing safety properties as well as others able to forceNon-interferenceproperties (see
[19]), under certain assumptions.

As before we start from a systemS and a security propertyφ and we projectφ onφ′ by
partial model checking. In this way we have to monitor only the necessary/untrusted part
of the system, hereX. Then we can forceX to enjoyφ′ by using an appropriate controller
Y ¤X. Moreover, our approach permits us to automatically synthesize a controller program
Y for a given controller operatorY . X by exploiting satisfiability procedure on process
algebra and temporal logic.

We also show a related specification framework calledGNDC (e.g., see [8]) that is
able to describe security properties, e.g.Non-interference, Agreement, Authentication,
Non-Repudiationand so on. By using this schema we are also able to uniformly model
dependable systemsand analyzedependablity properties. GNDC was firstly introduced

4 Actually, there exists a verification problem, called module checking, i.e. model checking of open system, introduced in
[12]. Such a problem can be solved using the technique we are going to present here, e.g. see [15].
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in [8] as a framework where family of security properties could be uniformly expressed and
compared. Generally speaking aGNDC property has the following form:

S satisfiesGNDC
α(S)
/ iff ∀ X S‖X / α(S)

This means that a systemS enjoysGNDC
α(S)
/ iff S shows w.r.t. a certainbehavioral

relation5 /, the same behavior ofα(S). This is must to be true even ifS is composed with
a possible un-trusted componentX, whatever it is. By using characteristic formulae (e.g.
see [21]) for expressing the relation/, we can reduce this problem to a usual open system
analysis one.

Summing up our aim is to present a logical approach based onopen systemanalysis and
partial model checkingtechnique for the specification, verification and synthesis of secure
systems.

This paper is organized as follows. Section 2 briefly recalls the basic theory about
process algebra and temporal logic. Section 3 explains our approach for the specification
and verification of secure systems. Section 4 presents how we are able to define and syn-
thesize controller programs. Section 5 shows a related approach used also to deal with
dependability properties. Eventually, Section 6 concludes the paper.

2 Background

2.1 Process Algebra:CCS

CCS (see [20]) is a calculus for describing the behavior of concurrent processes.
TheCCS language assumes a setAct = L∪L̄ of (observable)communication actions

built from a setL of names and a set̄L of co-names. The purpose of putting a line, called
complementation, over a names is to show that the corresponding action can synchronize
with its complemented action. Complementation follows the rule that¯̄a = a, for any
communication actiona ∈ Act.

A special symbol,τ , is used to model any (unobservable)internal action; hence the
full set of possible actions isActτ = Act ∪ {τ}. We leta, b, . . . range overActτ . The
following grammar specifies the syntax of the language defining allCCS processes:

P,Q ::= 0 | a.P | P + Q | P‖Q | P\L | P [f ] | A

whereL ⊆ Act and the relabeling functionf : Actτ 7→ Actτ must be such thatf(τ) = τ .
Informally,0 is the process that does not perform any action.a.P is the process ready to

perform the actiona, then, it behaves asP . ProcessP +Q can choosenon-deterministically
to behave either asP or asQ. P‖Q is theparallel operatorwhereP andQ evolve con-
currently. InP\L, actionsa ∈ L ∪ L̄ are prevented from happening.P [f ] is the process
obtained fromP by changing eacha ∈ Actτ into f(a). A process identifierA defines a
process and it is assumed that each identifierA has a defining equation of the formA

.= P .
The operational semantics ofCCS terms (see [20]) is described by alabeled transition

systemthat is a tuple(E , Actτ ,→), whereE is the set of allCCS terms and→⊆ E×Actτ×
E is a transition relationdefined by structural induction as the least relation generated by

5 There are a lot of different behavioral relations that can be studied. In particular we are interested in simulation, bisimu-
lation and trace equivalences.
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Prefixing:

a.P
a−→ P

Choice:
P

a−→ P ′

P + Q
a−→ P ′

Q
a−→ Q′

P + Q
a−→ Q′

Parallel:

P
a−→ P ′

P‖Q a−→ P ′‖Q
Q

a−→ Q′

P‖Q a−→ P‖Q′
P

l−→ P ′ Q
l̄−→ Q′

P‖Q τ−→ P ′‖Q′

Restriction:
P

a−→ P ′

P\L a−→ P ′\L
Relabeling:

P
a−→ P ′

P [f ]
f(a)−→ P ′[f ]

Constant:
P

a−→ P ′

A
a−→ P ′

Table 1
SOSsystem forCCS.

the set ofStructural Operational Semantics(SOS) rules of Table1. The transition relation
→ defines the usual concept of derivation in one step. As a matter of factP

a−→ P ′ means
that processP evolves in one step into processP ′ by executing actiona ∈ Actτ . The
transitive and reflexive closure of

⋃
a∈Actτ

a−→ is written→∗.
Given aCCS processP , Der(P ) = {P ′|P →∗ P ′}, is the set of its derivatives. A

CCS processP is saidfinite stateif Der(P ) is finite. Sort(P ) (called thesort ofP ) is the
set of names of actions that syntactically appear in the processP .

2.2 Behavioral Equivalences

Several behavioral relations are defined in order to compare the behavior of different pro-
cesses.

2.2.1 Simulation and Bisimulation Equivalences

Definition 2.1 Let (E , Actτ ,→) be anLTS of concurrent processes, and letR be a binary
relation overE . ThenR is calledstrong simulation, denoted by≺, over (E , Actτ ,→) if
and only if, whenever(E, F ) ∈ R we have:

if E
a−→ E′ then there existsF ′ s.t.F

a−→ F ′ and(E′, F ′) ∈ R.

A strong bisimulationis a relationR s.t. bothR andR−1 are strong simulations. We
represent with∼ the union of all the strong bisimulations.

We give the notion ofobservational relationsas follows: E
τ⇒ E′ (or E ⇒ E′) if
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E
τ→∗

E′; for a 6= τ , E
a⇒ E′ if E

τ⇒ a→ τ⇒ E′ 6 . Let γ ∈ Act∗ be a sequence of
actions, i.e.γ = a1, . . . , an, thenE

γ
=⇒ E′ iff there existE = E0, E1, . . . , En = E′ s.t.

E0
a1=⇒ E1 . . . En−1

an=⇒ En.
The weak bisimulationrelation (see [20]) permits to abstract to some extent from the

internal behavior of the systems, represented by the internalτ action.

Definition 2.2 Let (E , Actτ ,→) be anLTSof concurrent processes, and letR be a binary
relation overE . ThenR is called weak simulation, denoted by¹, over(E , Actτ ,→) if and
only if, whenever(E, F ) ∈ R we have:

if E
a−→ E′ then there existsF ′ s.t.F

a=⇒ F ′ and(E′, F ′) ∈ R,

A weak bisimulation is a relationR s.t. bothR andR−1 are weak simulations. We
represent with≈ the union of all the weak bisimulations.

Every strong simulation is also a weak one (see [20]).

2.2.2 Trace Equivalence
Most of the security properties are based on the simple notion oftraces: two processes are
equivalent if they exactly show the same execution sequences (calledtraces). In order to
formally define traces, we definetrace preorder(≤trace) andtrace equivalence(≈trace) as
follows.

Definition 2.3 For anyE ∈ E the setT (E) of traces associated withE is T (E) = {γ ∈
Act∗ | ∃E′ : E

γ
=⇒ E′}. F can execute all traces ofE (notationE ≤trace F ) iff

T (E) ⊆ T (F ). E andF aretrace equivalent(notationE ≈trace F ) iff E ≤trace F and
F ≤trace E, i.e. iff T (E) = T (F ).

2.3 Equationalµ-calculus

The equationalµ-calculus is a modal logic (see [5]) based on fix-point equations. LetZ be
a variable ranging over a setV of variables, a least (greatest) fix-point equation isZ =µ φ

(Z =ν φ), whereφ is anassertion. The syntax of assertions (φ) and of lists of equations
(D) is defined as follows:

assertion φ ::= T | F | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ
equations list D ::= (Z =µ φ)D | (Z =ν φ)D | ε

where the symbolT meanstrueandF meansfalse; ∧ is the symbol for the conjunction of
formulae, i.e.φ1∧φ2 holds iff both of the formulaeφ1 andφ2 hold, and∨ is the disjunction
of formulae andφ1 ∨ φ2 holds when eitherφ1 or φ2 holds. Thepossibility operator〈a〉φ
means that “there exists a transition labeled bya after thatφ holds”. Thenecessity operator
[a]φ means “for alla-actions performedφ holds”.

The semantics of the equationalµ-calculus is defined over labeled transition systems.
In order to give the semantics of an equation list we show our notation: letM be a labeled
transition system andρ be a function, called environment, from variables to a subset of
the set of states ofM, t represents the union of disjoint environments, and [] denotes the

6 Note that it is a short notation forE
τ⇒ Eτ

a→ E′τ
τ⇒ E′ whereEτ andE′τ denote intermediate states that is not

important for this framework.
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JTK′ρ = S JFK′ρ = ∅ JZK′ρ = ρ(Z) Jφ1 ∧ φ2K′ρ = Jφ1K′ρ ∩ Jφ2K′ρ
Jφ1 ∨ φ2K′ρ = Jφ1K′ρ ∪ Jφ2K′ρ J〈a〉φK′ρ = {s | ∃s′ : s

a→ s′ ands′ ∈ JφK′ρ}
J[a]φK′ρ = {s | ∀s′ : s

a→ s′ impliess′ ∈ JφK′ρ}

Table 2
Equationalµ-calculus

empty environment. Letσ be in{µ, ν}, σU.f(U) represents theσ fix-point of the function
f in one variableU . The semantics,JDKρ is defined by the following equations:

JεKρ = [] J(Z =σ φ)DKρ = JDK(ρt[U ′/Z]) t [U ′/Z]

whereU ′ = σU.JφK(ρt[U/Z]tρ′(U)) andρ′(U) = JDK(ρt[U/Z])

Informally J(Z =σ φ)DKρ says that the solution to(Z =σ φ)D is theσ fixed point
solution U ′ of JφKρ where the solution to the rest of the list of equationsD is used as
environment. A labeled transition systemM satisfies an equation listD, writtenM |=ρ

D ↓ Z if the initial state ofM is in JDKρZ, whereZ is the first variable in the listD. We
omit ρ out when it is evident from the context or whenD is closed.

The semantics,JφKρ, of an assertionφ is defined in Table2.
The following standard result ofµ-calculus will be useful in the reminder of the paper.

Theorem 2.4 ([23]) Given a formulaφ it is possible to decide in exponential time in the
length ofφ if there exists a model ofφ and it is also possible to give an example of such
model.

2.4 Partial Model Checking

Partial model checkingis a technique that relies upon compositional methods for proving
properties of concurrent systems [1,2].

The intuitive idea underlying the partial model checking is the following: proving that
E‖F satisfiesφ is equivalent to prove thatF satisfies a modified specificationφ = φ//E

,
where//E is the partial evaluation function for the parallel composition operator (see Table
A.1 in Appendix)7 .

Hence, the behavior of a component has been partially evaluated and the requirements
are changed in order to respect this evaluation.

We give the following main result (see [2]).

Lemma 2.5 Given a processE‖F and an equational specificationD ↓ Z we have:

E‖F |= D ↓ Z iff F |= D ↓ Z//E

A lemma similar to the previous one holds for eachCCS operator.

7 We present the partial model checking technique w.r.t. parallel operator because its application w.r.t this operators is more
intuitive than w.r.t. anotherCCS operator.
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2.4.1 Characteristic Formulae
A characteristic formulais a formula in equationalµ-calculus that completely characterizes
the behavior of a (state in a)LTS modulo a chosen notion of behavioral relation. It is
possible to define the notion of characteristic formula for a finite state process E w.r.t.
several behavioral relations (see [21]). Here we present the definition of characteristic
formula w.r.t. (weak) simulation as follows.

Definition 2.6 Given a finite state process, its characteristic formula (w.r.t. weak simula-
tion) DE ↓ ZE is defined by the following equations: for everyE′ ∈ Der(E), ZE′ =ν∧

a∈Act([a](
∨

E′′:E′ a⇒E′′ ZE′′)).

Following the reasoning used in [21], the following proposition holds.

Lemma 2.7 LetE be a finite-state process and letφE,¹ be its characteristic formula w.r.t.
simulation, thenF ¹ E ⇔ F |= φE,¹.

3 Specification and Verification of Secure Systems

Following the approach proposed in [14,16], we describe here a methodology for the formal
analysis of secure systems based on the concept of open systems and partial model checking
technique.

3.1 Open Systems Analysis for Security

A system isopenif it has some unspecified components. We want to make sure that the
system with an unspecified component works properly, e.g. fulfills a certain property. Thus,
the intuitive idea underlying the verification of an open system is the following:

An open system satisfies a property if and only if, whatever component is substituted to the
unspecified one, the whole system satisfies this property.

In the context of formal languages for the description of system behavior, an open system
may be simply regarded as a term of this language which may contain “ holes” (or place-
holders). These are unspecified components. For instanceA‖( ) andA‖B‖( ) may be
considered as open systems.

The main idea is that, when analyzing security-sensitive systems, neither the enemy’s
behavior nor the malicious users’ behavior should be fixed beforehand. A system should
be secure regardless of the behavior the malicious users or intruders may have, which is
exactly averificationproblem of open systems. According to [14,16], for defining security
properties as open systems properties we study the following problem:

For every componentX S‖X |= φ (1)

whereX stands for a possible enemy,S is the system under examination andφ is a (tem-
poral) logic formula expressing the security property. It roughly states that the propertyφ

holds for the systemS, regardless of the component (i.e. intruder, malicious user, hostile
environment,etc.) which may possibly interact with it.

7
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Our aim is to reduce such a verification problem as in Formula (1) to a validity checking
problem. To obtain this, we apply the partial model checking techniques as follows:

∀X S‖X |= φ iff X |= φ//S
(2)

In this way we find the sufficient and necessary condition onX, expressed by the logical
formulaφ//S

, so the whole systemS‖X satisfiesφ if and only if X satisfiesφ//S
.

Several results exist about the decidability of such problems for temporal logic and, for
several interesting properties, like severalsafety properties(“nothing bad happens”), the
validity problem expressed by Formula (2) may be efficiently solved.

4 Synthesis of Controller Programs

In previous sections we have presented our approach for analyzing secure systems as open
systems. As we have already said, the universal quantification over all possible intruders in
Formula (1) it is not easy to manage.

Our aim in this section is to present our method to enforce a system to behave correctly
whatever the behavior of the target is. To do this we define severalprocess algebra con-
troller operatorsthat permit to control possible un-trusted behaviors of a target. We denote
them byY . X, whereX is the target andY is acontroller programi.e. the process that
controlsX in order to guarantee that a given security property is satisfied.

By using a controller operator the specification of the system changes from Formula (1)
to:

∃Y ∀X s.t. S‖(Y . X) |= φ (3)

By partially evaluatingφ w.r.t. S the Formula (3) is reduced as follows:

∃Y ∀X Y . X |= φ′ (4)

whereφ′ = φ//S
.

It is important to note that, by using partial model checking we need to control only the
possible un-trusted component of the system. This is an advantage of our approach because
often not all the system needs to be checked or it is simply not convenient to check it as a
whole or also it is not possible to do. Some components could be trusted and one would
like to have a method to constrain only the un-trusted ones (e.g. downloaded applets). Our
method allows one to monitor only the necessary/untrusted part of the system, hereX.
Sometimes it could be possible that not the whole system can be checked but only some of
its components.

Moreover, for some security properties, we are able to automatically synthesize a con-
troller program for a controller operator.

4.1 Controller Operators

We can define several kinds of controller operators. Each of them has different capabilities.
For instance, in [17,18,19] we have dealt with security automata (truncation, suppression,
insertion, edit) defined in [3,4] by modeling them by process algebra controller operators
Y .K X, whereK ∈ {T, S, I, E} 8 .

8 T stays forTruncation, S for Suppression, I for InsertionandE for Edit.
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Referring to [3,4], we recall the informal definition of security automata as follows:

Truncation automata: The truncation automaton (similar to Schneider’s ones (see [22]))
can recognize bad sequences of actions and halt the program execution before security
property is violated, but cannot otherwise modify the program behavior.

Suppression automata:The suppression automaton can halt program execution and sup-
press individual program actions without terminating the program outright.

Insertion automata: The insertion automaton can insert a sequence of actions into the
program actions stream as well as terminate the program.

Edit automata: The edit automaton combines the power of suppression and insertion au-
tomata. It can truncate actions sequences and insert or suppress security-relevant actions
at will.

According to [3,4], these operators are applied in order to enforce safety properties. As
a matter of fact for this class of formulae it is possible to prove that ifE andF are two
processes, s.t.F ¹ E thenE |= φ ⇒ F |= φ. In [18] we have proven thatY .T X is
weakly similar toY . Hence, in order to satisfy the Formula (4) it is sufficient to prove the
following one:

∃Y Y |= φ′ (5)

In this case we obtain a satisfiability problem inµ-calculus, that can be solved by Theorem
2.4. Hence we are able to find a processY that halts the execution of the target whenever
it is unsafe.

It is important to note that a similar result can be proven also for the other controller
operators. As a matter of fact, by defining appropriate relabeling functionfK , we have
proven thatY .K X is weakly similar toY [fK ] for K ∈ {S, I, E}. So, by partial model
checking w.r.t. relabeling operator (see TableA.1 in Appendix) we are able to calculate
φ′′ = φ//[fK ]

to reduce Formula (4) as follows:

∃Y Y |= φ′′ 9 (6)

Also in this case we can solve the problem by Theorem2.4.
Other controller operators can be defined in order, for example, to enforce not only

safety properties but alsoinformation flow properties(see [19]).

5 A General Schema for Security and Dependability Proper-
ties: theGNDC Schema

Referring to the open system approach defined before, here we present a general schema
to specify several security properties. It is calledGeneralizedNDC, GNDCα

/ for short,
where/ andα are two parameters that express a behavioral equivalence and a property
respectively. (It is a generalization ofNon Deducibility on Compositions,NDC for short,
(see [6]).) This general schema permits to study relationships among different security
properties in a fairly simple way. Indeed, their comparison can be carried out by simply
studying the relations among the relativeα’s and/’s. It is worth noticing that some of the
properties we consider have been proposed for completely different aims. For instance,

9 The interested reader can find more details in [18].
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NDC has been introduce for studyingnon-interference propertiesin non-deterministic
systems whileAgreementhas been proposed for the analysis of entity authentication in
protocols.

The idea is similar to the one of the analysis as open systems, but it considers as correct
specification of the behavior another process rather than a formula.

The main idea is that a systemE isGNDCα
¢ iff for every processX the composition of

the system with such aX satisfies a specificationα(E). Essentially,GNDCα
¢ guarantees

that the property identified byα is satisfied, w.r.t.¢ relation even when the system is
composed with any possibly hostile process.

Definition 5.1 E is GNDCα
¢ iff

∀X E‖X\H ¢ α(E)

The property is parametric with respect toα(E) and/ that can be instantiated in order
to obtain different security properties. In particularα : E → E is a function between
processes andα(E), w.r.t. a givenE, specifies which should be the “correct” (intended)
behavior ofE; / ⊂ E × E is a relation between processes that represents our notion of
“observation”. The idea is that just by studying differentα functions, one could compare
different properties. This has been useful to formally show, as the intuition suggests, that
non-interference properties are usually the strongest ones. (The interested reader may check
[7] for a deeper discussion.)

As a matter of fact, we can instantiate theGNDC schema to obtain several proper-
ties. For instance, we can defineNDC, BNDC, Agreement, authenticationand non-
repudiationby choosing particular instances of/ andα(E).

Example 5.2 As we have already said,Non Deducibility on Compositions, NDC for short,
(see [6]) has been proposed as a generalization of the classical idea ofNon-Interference(see
[10]) to non-deterministic systems.

SinceGNDCα
¢ is a generalization ofNDC, it can be instantiated in order to obtain

NDC and also thebisimulationbasedNDC, calledBNDC. We first redefine in our
extended language the original definition as follows:

E is NDC iff ∀ Π ∈ High users, E‖Π\H ≈trace E\H w.r.t. Lowusers

whereH is a set of high actions.NDC requires that high level processesΠ are not able
to change the low level behavior of the system represented byE\H. As a matter of fact
E \H is the system where no high level activity is allowed. If it is equivalent toE‖Π\H
this clearly means thatΠ is not able to modify in any way the execution ofE.

We can obtain a bisimulation basedNDC by simply substituting≈trace with ≈.

E is BNDC iff ∀ Π ∈ High users ,E \H ≈ E‖Π \H.

Note thatNDC andBNDC correspond toGNDC
E\H
≈trace

andGNDC
E\H
≈ , respectively.

Example 5.3 The approach proposed in [13] for the analysis of authentication properties,
inside the framework ofCSP [11] process algebra, can be rephrased in terms of our spec-
ification schema. The basic idea of theAgreementproperty is the following:

“A protocol guarantees to an initiatorA agreementwith a responderB on a set of data
itemsds if, whenever A (acting as initiator) completes a run of the protocol, apparently

10



Martinelli and Matteucci

with responderB, thenB has previously been running the protocol, apparently withA,
andB was acting as responder in his run, and the two agents agreed on the data values
corresponding to all the variables inds, and each such run ofA corresponds to a unique
run ofB”.

What is technically done in theagreementproperty is to have for each party an action
representing the running of the protocol and another one representing the completion of it.
Hence

E satisfiesAgreementiff E is GNDC
αAgree(E)
≤trace

.

whereαAgree says that even in the presence of an hostile process,E does not execute wrong
traces.

The universal quantification over all possible intruders is yet problematic when trying
to check a property, since, in principle, we have to verify it over infinitely many processes,
one for each intruder.

The GNDC schema has a favorite verification method based on the so-called most-
general intruder idea. For several kind of relations, it is possible to avoid the universal
quantification and just consider one possible intruder. Thus, standard techniques and tools
may be applied. Unfortunately, for several interesting properties, e.g.BNDC, such ap-
proach does not work and the one based on logic presented in the previous sections should
be applied.

5.1 Related Problems:GNDC in Dependability

It is possible to show that alsodependable systemscan be uniformly modeled in our frame-
work and alsodependablity propertiescan be analyzed withinGNDC (see [9]). A sys-
tem must be modeled byCCS, where both thefailing behaviorof the system and the
relatedfault-recovering proceduresare explicitly described. The environment acts as a
fault-injector and it is the unspecified component of our framework. We call itfaulty en-
vironment. We may note that the neat separation between the system and its environment
given byGNDC is very useful.

TheGNDC schema can be exploited for expressing properties peculiar of dependabil-
ity analysis asfail stop, fail safe, fail silent(see [9] for the details). We briefly recall some
definitions:

A failing system model is aCCS processPF obtained by extending the processP with
the possibility of executing particular external actions from a setF of possiblefault
actions. After each fault action, the relativefailure modeis also specified inPF .

A fault tolerant system model is a CCS processP#
F obtained by adding toPF some

processes realizing error-recover strategies in accordance to some fault tolerant design
strategy.

Occurrences of faults are induces by afault-injectorprocessFF that causes faults to hap-
pen. It interacts withP#

F exactly throughf ∈ F fault actions.

Now we are able to give the characterization of fault tolerance asGNDC property as
follows.

Definition 5.4 A processP satisfiesGNDC
α(P )
/ iff ∀FF ∈ EF (P#

F ‖FF )\F / α(P#
F )
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whereEF = {X|Sort(X) ⊆ F ∪ {τ}}.
It is important to observe that the clear separation between the system model and the

environment allows us to leaveFF unspecified and to range it overEF .
As we have already said, different definitions ofα(P ) characterize different fault toler-

ance properties, e.g. fail stop, fail safe, fail silent and fault tolerance.

6 Conclusion

In this paper we have shown how security properties can be convenientlyspecifiedas prop-
erties of open systems. Moreover, these properties can beverified in a uniform way by
using a few concepts of concurrency and temporal logic theory, as, for instance, partial
model checking. Logic provides rigorous methods to reason about the uncertainty of the
execution environment of security systems. Thesynthesisof secure systems is also possible
by means of logical techniques. More generally, we aim at providing a uniform approach
for the specification\analysis\synthesis for several application areas, e.g. fault-tolerance,
non-interference, network and system security, open systems analysis and so on.
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A Tables of Partial model checking function

Parallel:

(D↓ Z)//t = (D//t)↓ Zt ε//t = ε

(Z =σ φD)//t = ((Zs =σ φ//s)s∈Der(E))(D)//t Z//t = Zt

[a]φ//s = [a](φ//s)∧∧
s

a−→s′ φ//s′, if a 6= τ φ1 ∧ φ2//s = (φ1//s) ∧ (φ2//s)

〈a〉φ//s = 〈a〉(φ//s) ∨∨
s

a−→s′ φ//s′, if a 6= τ φ1 ∨ φ2//s = (φ1//s) ∨ (φ2//s)

[τ ]φ//s = [τ ](φ//s) ∧∧
s

τ−→s′ φ//s′ ∧∧
s

a−→s′ [a](φ //s′)

〈τ〉φ//s = 〈τ〉(φ//s) ∨∨
s

τ−→s′ φ//s′ ∨∨
s

a−→s′〈ā〉(φ//s′) T//s = T F//s = F
Restriction:

Z//\L = Z (Z =σ φD)//\L = (Z =σ φ//\L(D)//\L)

〈a〉φ//\L =




〈a〉(φ//\L) if a 6∈ L ∪ L̄

F if a ∈ L
[a]φ//\L =





[a](φ//\L) if a 6∈ L ∪ L̄

T if a ∈ L

φ1 ∧ φ2//\L = (φ1//\L) ∧ (φ2//\L) φ1 ∨ φ2//\L = (φ1//\L) ∨ (φ2//\L)

T//\L = T F//\L = F
Relabeling:

Z//[f ] = Z (Z =σ φD)//[f ] = (Z =σ φ//[f ](D)//[f ])

〈a〉φ//[f ] =
∨

b:f(b)=a〈b〉(φ//[f ]) [a]φ//[f ] =
∧

b:f(b)=a[b](φ//[f ])

φ1 ∧ φ2//[f ] = (φ1//[f ]) ∧ (φ2//[f ]) φ1 ∨ φ2//[f ] = (φ1//[f ]) ∨ (φ2//[f ])

T//[f ] = T F//[f ] = F

Table A.1
Partial evaluation function for parallel operator and relabeling operator.
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