Replace this file witlprentcsmacro.sty ~ for your meeting,
or with entcsmacro.st for your meeting. Both can be
found at theENTCS Macro Home Page

An Approach for the Specification, Verification and
Synthesis of Secure Systems

Fabio Martinellt

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy

llaria Matteucci

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy
Dipartimento di Scienze Matematiche ed Informatiche, Univedsgli Studi di Siena

Abstract

In this paper we describe an approach baseojem system analydisr thespecificationverificationandsynthesi®f secure

systems. In particular, by using our framework, we are able to model a system with a possible intruder and verify whether
the whole system is secure, i.e. whether the system satisfies a given temporal logic formula that describes its secure behavior.
If necessary, we are also able to automatically synthesize a process that, by controlling the behavior of the possible intruder,
enforces the desired secure behavior of the whole system.

Keywords: Open system analysis, partial model checking, secure systems analysis, synthesis of controller operators.

1 Overview

In the last few years, research on the definition of formal methods for the analysis and the
verification of security properties of systems has increased greatly. This is mainly due to
the practical relevance of these systems and moreover to preliminary encouraging results
achieved by the application of formal methods to security analysis.

Here we describe a logical approach $pecification, verificatio@ndsynthesiof se-
cure systems by summarizing some results of the wdr&4.6,17].

The specificationis the first step of the analysis of a system. The language for the
description of properties and the one for the description of systems must have a clear formal
semantics. We consider for specification both declarative languages as temporal logic, in

1 Invited talk. Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by EU-funded
project “Software Engineering for Service-Oriented Overlay Computers”(SENSORIA) and by EU-funded project “Secure
Software and Services for Mobile Systems "(S3MS).

2 Email: Fabio.Martinelli@iit.cnr.it
3 Email: llaria.Matteucci@iit.cnr.it

©2006 Published by Elsevier Science B. V.

MARTINELLI AND MATTEUCCI

particular equationajli-calculus, and operational ones as process algebras, in particular
CCS (see RQ)).

We then specify the security of a system as the specification of a propertyopfesn
system by following the approach given irlf,16]. As a matter of fact the analysis of
security properties is based on the idea that potential attackers should be analyzed as if
they were un-specified components of a system. In this way we reduce security analysis
to the analysis of open systems. The behavior of an open system may be not completely
specified and may present some uncertainty. The main idea underling this approach is
the following: at the beginning we have a systéhand a temporal logic formula that
describes a security property. It is possible that an intridevorks in parallel withS or
it is also possible thak is a malicious component &f. In each of these cases we require
thatS composed withX (S||.X) satisfiesy whateverX is.

The verification phase requires to check for any that (S|| X)) satisfies the property
¢. In principle, this corresponds to an unbounded number of classical model checking
problems in closed systerfis Indeed, the universal quantification on all possible intruders
makes this problem difficult to manage. In order to solve it we useptréal model
checkingechnique. It is introduced by Andersen ij [n order to deal with compositional
analysis of concurrent system. By using this technique, we may focus only and
the previous problem becomes a validity checking problem. As a matter of fact by using
the partial model checking technique, the propeftis projected on another one, says
¢' = ¢,/ depending only or§ and ¢, that only the componemX’ must satisfy. Here,
there is still the universal quantification, but the problem is now a validity checking one,
that has been solved for many logics, includingalculus.

We consider the followingynthesiproblem. Assume to have a systéhthat is secure
in isolation, but that in composition with a certain compon&ndoes not enjoy the desired
security property, say. Then, we are able to synthesize a procégbat controlling the
componentX guarantees the whole system wittworks correctly, i.e. it satisfieg.

Hence we have extended the line of researchldfl] with a method for automati-
cally enforcing the desired security properties (Se&18,19]). We define process algebra
operators calledontroller operatorsand denoted by > X whereY is thecontroller pro-
grami.e. the process that controls the un-specified compaoierit particular we define
controller operators that are able to model security automata describgd,22] for en-
forcing safety properties as well as others able to foMoa-interferenceproperties (see
[19]), under certain assumptions.

As before we start from a systeshand a security property and we project on ¢’ by
partial model checking. In this way we have to monitor only the necessary/untrusted part
of the system, her&. Then we can forcé&X to enjoy¢’ by using an appropriate controller
Y X. Moreover, our approach permits us to automatically synthesize a controller program
Y for a given controller operatdr > X by exploiting satisfiability procedure on process
algebra and temporal logic.

We also show a related specification framework calledd DC (e.g., see§]) that is
able to describe security properties, e.yon-interference, Agreement, Authentication,
Non-Repudiatiorand so on. By using this schema we are also able to uniformly model
dependable systenasid analyzedependablity propertiesGN DC was firstly introduced

4 Actually, there exists a verification problem, called module checking, i.e. model checking of open system, introduced in
[12]. Such a problem can be solved using the technique we are going to present here, 4. see [

2

MARTINELLI AND MATTEUCCI

in [8] as a framework where family of security properties could be uniformly expressed and
compared. Generally speaking-av DC property has the following form:

S satisfiesGNDCS®) iff ¥ X S||X < a(S)

This means that a system enjoysGNDCﬁ‘(S) iff S shows w.r.t. a certaibbehavioral
relation® <, the same behavior of(S). This is must to be true evensfis composed with

a possible un-trusted componeXif whatever it is. By using characteristic formulae (e.g.
see P1]) for expressing the relation, we can reduce this problem to a usual open system
analysis one.

Summing up our aim is to present a logical approach basegen systeranalysis and
partial model checkingechnique for the specification, verification and synthesis of secure
systems.

This paper is organized as followsSection 2 briefly recalls the basic theory about
process algebra and temporal logic. Section 3 explains our approach for the specification
and verification of secure systems. Section 4 presents how we are able to define and syn-
thesize controller programs. Section 5 shows a related approach used also to deal with
dependability properties. Eventually, Section 6 concludes the paper.

2 Background

2.1 Process AlgebraC'C'S

CC'S (see RQ)) is a calculus for describing the behavior of concurrent processes.

TheCC'S language assumes a sktt = £ U L of (observablefommunication actions
built from a set of names and a sét of co-names. The purpose of putting a line, called
complementation, over a names is to show that the corresponding action can synchronize
with its complemented action. Complementation follows the rule that «, for any
communication action € Act.

A special symbol;, is used to model any (unobservabiedernal action hence the
full set of possible actions idct,; = Act U {7}. We leta,b,... range overAct,. The
following grammar specifies the syntax of the language defining'@lb processes:

P,Q:=0aP|P+Q|P|Q|P\L|P[f]|A

whereL C Act and the relabeling functiofi : Act, — Act, must be such that(r) = 7.
Informally, 0 is the process that does not perform any actiof.is the process ready to
perform the actiom, then, it behaves a3. Process’+() can choosaon-deterministically
to behave either aB or as@. P||Q is theparallel operatorwhere P and(evolve con-
currently. InP\L, actionsa € L U L are prevented from happening|[f] is the process
obtained fromP by changing each € Act. into f(a). A process identified defines a
process and it is assumed that each identdi@as a defining equation of the form= P.
The operational semantics 61C'S terms (seed0]) is described by #abeled transition
systemhatis atuplé&, Act,,—), where€ is the set of alC'C'S terms and—C & x Act x
£ is atransition relationdefined by structural induction as the least relation generated by

5 There are a lot of different behavioral relations that can be studied. In particular we are interested in simulation, bisimu-
lation and trace equivalences.

3

MARTINELLI AND MATTEUCCI

Prefixing:
aP - P
Choice:
p-%p Q-
P+Q--P P+Q-5Q
Parallel:)
PP Q--Q PP Q-
PlQ = PllQ P|Q — P|Q P|Q — P
Restriction:
PP
P\L % P\L
Relabeling:
P P
fla)
P[f] =— P'[f]
Constant:
PP
AL P

Q/

Table 1
SOSsystem forC'C'S.

the set ofStructural Operational Semanti¢s OS) rules of Tablel. The transition relation
— defines the usual concept of derivation in one step. As a matter aPfaét P’ means
that processP evolves in one step into proces¥ by executing actiom € Act,. The
transitive and reflexive closure bf 4. —% is written —*.

Given aCC'S processP, Der(P) = {P'|P —* P'}, is the set of its derivatives. A
CCS processP is saidfinite stateif Der(P) is finite. Sort(P) (called thesort of P) is the
set of names of actions that syntactically appear in the prdéess

2.2 Behavioral Equivalences

Several behavioral relations are defined in order to compare the behavior of different pro-
cesses.

2.2.1 Simulation and Bisimulation Equivalences

Definition 2.1 Let (&, Act,,—) be anLT'S of concurrent processes, andfebe a binary
relation overf. ThenR is calledstrong simulationdenoted by<, over (£, Act,, —) if
and only if, wheneve(E, F') € R we have:

if E - E'then there exist§” s.t. ' -+ F' and(E', F') € R.

A strong bisimulationis a relationR s.t. bothR andR~! are strong simulations. We
represent withv the union of all the strong bisimulations.

We give the notion obbservational relationss follows: E = E’ (or E = E') if
4

MARTINELLI AND MATTEUCCI

E L E;fora+rES% EifEZ%L E'S. Lety € Act* be a sequence of
actions, i.ey = ay,...,an, thenE == E' iff there existE = Ey, E1, ..., E, = E's.t.
Ey=FE,...Ep1 == E,.

The weak bisimulatiorrelation (seeZ0]) permits to abstract to some extent from the
internal behavior of the systems, represented by the interaetion.

Definition 2.2 Let (€, Act,,—) be anLTSof concurrent processes, and Retbe a binary
relation over€. ThenR is called weak simulation, denoted by over (&, Act,,—) if and
only if, whenever E, F') € R we have:

if E % E’then there exist§” s.t. F == F’ and(E', F') € R,

A weak bisimulation is a relatioR s.t. bothR andR~! are weak simulations. We
represent withx the union of all the weak bisimulations.

Every strong simulation is also a weak one (s&@)|

2.2.2 Trace Equivalence

Most of the security properties are based on the simple notitracdés two processes are
equivalent if they exactly show the same execution sequences (tated. In order to
formally define traces, we defitace preorden<;....) andtrace equivalencé=i,..) as
follows.

Definition 2.3 For anyE € £ the setl'(E) of traces associated with' is T'(F) = { €
Act* | 3E' : E =L E'}. F can execute all traces df (notation E <gpqee F) iff
T(FE) C T(F). F andF aretrace equivalenf{notationE' ~,qce F) iff E <yrqce F and
F <irace E, 10, iff T(E) = T(F).

2.3 Equationalu-calculus

The equationagli-calculus is a modal logic (se8]) based on fix-point equations. L&tbe
a variable ranging over a st of variables, a least (greatest) fix-point equatiof is-;, ¢
(Z =, ¢), whereg is anassertion The syntax of assertiong) and of lists of equations
(D) is defined as follows:

assertion ¢ =T |F | oA | oV | (a)o| [alo
equations list D ::= (Z =, ¢)D | (Z =, ¢)D | €

where the symbdI’ meandrue andF meandalse A is the symbol for the conjunction of
formulae, i.e.1 A ¢2 holds iff both of the formulae; and¢- hold, andv is the disjunction
of formulae andp; Vv ¢2 holds when eithep; or ¢, holds. Thepossibility operator(a) o
means that “there exists a transition labeled [after thatp holds”. Thenecessity operator
[a]¢ means “for alla-actions performeg holds”.

The semantics of the equationaicalculus is defined over labeled transition systems.
In order to give the semantics of an equation list we show our notationzlee a labeled
transition system angd be a function, called environment, from variables to a subset of
the set of states of1, U represents the union of disjoint environments, and [] denotes the

6 Note that it is a short notation faf = FE, - E/ = E’ whereE, and E/ denote intermediate states that is not
important for this framework.

5

MARTINELLI AND MATTEUCCI

[T], =S [FI,=0 [Z],=p(Z2) [¢1A¢l,=I[s],N[s:],
[¢1V 2], = [¢1]), U llgal, [{a)el, ={s|3s':s = ands’ € [¢])}
llall, = {s | Vs : s % ¢ impliess’ € [ol),}

‘Table 2
Equationalu-calculus

empty environment. Let be in{u, v}, oU. f(U) represents the fix-point of the function
f inone variabld/. The semanticgD], is defined by the following equations:

[l =0 [(Z =5 $)Pl, = [Pl(puivr/z) U U/ Z]

wherelU’ = oU.[8] v/ z1up)y @ndp’ (U) = [D]pujv)z)

Informally [(Z =, ¢)D], says that the solution t&Z =, ¢)D is theo fixed point
solution U’ of [¢], where the solution to the rest of the list of equatidnds used as
environment. A labeled transition system satisfies an equation lig?, written M |=,

D | Z if the initial state ofM is in [D],Z, whereZ is the first variable in the lisD. We
omit p out when it is evident from the context or whénis closed.

The semanticg¢],, of an assertiow is defined in Table.

The following standard result @f-calculus will be useful in the reminder of the paper.

Theorem 2.4 (R3]) Given a formulag it is possible to decide in exponential time in the
length of¢ if there exists a model af and it is also possible to give an example of such
model.

2.4 Partial Model Checking

Partial model checkings a technique that relies upon compositional methods for proving
properties of concurrent systenisd].

The intuitive idea underlying the partial model checking is the following: proving that
E||F satisfiesp is equivalent to prove that' satisfies a modified specificatign= ¢,,,,
where// g is the partial evaluation function for the parallel composition operator (see Table
A.1in Appendix)” .

Hence, the behavior of a component has been partially evaluated and the requirements
are changed in order to respect this evaluation.

We give the following main result (se&]).

Lemma 2.5 Given a proces& || F' and an equational specificatidn | Z we have:
E\FED|Z iff FED|Z),,

A lemma similar to the previous one holds for e&cti'S operator.

_7 We present the partial model checking technique w.r.t. parallel operator because its application w.r.t this operators is more
intuitive than w.r.t. anothe®€C'S operator.

6

MARTINELLI AND MATTEUCCI

2.4.1 Characteristic Formulae

A characteristic formulas a formula in equational-calculus that completely characterizes
the behavior of a (state in &7'S modulo a chosen notion of behavioral relation. It is
possible to define the notion of characteristic formula for a finite state process E w.r.t.
several behavioral relations (se2l]). Here we present the definition of characteristic
formula w.r.t. (weak) simulation as follows.

Definition 2.6 Given a finite state process, its characteristic formula (w.r.t. weak simula-
tion) Dr | Zg is defined by the following equations: for evely € Der(E), Zg =,
/\aGAct([a](\/E//:E/gEu ZE”))-

Following the reasoning used i@]], the following proposition holds.

Lemma 2.7 Let E be a finite-state process and gt < be its characteristic formula w.r.t.
simulation, thent’ < £ & F = ¢p <.

3 Specification and Verification of Secure Systems

Following the approach proposed it¥[16], we describe here a methodology for the formal
analysis of secure systems based on the concept of open systems and partial model checking
technique.

3.1 Open Systems Analysis for Security

A system isopenif it has some unspecified components. We want to make sure that the
system with an unspecified component works properly, e.qg. fulfills a certain property. Thus,
the intuitive idea underlying the verification of an open system is the following:

An open system satisfies a property if and only if, whatever component is substituted to the
unspecified one, the whole system satisfies this praperty

In the context of formal languages for the description of system behavior, an open system
may be simply regarded as a term of this language which may contain * holes” (or place-
holders). These are unspecified components. For instdfice and A||B||(-) may be
considered as open systems.

The main idea is that, when analyzing security-sensitive systems, neither the enemy’s
behavior nor the malicious users’ behavior should be fixed beforehand. A system should
be secure regardless of the behavior the malicious users or intruders may have, which is
exactly averificationproblem of open systems. According t[16], for defining security
properties as open systems properties we study the following problem:

For every componerX S||X E ¢ (1)

where X stands for a possible enenty,is the system under examination afis a (tem-
poral) logic formula expressing the security property. It roughly states that the pr@perty
holds for the systen$, regardless of the component (i.e. intruder, malicious user, hostile
environmentgtc) which may possibly interact with it.

~

MARTINELLI AND MATTEUCCI

Our aim is to reduce such a verification problem as in Formlto(a validity checking
problem. To obtain this, we apply the partial model checking techniques as follows:

VX S|XE¢ i X)

In this way we find the sufficient and necessary conditionXgrexpressed by the logical
formula¢, ., so the whole systerfi|| X satisfiesp if and only if X satisfiesp, ..

Several results exist about the decidability of such problems for temporal logic and, for
several interesting properties, like sevesafety propertieg“nothing bad happens”), the
validity problem expressed by Formul) (may be efficiently solved.

4 Synthesis of Controller Programs

In previous sections we have presented our approach for analyzing secure systems as open
systems. As we have already said, the universal quantification over all possible intruders in
Formula @) it is not easy to manage.

Our aim in this section is to present our method to enforce a system to behave correctly
whatever the behavior of the target is. To do this we define sepesaéss algebra con-
troller operatorsthat permit to control possible un-trusted behaviors of a target. We denote
them byY > X, whereX is the target and” is acontroller programi.e. the process that
controlsX in order to guarantee that a given security property is satisfied.

By using a controller operator the specification of the system changes from Fofthula (
to:

VX st S|YeX)Eo 3

By partially evaluatingp w.r.t. S the Formula 8) is reduced as follows:

WYX YeX o)

where¢’ = ¢, /.

It is important to note that, by using partial model checking we need to control only the
possible un-trusted component of the system. This is an advantage of our approach because
often not all the system needs to be checked or it is simply not convenient to check it as a
whole or also it is not possible to do. Some components could be trusted and one would
like to have a method to constrain only the un-trusted ones (e.g. downloaded applets). Our
method allows one to monitor only the necessary/untrusted part of the systemX here
Sometimes it could be possible that not the whole system can be checked but only some of
its components.

Moreover, for some security properties, we are able to automatically synthesize a con-
troller program for a controller operator.

4.1 Controller Operators

We can define several kinds of controller operators. Each of them has different capabilities.
For instance, in]7,18,19] we have dealt with security automataufpcation, suppression,
insertion, edi} defined in B,4] by modeling them by process algebra controller operators
Y >x X, whereK € {T,5,1,E}8.

8 T stays forTruncation S for Suppression/ for Insertionand E for Edit.

8

MARTINELLI AND MATTEUCCI

Referring to B,4], we recall the informal definition of security automata as follows:

Truncation automata: The truncation automaton (similar to Schneider’'s ones @& [
can recognize bad sequences of actions and halt the program execution before security
property is violated, but cannot otherwise modify the program behavior.

Suppression automata: The suppression automaton can halt program execution and sup-
press individual program actions without terminating the program outright.

Insertion automata: The insertion automaton can insert a sequence of actions into the
program actions stream as well as terminate the program.

Edit automata: The edit automaton combines the power of suppression and insertion au-
tomata. It can truncate actions sequences and insert or suppress security-relevant actions
at will.

According to B,4], these operators are applied in order to enforce safety properties. As
a matter of fact for this class of formulae it is possible to prove th#t d&nd F' are two
processes, s.tt' < EthenE = ¢ = F = ¢. In [18 we have proven thal > X is
weakly similar toY". Hence, in order to satisfy the Formul§ {t is sufficient to prove the
following one:

W YiE¢ ®)
In this case we obtain a satisfiability problemyircalculus, that can be solved by Theorem
2.4. Hence we are able to find a procésghat halts the execution of the target whenever
it is unsafe.

It is important to note that a similar result can be proven also for the other controller
operators. As a matter of fact, by defining appropriate relabeling fungiigrwe have
proven thatt” >y X is weakly similar toY [fx] for K € {S,I, E}. So, by partial model
checking w.r.t. relabeling operator (see Tahléd in Appendix) we are able to calculate
¢ = qs//[fK] to reduce Formulad) as follows:

Y ®)

Also in this case we can solve the problem by Theogefn
Other controller operators can be defined in order, for example, to enforce not only
safety properties but alsoformation flow propertiegsee [L9)).

5 A General Schema for Security and Dependability Proper-
ties: the GNDC Schema

Referring to the open system approach defined before, here we present a general schema
to specify several security properties. It is cal@dneralizedVDC, GNDCY for short,

where< and « are two parameters that express a behavioral equivalence and a property
respectively. (It is a generalization bfon Deducibility on Compositiofi$DC for short,

(see B]).) This general schema permits to study relationships among different security
properties in a fairly simple way. Indeed, their comparison can be carried out by simply
studying the relations among the relativis and<’s. It is worth noticing that some of the
properties we consider have been proposed for completely different aims. For instance,

9 The interested reader can find more detailsL].[

MARTINELLI AND MATTEUCCI

NDC has been introduce for studyimgpn-interference properties non-deterministic
systems whileAgreemenhas been proposed for the analysis of entity authentication in
protocols.

The idea is similar to the one of the analysis as open systems, but it considers as correct
specification of the behavior another process rather than a formula.

The main idea is that a systefhis G N DCY, iff for every processX the composition of
the system with such & satisfies a specification(£). EssentiallyG N DC?, guarantees
that the property identified by is satisfied, w.r.t. < relation even when the system is
composed with any possibly hostile process.

Definition 5.1 Eis GNDCY, iff
VX E|X\H<o(E)

The property is parametric with respectt¢F) and« that can be instantiated in order
to obtain different security properties. In particutar: £ — £ is a function between
processes and(FE), w.r.t. a givenE, specifies which should be the “correct” (intended)
behavior of £; « C £ x £ is a relation between processes that represents our notion of
“observation”. The idea is that just by studying differenfunctions, one could compare
different properties. This has been useful to formally show, as the intuition suggests, that
non-interference properties are usually the strongest ones. (The interested reader may check
[7] for a deeper discussion.)

As a matter of fact, we can instantiate &V DC' schema to obtain several proper-
ties. For instance, we can defidéDC, BN DC, Agreementauthenticationand non-
repudiationby choosing particular instancesoanda(E).

Example 5.2 As we have already saitlon Deducibility on Compositions/ DC for short,
(see p]) has been proposed as a generalization of the classical itmnelnterferencésee
[10]) to non-deterministic systems.

SinceGNDCY, is a generalization oN DC, it can be instantiated in order to obtain
NDC and also thebisimulationbasedNDC, called BN DC. We first redefine in our
extended language the original definition as follows:

Eis NDC iff VII € Highusers, E||II\H ~¢yqce E\H W.r.t. LOWUSers

whereH is a set of high actionsN DC requires that high level processisare not able
to change the low level behavior of the system representefl\dy. As a matter of fact
E\ H is the system where no high level activity is allowed. If it is equivalent{dl\ H
this clearly means thal is not able to modify in any way the executionBf

We can obtain a bisimulation bas@dDC' by simply substitutings;,qc. with ~.

Eis BNDC iff VII € Highusers [E\ H ~ E|II\ H.

Note thatNV DC and BN DC correspond t@xNDCEM andGNDCE\H, respectively.

~trace

Example 5.3 The approach proposed it for the analysis of authentication properties,
inside the framework of'S P [11] process algebra, can be rephrased in terms of our spec-
ification schema. The basic idea of thgreemenproperty is the following:

“A protocol guarantees to an initiatet agreementvith a respondei3 on a set of data
itemsds if, whenever A (acting as initiator) completes a run of the protocol, apparently

10

MARTINELLI AND MATTEUCCI

with respondeB, then B has previously been running the protocol, apparently with

and B was acting as responder in his run, and the two agents agreed on the data values
corresponding to all the variablesdn, and each such run of corresponds to a unique

run of B”.

What is technically done in thagreemenfproperty is to have for each party an action
representing the running of the protocol and another one representing the completion of it.
Hence

E satisfieshgreementff E is GN DC%Aoe<(E),

St'ra,ce

wherea 44, SAys that even in the presence of an hostile pro¢edsges not execute wrong
traces.

The universal quantification over all possible intruders is yet problematic when trying
to check a property, since, in principle, we have to verify it over infinitely many processes,
one for each intruder.

The GNDC schema has a favorite verification method based on the so-called most-
general intruder idea. For several kind of relations, it is possible to avoid the universal
guantification and just consider one possible intruder. Thus, standard techniques and tools
may be applied. Unfortunately, for several interesting properties, 8§ DC, such ap-
proach does not work and the one based on logic presented in the previous sections should
be applied.

5.1 Related Problems=N DC' in Dependability

It is possible to show that alstependable systeman be uniformly modeled in our frame-
work and alsadependablity propertiesan be analyzed withite N DC (see P]). A sys-
tem must be modeled b§/C'S, where both thdailing behaviorof the system and the
relatedfault-recovering procedureare explicitly described. The environment acts as a
fault-injector and it is the unspecified component of our framework. We cé#lutty en-
vironment We may note that the neat separation between the system and its environment
given byGN DC'is very useful.

The GN DC schema can be exploited for expressing properties peculiar of dependabil-
ity analysis adail stop, fail safe, fail silen{see P] for the details). We briefly recall some
definitions:

A failing system model is aC'C'S processPr obtained by extending the proceBswith
the possibility of executing particular external actions from a/Setf possiblefault
actions After each fault action, the relatifailure modeis also specified itPr.

A fault tolerant system model is a CCS processP}“j-E obtained by adding t&’~ some
processes realizing error-recover strategies in accordance to some fault tolerant design
strategy.

Occurrences of faults are induces by fault-injectorprocess '+ that causes faults to hap-
pen. It interacts WitrP}ff exactly throughf € F fault actions.

Now we are able to give the characterization of fault tolerancé&AsDC' property as
follows.

Definition 5.4 A processP satisfiesGNDCﬁ,"(P)

11

iff VEr € & (PE|FF)\F < a(Pf)

MARTINELLI AND MATTEUCCI

where€r = {X|Sort(X) C FU{7}}.

It is important to observe that the clear separation between the system model and the
environment allows us to leaver unspecified and to range it ovéx.

As we have already said, different definitionsodfP) characterize different fault toler-
ance properties, e.g. fail stop, fail safe, fail silent and fault tolerance.

6 Conclusion

In this paper we have shown how security properties can be converspetjfiedas prop-

erties of open systems. Moreover, these properties caretiged in a uniform way by

using a few concepts of concurrency and temporal logic theory, as, for instance, partial
model checking. Logic provides rigorous methods to reason about the uncertainty of the
execution environment of security systems. $hsthesi®f secure systems is also possible

by means of logical techniques. More generally, we aim at providing a uniform approach
for the specificatiofanalysigsynthesis for several application areas, e.g. fault-tolerance,
non-interference, network and system security, open systems analysis and so on.

References

[1] Andersen, H., “Verification of Temporal Properties of Concurrent Systems,” Ph.D. thesis, Department of Computer
Science, Aarhus University, Denmark (1993).

[2] Andersen, H. R Partial model checking (extended abstraat) Proceedings of 10th Annual IEEE Symposium on Logic
in Computer ScienceEEE Computer Society Press, 1995, pp. 398-407.

[3] Bauer, L., J. Ligatti and D. Walkekjore enforceable security policigis:: I. Cervesato, edltoFoundatlons of Computer
Securlty proceedlngs of the FLoC’02 workshop on Foundations of Computer Se{mﬂ@) pp. 95-104.

[4] Bawer, L., J. Ligatti and D. WalkeEdit automata: Enforcement mechanisms for run-time security policiesnational
Journal of Information Securit§ (2005), pp. 2—-16.

[5] Bradfield, J. and C. Stirling, “Modal logics and mu-calculi: an introduction,” Handbook of Process Algebra. Elsevier,

[6] Focardi, R. and R. GorrierA classification of security properties for process algebdasirnal of Computer Securig/
(1994/1995), pp. 5-33.

[7] Focardi, R., R. Gorrieri and F. MartinellGlassification of security properties - part ii: Network securitg: FOSAD
Lecture Notes in Computer Scien2846 2002, pp. 139-185.

[8] Focardi, R. and F. Martinellix uniform approach for the definition of security properties FM '99: Proceedings of
the Wold Congress on Formal Methods in the Development of Computing Systems-\flaa®,| pp. 794-813.

[9] Gnesi, S., G. Lenzini and F. MartinellApplying generalized non deducibility on compositions (gndc) approach in
dependablllty Electr. Notes Theor. Comput. S809 (2004), pp. 111-126.

[10] Goguen, J. A. and J. MeseguSecurlty policy and security models: Proc. of the 1982 Symposium on Security and
Prlvacy(1982) pp. 11-20.

[11] Hoare, C. A. R., “Communicating Sequential Processes,” Prentice-Hall, 1985.

[12] Kupferman, O. and M. Y. VardiModule checkingin: Rajeev Alur and Thomas A. Henzinger, editdPspceedings of
the Eighth International Conference on Computer Aided Verificatiecture Notes in Computer Scient£02(1996),
pp. 75-86.

[13] Lowe, G., A hierarchy of authentication specificatiom: Proceedings of the 10th Computer Security Foundation
Workshop(1997), pp. 31-43.

[14] Martinelli, F., “Formal Methods for the Analysis of Open Systems with Applications to Security Properties,” Ph.D.
thesis, University of Siena (1998).

[15] Martinelli, F., Module checking through partial model checkifigchnical Report 2002-TR-06, IIT-CNR (2002).

[16] Martinelli, F.,Analysis of security protocols as open systehheoretical Computer Scien280(2003), pp. 1057-1106.

12

MARTINELLI AND MATTEUCCI

[17] Martinelli, F. and |. MatteucciModeling security automata with process algebras and related reQ086), presented
at the 6th International Workshop on Issues in the Theory of Security (WITS '06) - Informal proceedings.

[18] Martinelli, F. and I. MatteucciT hrough modeling to synthesis of security autometaProceedings of ENTCS STM06
2006.

[19] Matteucci, |.,Automated synthesis of enforcing mechanisms for security properties in a timed, $ettifrgceedings
of ENTCS ICS’062006.

[20] Milner, R., “Communicating and mobile systems: thealculus,” Cambridge University Press, 1999.

[21] Mdller-Olm, M., Derivation of characteristic formulaen: MFCS’98 Workshop on Concurrendylectronic Notes in
Theoretical Computer Science (ENTCH(1998).

[22] Schneider, F. B.Enforceable security policiesACM Transactions on Information and System Secusit{2000),
pp. 30-50.

[23] Street, R. S. and E. A. Emersofn automata theoretic procedure for the propositiopatalculus Information and
Computatior81 (1989), pp. 249-264.

A Tables of Partial model checking function

Parallel:

(DL 2)//t= (D)) Zy efft =

(Z =0 ¢D)//t = ((Zs =0 ¢//5)seper) (D) [/t Z[[t = Z

[alg//s = [al(AISYN N\, o, ¢//s's FaF T b1 Adafs = (d1//s) N(d2//s)
(@)p/fs = (a)(@//s) VN a ydffss TaF T ¢1Vda/ls=(d1//5)V ($2//5)
[71¢//s = [TN@//8) NNy =g /)8 NNy [al(@ /]5")

(1)¢//s = {T)(@//) VN =, 0l/ VN, o @) (8//s) T//s=T F//s=F

Restriction:

ZIINL=Z (Z =5 ¢D)//\L = (Z =5 ¢//\L(D)//\L)

a LYifa¢g LUL a LYifa¢ LUL
<a>¢//\L{<>(¢//\)iag Ly [GW/\L{HW/\)itagLu

F ifaelL T ifaelL

¢1 N2 //\L = (¢1//\L) A (¢2//\L) $1V d2//\L = (¢1//\L) V (¢2//\L)
T/\L=T F//\L =F
Relabeling:
Zlfl=2 (Z =5 ¢D)//[f] = (Z =5 ¢//[f1(D)//[f])

(@)8//[f1 = V. 5(0)=a (02 (0//[F]) [@l¢ /1111 = Ao py=alb)(@//11])
G1 A b2 f/[f1 = (o //If]) A(@2//1f]) 1V b //1f] = (¢1//1f]) V (¢2//1f])
T//lf]=T F//[f]=F

))] Table A.1)
Partial evaluation function for parallel operator and relabeling operator.

13

