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Abstract

More than a personal microblogging site, Twitter has been transformed by com-
mon use to an information publishing venue, which public characters, media
channels and common people daily rely on for, e.g., news reporting and con-
sumption, marketing, and social messaging. The use of Twitter in a cooperative
and interactive setting calls for the precise awareness of the dynamics regulat-
ing message spreading. In this paper, we describe Twitlang, a language for
modelling the interactions among Twitter accounts. The associated operational
semantics allows users to precisely determine the effects of their actions on Twit-
ter, such as post, reply-to or delete tweets. The language is implemented in the
form of a Maude interpreter, Twitlanger, which takes a language term as an
input and explores the computations arising from the term. By combining the
strength of Twitlanger and the Maude model checker, it is possible to auto-
matically verify communication properties of Twitter accounts. We illustrate
the benefits of our executable formalisation by means of an application scenario
inspired from real life. While the scenario highlights the benefits of adopting
Twitter for a cooperative use in the everyday life, our analysis shows that ap-
propriate settings are essential for a proper usage of the platform, in respect
of fulfilling those communication properties expected within collaborative and
interactive contexts.
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1. Introduction

Online social networks are widespread means to enact interactive collabora-
tion among people by, e.g., planning events, diffusing information, and enabling
discussions. With about 500 million of tweets sent per day [2], Twitter1 pro-
vides one of the most illustrative examples of how people can effectively interact
without resorting to traditional communication media.

The platform is used as a marketing tool where people can easily promote
retail stores and business services [3], while traditional mass media companies,
such as broadcasters and newspapers, currently leverage Twitter as a new media
channel. Noticeably, it has also been used for spreading alerts and activity
information messages by civil protection departments and the most well-known
humanitarian driving forces (see, e.g., [4]).

One of the keys for the success of this socially-centric platform consists in
its ease of use. Basically, Twitter users interact by posting tweets, i.e., textual
messages up to 140 characters. Tweets can also carry pictures, URLs, or men-
tions to other users, the latter triggering notifications to the mentioned users.
There are three types of possible relationships between Twitter users A and B:
either A follows B, meaning that the tweets posted by B are directly visible to
A (more precisely, they appear on A’s Twitter timeline), or B follows A (with
the complementary meaning), or they follow each other. Of course, there is
also the case of no relationship between A and B. Users may also reply to any
tweet, or even do a retweet, in order to spread to their followers what they think
particularly worth of notice.

Recently, researchers have focused their attention on several aspects of Twit-
ter, from modelling the number and nature of follow relationships (see, e.g., [5]),
to applying sentiment analysis and natural language processing techniques to
tweets. These techniques allow, for example, to discover trending topics and
their correspondence to real events (see, e.g., [6]) or, by relying on both super-
vised and unsupervised learning, to detect malicious accounts. In this paper,
we focus on what probably represents one of the core aspects of the platform,
that makes it so popular and widespread: the Twitter communication model
and interaction network. All those who like to use Twitter for socialising, being
informed, interact within the community, must precisely know the dynamics of
their tweets, say, e.g., which accounts are directly reachable by their tweets, or
what happens if a tweet is deleted. A conscious usage of Twitter becomes even
more crucial when it is used as a communication media to support (possibly
critical) collaborative work.

While the potentialities of the knowledge value provided daily by Twitter
to its subscribers are undeniable, the achievement of a full user experience-
awareness should not be given for granted. Indeed, the effects of (a sequence

1Twitter web site: http://twitter.com
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Figure 1: Effects of an example Twitter interaction on users’ accounts

of) Twitter interactions may be not clearly known by all the Twitter users. As
simple examples, we invite the reader to consider the following three sequences
of actions:

1. post a tweet t – reply to t – delete t;

2. post a tweet t – retweet t – undo the retweet;

3. post a tweet t – retweet t – retweet the retweet – delete t.

Without introducing here a formal notation, we give the intuition for such se-
quences. Sequences 1 and 2 involve two users, say @mickey and @goofy , while
sequence 3 involves also a third user, say @donald . In sequence 1, @mickey
posts a tweet t and @goofy replies to that tweet, then @mickey deletes t. In
sequence 2, @mickey posts a tweet t, @goofy retweets t, and successively @goofy
cancels his retweet. In sequence 3, @mickey posts a tweet t, @goofy retweets
t, then @donald retweets @goofy ’s retweet, and finally @mickey deletes the
original tweet t. The effects of the removal actions in these three sequences of
interactions are quite different. In the first case, t is removed from any timeline,
while the reply still exists. In the second case, the fact that @goofy cancels his
retweet does not cause any effect to t, that still exists. Finally, in sequence 3,
deleting t leads to the disappearance of the original tweet together with of all
its retweets. Figure 1 gives a pictorial representation of sequence 3, from the
point of view of the messages received by the three considered accounts. For
the sake of modelling, each tweet/retweet is labeled by a unique identifier idj .
As a matter of notation, we use an envelope to represent a message (in this case
a tweet or a retweet). The message identifier is written beside the envelope, in
the right-corner; in case of a retweet, inside the envelope it is reported also the
identifier of the retweeted tweet. Moreover, we use a blue colour to distinguish
the last message received by an account from the others, which are coloured by
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a light brown colour.
The previous interactions are just some of many possible interactions that

users can engage on Twitter. Even these simple examples have effects that
could be not fully intuitive for the community. In the following of the paper, we
will show examples of interactions leading to more subtle and counterintuitive
effects. This motivates the need for designing a rigorous model to trace, and
hence analyse, Twitter interaction patterns.

In [1], the authors proposed Twitlang, a specification language describing a
network of Twitter accounts and their behaviour. This was the first attempt
to formally model the basic interactions resulting from users communicating on
Twitter. The Twitlang formal semantics clearly determines the effects of the
actions of a Twitter account, with respect to all the other accounts (including
subtle and counterintuitive effects). This is determined “a priori”, without the
need of experimenting interactions on the Twitter platform and their effects case
by case. Besides being interesting per se, the Twitlang formal semantics has
been implemented in the form of a Maude2 interpreter, called Twitlanger. It
takes a language term, i.e., a specification of a network of Twitter accounts, as an
input, and performs an automatic or interactive exploration of the computations
arising from the term.

It is worth noting that the language is able to capture the core aspects
of Twitter communications, i.e., standard behavioural patterns, like posting a
tweet, replying to or retweeting a particular tweet. We focus on such aspects
of the Twitter communication network, since we argue that they are already
enough to enable the kind of analyses which we intend to carry out. For the
sake of clarity, we point out that the model of Twitter, as caught by Twitlang,
is not complete. Indeed, syntax and semantics of some more specific features,
as direct messages, the blocking of an account, likes, and tags in pictures are
not modelled. Another modality that is not covered is the one related to pri-
vacy settings, which, when turned on, substantially modify the way tweets are
delivered. In our work, in fact, we focus on modelling and analysing commu-
nication properties and communication configurations of the Twitter network
in a “cooperative” setting. Thus, we have mainly considered a collaborative
use of Twitter, where accounts are not protected and where Twitter plays the
role of a public repository of messages. However, we acknowledge that, in a
more general perspective, considering protected accounts is particularly rele-
vant, especially for modelling and analysing privacy properties of the platform.
Therefore, we envisage an extension of Twitlang including, besides some of the
features mentioned above, the management of the privacy settings.

This paper proposes an optimised version of Twitlanger, which allows to
significantly improve the performance analysis with respect to the version de-
veloped in [1]. Most of all, we integrate here the model checking facilities offered
by the Maude toolset. This integration enables the automatic verification of the
propagation of messages within a network of Twitter accounts, where the lat-

2Maude System web site: http://maude.cs.illinois.edu/
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ter may be linked together by follow relationships and perform basic operations,
such as tweeting, replying, retweeting, deleting tweets, and so on. We also intro-
duce a real life-inspired scenario, which represents a collaborative environment
where people need to inform and be informed on everyday activities. Quite
naturally, Twitter represents a friendly and ready-to-use channel for communi-
cation tasks. Our analysis explores whether different configurations of a network
of accounts on Twitter are appropriate or not to fulfil the communication goals
dictated by the scenario tasks. In the negative cases, the Maude model checker
automatically outputs counterexamples, thus helping to find solutions for fixing
the communication fails.

From the practical point of view, we envision two classes of potential users
for Twitlang/Twitlanger: (i) researchers working on formal methods, who can
use the formal semantics, and possibly its Maude implementation, for develop-
ing other analysis techniques for Twitter interactions; and (ii) ICT managers,
who intend to use Twitter as a communication media for collaborative work
in their organisations and want to ensure that their applications enjoy desired
communication properties. In this second case, in particular, our approach can
be used to properly design a Twitter sub-network according to the goals and
properties to achieve (e.g., in a university, if a professor has to issue a commu-
nication regarding an exam, then all students interested in it must receive the
message). Then, the realisation of such a sub-network simply consists of possi-
bly creating some new Twitter accounts (e.g., the one of the student office) and
requiring the involved Twitter users (professors, administrative staff, etc.) to
respect a disciplined use of Twitter (e.g., establishing some follow relationships,
retweeting all tweets having a given hashtag, etc.).

Road map. The remainder of this paper is organised as follows. The next sec-
tion introduces the syntax of Twitlang, focusing on specifying a simple Twitter
interaction pattern, while Section 3 presents the semantics of the language.
Then, we describe in Section 4 a sequence of Twitter interactions among three
parties, which is peculiar for its counterintuitive visible outcome. We show
that the semantics of the language is capable to precisely capture that sub-
tle outcome, without the need for setting up empirical experiments. Section 5
describes the basic Maude modules of the Twitlanger interpreter, shows the
results of the experimental evaluation of the optimised version of Twitlanger,
presents the integration with the Maude model checker, and finally defines a set
of properties valuable for the Twitter platform. In Section 6, we introduce a
university environment where the staff and the students communicate via their
Twitter accounts: we show how our approach is able to verity the fulfilment
of communication properties among the actors at stage. Section 7 is devoted
to the related work in the area of Twitter modelling and analysis techniques.
Finally, in Section 8, we conclude the paper.

Main novelties. The current paper represents a revised and extended version
of the work in [1]. In particular, novelties with respect to the predecessor are
as follows:
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• Section 5 presents an optimised version of the Twitlanger interpreter,
shows the results of its experimental evaluation, and introduces the in-
tegration of the Maude model checker, with related properties specifically
defined for Twitter.

• A more complex, real life inspired application is newly introduced in Sec-
tion 6 and it is modelled with Twitlang. The case study intends to show
the benefits of the adoption of Twitter for everyday life.

• We leverage the Maude model checker to check a set of communication
properties on the newly introduced case study (Section 6). The properties
have been defined with the aim of analysing the access to the available
information in a considered Twitter (sub)network, where the accounts
perform basic actions, such as tweet, retweet, reply, delete and undo.
Such an investigation is beneficial to assure that the Twitter network (or
a portion of that) is configured in such a way to achieve a sound adoption
of the platform, when used for making everyday life goals easier (e.g.,
assuring that tweets are received by the expected recipients).

• The Twitlang syntax and semantics have been slightly revised to more
strictly adhere to the real Twitter settings and usage (Sections 2 and 3).

• The related literature has been revised and our contribution has been
critically positioned within the existing research efforts (Section 7).

• For the reader’s convenience, a full account of the operational semantics
is given in Section 3.

2. Twitlang: a formal language for modeling Twitter interactions

In this section, we introduce the syntax of Twitlang, the formalism we pro-
pose to model interactions among Twitter accounts.

Twitlang syntax is reported in Table 1. A network N is a composition, by
means of parallel operator ‖, of accounts of the form u : T : N : F : B, where:

• u is a username that uniquely identifies the account;

• T is the timeline, i.e. the list of messages received from the account’s
followings or sent by the account;

• N is the list of notifications of the account, containing the messages where
the account’s username is mentioned and the replies to account’s messages;

• F is the list of followings of the account;

• B is a model of the account’s behaviour, expressed as a process performing
Twitter actions.
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Table 1: Twitlang: syntax

pNetworksq N ::“ u : T : N : F : B | N1 ‖ N2

pTimelinesq T ::“ ε | m | T1, T2

pNotification listsq N ::“ ε | m | N1, N2

pMessagesq m ::“ xidcur, idret, idrep, text , ua, ul, usy

pFollowing listsq F ::“ ε | u | F1, F2

pBehavioursq B ::“ nil | a.B | B1 `B2 | B1 | B2 | K

pActionsq a ::“ tweetptext , xq | deletepxq

| findpP, zq@t | retweetpz, yq | undopyq

| replypz, text , U, xq | followpuq | unfollowpuq

pTargetsq t ::“ u | all

Symbol ε is used to denote an empty list.
A message is a data tuple of the form xidcur, idret, idrep, text , ua, ul, usy,

where:

• idcur is the identifier of the (current) message;

• idret is the identifier of the original tweet the current message is a retweet
of;

• idrep is the identifier of the message the current message is a reply to;

• text is the textual content of the message;

• ua is the username of the author of the (retweeted or replied) original
message;

• ul is the username of the sender of the last retweet in a retweet chain;

• us is the username of the sender of the current message.

We will use the null symbol to leave unspecified a field of a message, as, for
example, in the case of a new tweet, where the fields idret, idrep, ua and ul are
irrelevant. Moreover, we will exploit a projection function m Ói that returns the
i-th field of the message m. It is worth noticing that the identifiers used in a
message act as links to other messages. Thus, given a message xid1, id2, id3, t, u1,
u2, u3y, the identifier id1 is a link to access all messages produced as replies to
this message (i.e., the set of messages tm | m Ó3“ id1u), while the identifier
id3 can be used to access the previous message in the conversation (i.e., the
message m such that m Ó1“ id3). Other messages can be iteratively retrieved
from the already accessed ones. The navigation among messages via links can
be done in the Twitter platform by means of the functionalities expand and view
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conversation. As an example, let us consider the case of a reply to a reply of a
tweet; the message m corresponding to the reply of the tweet permits accessing
both the tweet message (by means of the id in the third field of m) and the
second reply message (by means of the id in the first field of m).

Account behaviours are modelled by means of terms of a simple process
algebra (actually, this is a simple variant of the well-known process algebra
CCS [7], with specialised actions). Each process is built up from the inert
process nil via action prefixing (a.B), nondeterministic choice (B1`B2), parallel
composition (B1 | B2), and process invocation (K). We assume that K ranges
over a set of process constants that are used in (recursive) process definitions.
We assume also that each constant K has a single definition of the form K fi B.

Processes can perform eight different kinds of actions. We use the following
pairwise disjoint sets of variables: the set of tweet variables (ranged over by x),
the set of retweet variables (ranged over by y), and the set of message variables
(ranged over by z). Variables in Twitlang are sort of write-once variables that,
when instantiated with a value, disappear from the term and cannot be reas-
signed. Moreover, we use U to denote a set of usernames. We define three ac-
tion prefixes tweetptext , xq.B, retweetpz, yq.B and replypz, text , U, xq.B used
to send messages to other accounts; they bind variables x and y in B. The re-
ceivers of such messages are determined according to follower-following relation-
ships and presence of mentions in the content of messages, as formally described
by the language semantics (Section 3). In particular, action tweetptext , xq pro-
duces a new tweet with content text , whose fresh message identifier is bound to
the tweet variable x. Action retweetpz, yq permits retweeting a message iden-
tified by z; the fresh identifier of the retweet message is bound to the retweet
variable y. Action replypz, text , U, xq produces a message in response to the
message identified by z; the produced message has content text , inherits all men-
tions from the replied message but for those specified in the set U of usernames3,
and its identifier is bound to variable x. Tweet and reply messages can be re-
moved by means of action deletepxq, while retweet messages by means of action
undopyq. Actions retweetpz, yq and replypz, text , U, xq act on a message that,
at runtime, will replace the message variable z. This message is retrieved from
the Twitter network by means of the (blocking) action findpP, zq@t.B, which
indeed binds variable z in B. The action relies on a predicate P for selecting a
message among those stored in a given account u (target t “ u) or among all
messages in the network (target t “ all). Predicates are boolean-valued expres-
sions obtained by logically combining the evaluation of (comparison) relations
between message fields and values. Intuitively, the find action represents all ac-
tivities performed by a human user leading to the reading of a message, such as
looking at her own timeline, looking at the profile pages4 of other users, reading

3For the sake of simplicity, the set U is statically defined. This is adequate for the purpose
of our study; a more dynamic definition of the set could be considered in further developments.

4The profile page of a Twitter account contains all messages (i.e., tweets, retweets and
replies) produced by the account. This is the part of the account’s timeline visible to other
users.
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messages embedded in websites (e.g., online newspapers), or reading messages
retrieved via the search functionality of Twitter. An account can add/remove
a username u to/from its following list F by means of actions followpuq and
unfollowpuq, respectively.

We conclude the presentation of the syntax by showing how the examples
shown in Figure 1 are rendered in our formalism.

Example 1 (Tweet-retweet-retweet-delete). Let us consider a network of three
accounts with usernames um (@mickey), ug (@goofy) and ud (@donald), with
empty timelines and notifications lists and such that ug follows um and ud fol-
lows ug:

um : ε : ε : ε :Bm ‖ ug : ε : ε : um :Bg ‖ ud : ε : ε : ug :Bd

Account um posts a tweet, waits for a local message indicating that ud has
retweeted it, and then deletes it. Account ug (resp. ud) reads a local message
from um (resp. ug) and retweets it. This is rendered by the following behaviours:

Bm “ tweetpHello, xq.findpÓ7“ ud, zq@um.deletepxq.nil

Bg “ findpÓ7“ um, z1q@ug . retweetpz1, yq.nil

Bd “ findpÓ7“ ug , z2q@ud. retweetpz2, y1q.nil

Predicate Ó7“ u is verified by a message m if its sender (i.e., m Ó7) is the
username u.

3. Twitlang operational semantics

The operational semantics of Twitlang is given in the SOS style [8] in terms
of a structural congruence and of a labeled transition relation. Notably, the
semantics is only defined for closed terms, i.e. terms without free variables. In-
deed, we consider the binding of a variable as its declaration (and initialisation),
therefore free occurrences of variables at the outset in a term must be prevented
since they are errors similar to uses of variables before their declaration in pro-
grams. Notice also that the semantics is defined over an enriched syntax that
also includes those auxiliary terms resulting from replacing (free occurrences
of) variables with the corresponding identifier. Finally, it is worth noticing that
not all processes allowed by the syntax in Table 1 are meaningful. Indeed, in a
general term of the language, the messages stored in the accounts may not be
consistent; for example, we could have a message representing a retweet whose
reference to the original tweet does not correspond to any tweet message in
the network. Thus, to ensure consistent terms, we only consider reachable net-
works (whose formal characterisation is provided later in Definition 1), which
are networks obtained by means of reductions from networks with no stored
messages.

3.1. Structural congruence

The structural congruence, written ”, is defined as the smallest congru-
ence relation on networks that includes the laws shown in Table 2. Almost all
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laws are standard laws of process algebras. The first six laws are the (abelian)
monoid laws for ` and | (i.e., they are associative and commutative, and have
nil as identity element). The seventh law permits to replace a process invo-
cation with the corresponding process behaviour (in case of recursive defini-
tions, this allows recursion unfolding). The eighth law equates alpha-equivalent
behaviours, i.e. behaviors only differing in the identity of bound variables
(alpha-equivalence is denoted by ”alpha); as an example, using this law the
term tweetptext , x1q.deletepx1q.nil can be safely converted in tweetptext , x2q.
deletepx2q.nil, as variable x1 and x2 are just placeholders for message identi-
fiers. The ninth law permits lifting the structural congruence from behaviours
to nets. The last two laws state that ‖ is commutative and associative.

Table 2: Twitlang: structural congruence

B ` nil ” B B1 `B2 ” B2 `B1 pB1 `B2q `B3 ” B1 ` pB2 `B3q

B | nil ” B B1 | B2 ” B2 | B1 pB1 | B2q | B3 ” B1 | pB2 | B3q

K fi B

K ” B

B”alphaB
1

B ” B1

B ” B1

u : T : N : F : B ” u : T : N : F : B1

N1 ‖ N2 ” N2 ‖ N1 pN1 ‖ N2q ‖ N3 ” N1 ‖ pN2 ‖ N3q

3.2. Behaviour semantics

To define the labeled transition relation, we rely on an auxiliary relation on
behaviours, which is defined as the smallest relation on behaviours generated

by the rules in Table 3. We write B
α- B1 to mean that “B can perform a

transition labeled α and become B1 in doing so”. Transition labels are generated
by the following production rule

α ::“ tweetptext , idq | deletepidq | findpP, zq@t | retweetpm, idq

| undopidq | replypm, text , idq | followpuq | unfollowpuq

Basically, each action gives rise to the corresponding label. When a tweet,
retweet or reply is executed, a fresh message id is generated and used to
replace the corresponding variable x or y via a substitution, i.e. a function rv{ks
mapping variable k to value v. Application of a substitution to a behaviour,
written Brv{ks, has the effect of replacing every free occurrence of k in B with
v. As clarified later, the freshness of identifiers is ensured by operational rules
at the network level.

The message text produced by a reply action extends the reply message
with the mentions inherited from the replied message m, except for those in-
dicated in the set U . To this aim, we exploit a mention retrieval function
mentionsptextq and the removal operator textzU : the former returns the set of
usernames mentioned in text , while the latter removes from text all mentions

10



Table 3: Twitlang: labeled transition relation (behaviours)

tweetptext , xq.B
tweetptext,idq- Brid{xs [B-tweet]

deletepidq.B
deletepidq- B [B-delete]

findpP, zq@t.B findpP,zq@t- B [B-find]

retweetpm, yq.B
retweetpm,idq- Brid{ys [B-retweet]

undopidq.B
undopidq- B [B-undo]

replypm, text , U, xq.B
replypm,pmÓ7¨mÓ5¨mentionspmÓ4qqzU ¨text,idq- Brid{xs [B-reply]

followpuq.B
followpuq- B [B-follow]

unfollowpuq.B
unfollowpuq- B [B-unfollow]

B1
α- B11

[B-choice]
B1 `B2

α- B11

B1
α- B11

[B-par]
B1 | B2

α- B11 | B2

to accounts belonging to the set U . Thus, in the label generated by the reply
action, the text of the message consists of a mention to the sender of message
m, a mention to the author of the original tweet, all mentions included in the
text of m except those in U and, of course, the text of the reply. They are
composed by means of the concatenation operator ¨ . Notably, new mentions
can be added by means of the text of the reply.

Execution of an action permits to take a decision between alternative be-
haviours (rule [B-choice]), while execution of parallel actions is interleaved
(rule [B-par]). Notably, symmetric versions of such rules are not necessary,
as structural congruence (applied via rule [N-str], introduced later) ensures
associativity and commutativity properties of operators ` and |.

3.3. Network semantics

At network level, the labeled transition relation is the smallest relation on
closed reachable networks generated by the rules in Tables 4 and 5. We write

N λ- N 1 to mean that “N can perform a transition labeled λ and become N 1
in doing so”. Transition labels are generated by the following production rule

λ ::“ m | deletepidq | undopidq | u : foundpmq | u : addedpu1q | u : removedpu1q

meaning that a message m has been transmitted, the tweet/reply identified by
id and its related messages have been deleted, the retweet identified by id has
been deleted, a message m is retrieved by u, the account u1 has been added to

11



the following list of u, and the account u1 has been removed from the following
list of u, respectively.

Rule [N-tweet] transforms a tweet label into a network label m represent-
ing the message generated by the action. The message is inserted in the timeline
of the account. Notably, premise id R idspT,N,Bq checks that the message id
is fresh in the considered account (in fact, function idsp¨q returns all identifiers
used in the terms passed as arguments).

Rule [N-retweet] is similar; the extra premise m Ó7‰ u permits blocking
a retweet of a message generated by the same account u (indeed, this is not
allowed in Twitter). Notice that this time the second field of the produced
message records the identifier of the original tweet. If m is a retweet, this
information is retrieved from the second field of m, while in case of tweet or
reply it is retrieved from the first field. This is achieved by resorting to function
origIdpmq that returns m Ó2 if m Ó2‰ , otherwise m Ó1. Similarly, the fifth
field is determined by means of function authorpmq that returns m Ó5 if m Ó2‰

(i.e., m is a retweet), otherwise (i.e., m is a tweet or a reply) it returns m Ó7.
Moreover, the text of the retweet is the same of that of the retweeted message
(in Twitter, indeed, the retweet action does not allow to modify the text of
the retweeted message).

Rule [N-reply] is similar; the rule properly records the identifier and author
of the replied message m in the third and fifth fields of the generated message,
respectively.

Rule [N-deliver] takes care of delivering a new message to all the accounts
of the network that have to receive it. In particular, this rule should be repeat-
edly applied in order to consider one by one all the accounts. For each account
is checked if the identifier of the message is fresh. In this way, at the end of
the inference of the transition, the global freshness of the identifier is ensured.
Notably, this does not require to use a restriction operator à la π-calculus [9],
because the scope of the identifiers is always global, i.e. each user potentially can
access every tweet in the network (recall that in Twitter it is possible to access
the messages sent by any user by visiting her Twitter profile page). The possible
insertion of the message in the timeline and notification list of the considered
account is regulated by the following insertion operators:

• tweet insertion: a message m is inserted in the timeline T of an account
only if the sender of m is in the following list F of this account

T ‘F m “

"

pT,mq if m Ó7P F

T otherwise

• notification insertion: a message m is inserted in the notification list N
of an account with username u only if u is mentioned in the text of m, or
m is a retweet whose original tweet message has been sent by u, or m is a
reply to a message sent by u

N ‘u m “

"

pN,mq if u P mentionspm Ó4q _ m Ó5“ u _ m Ó6“ u

N otherwise

12



Table 4: Twitlang: labeled transition relation (networks)

B
tweetptext,idq- B1 id R idspT,N,Bq

[N-tweet]
u : T : N : F : B

xid, , ,text, , ,uy- u : pT, xid, , , text , , , uyq : N : F : B1

B
retweetpm,idq- B1 id R idspT,N,Bq m Ó7‰ u

[N-retweet]

u : T : N : F : B
xid,origIdpmq, ,mÓ4,authorpmq,mÓ7,uy-

u : pT, xid, origIdpmq, ,m Ó4, authorpmq,m Ó7, uyq : N : F : B1

B
replypm,text,idq- B1 id R idspT,N,Bq

[N-reply]
u : T : N : F : B

xid, ,mÓ1,text,mÓ7, ,uy- u : pT, xid, ,m Ó1, text ,m Ó7, , uyq : N : F : B1

N m- N 1 m Ó1R idspT,N,Bq
[N-deliver]

N ‖ u : T : N : F : B
m- N 1 ‖ u : pT ‘F mq : pN ‘u mq : F : B

B
deletepidq- B1

[N-delete]
u : T : N : F : B

deletepidq- u : pT a idq : pN a idq : F : B1 id

N deletepidq- N 1

[N-delPropag]
N ‖ u : T : N : F : B

deletepidq- N 1 ‖ u : pT a idq : pN a idq : F : B id

B
undopidq- B1

[N-undo]
u : T : N : F : B

undopidq- u : pT c idq : pN c idq : F : B1 id

N undopidq- N 1

[N-undoPropag]
N ‖ u : T : N : F : B

undopidq- N 1 ‖ u : pT c idq : pN c idq : F : B id

B
findpP,zq@u- B1 Dm P pT YNq : Ppmq “ true

[N-find-u]
u : T : N : F : B

u:foundpmq- u : T : N : F : B1rm{zs

B
findpP,zq@t- B2 pt “ u1 _ t “ allq Dm P T 1 : Ppmq “ true ^ m Ó7“ u1

[N-find-t]

u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1
u:foundpmq-

u : T : N : F : B2rm{zs ‖ u1 : T 1 : N 1 : F 1 : B1
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Table 5: Twitlang: labeled transition relation (networks), cnt.

B
followpu1q- B2 u1 R F

[N-follow1]

u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1
u:addedpu1q-

u : pT, tm P T 1 | m Ó7“ u1uq : N : pF, u1q : B2 ‖ u1 : T 1 : N 1 : F 1 : B1

B
followpu1q- B2 u1 P F

[N-follow2]

u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1
u:addedpu1q-

u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1

B
unfollowpu1q- B2

[N-unfollow]

u : T : N : F : B ‖ u1 : T 1 : N 1 : F 1 : B1
u:removedpu1q-

u : pT ztm P T | m Ó7“ u1uq : N : pF zu1q : B2 ‖ u1 : T 1 : N 1 : F 1 : B1

N1
λ- N 1

1 λ P tu : foundpmq, u : addedpu1q, u : removedpu1qu
[N-par]

N1 ‖ N2
λ- N 1

1 ‖ N2

N ” N1
λ- N2 ” N 1

[N-str]
N λ- N 1

To clarify the message delivery mechanism of Twitlang, we show in Figure 2
a simple example of a transition inference, where a user (u1) tweets a message
that is delivered in the timeline of a follower (u2) and in the notification list
of a mentioned user (u3). The effect of this transition is graphically shown in
Figure 3. Notably, the rules for the propagation of the effects of actions delete
and undo work similarly.

Rule [N-delete] deletes the tweet identified by id and all its retweets from
the account that performed the delete action (which is the account that emitted
such a tweet). The deletion is then propagated to the other accounts by rule
[N-delPropag]. The deletion of a message from a list L (which denotes either
a timeline or a notification list) is defined by the following operator:

• tweet deletion: a message m is deleted from the list L of an account only
if id is its identifier or m is a retweet of a message identified by id

La id “ Lztm P L | m Ó1“ id _ m Ó2“ idu

Moreover, retweeting and replying of deleted messages (which may happen when
a delete is executed after a find) are prevented by means of the block operator
B id, which replaces prefixes a.B1 in B by nil when a is a retweet or a reply
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[B-tweet]
tweetp“foo u3”, xq.nil

tweetp“foo u3”,id1q- nil
[N-tweet]

u1 : ε : ε : ε : tweetp“foo u3”, xq.nil
m- u1 : m : ε : ε : nil

[N-deliver]
u1 : ε : ε : ε : tweetp“foo u3”, xq.nil ‖ u2 : ε : ε : u1 : nil

m- u1 : m : ε : ε : nil ‖ u2 : m : ε : u1 : nil
[N-deliver]

u1 : ε : ε : ε : tweetp“foo u3”, xq.nil ‖ u2 : ε : ε : u1 : nil ‖ u3 : ε : ε : ε : nil
m- u1 : m : ε : ε : nil ‖ u2 : m : ε : u1 : nil ‖ u3 : ε : m : ε : nil

Figure 2: Example of a transition inference (where m stands for xid1, , , “foo u3”, , , u1y,
and conditions on id1 in rules [N-deliver] and [N-tweet] are omitted because they are
straightforwardly satisfied)

Timeline

Followings: u1

Notifications

Behavior

u2

Timeline

Followings

Notifications

Behavior

u3

Timeline

Followings

Notifications

Behavior:
tweet("foo u3")

u1

"foo u3"

"foo u3" "foo u3"

Figure 3: Graphical representation of the delivery of a tweet

action having a message m as parameter with m Ó1, m Ó2 or m Ó3 sets to id5.
To clarify the use of the block operator, let us consider the following example:

u1 : ε : ε : ε : tweetp“foo”, xq.deletepxq.nil
‖ u2 : ε : ε : u1 : findpÓ7“ u1, zq@u2.retweetpz, yq.nil

The execution of the tweet action by u1 and of the find action by u2 leads to
the following network

u1 : m : ε : ε : deletepidq.nil
‖ u2 : m : ε : u1 : retweetpm, yq.nil

5The definition of more sophisticated solutions, e.g. based on exception handling, to deal
with actions involving deleted messages is left for future investigation. Indeed, the blocking
solution used here properly suits the study carried out in this paper.
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with m “ xid, , , “foo”, , , u1y. Now, if user u1 performs the delete action,
then user u2 cannot perform the corresponding retweet action, as the original
tweet has been removed. To achieve this, when m is deleted, retweetpm, yq.nil
is replaced by nil by means of the block operator.

Retweets are undone by means of rules [N-undo] and [N-undoPropag],
that are similar to rules for the delete action except for the deletion operator:

• retweet deletion: a message m is deleted from the list L of an account only
if m has id as identifier of the current message

Lc id “ Lztm P L | m Ó1“ idu

In this case, it is considered only the first field of the message. Thus, only the
retweets identified by id are removed, while other retweets of the same tweet
and the tweet itself are not affected by the deletion.

Rule [N-find-u] allows account u to look for a message satisfying predicate
P in its timeline and notification list. If a message is found, say m, the label
produced at network level is u : foundpmq. Rule [N-find-t] is similar, but it
looks for a message in the profile page of another account u1, which either is
specifically indicated in the target (t “ u1) or is anyone of the rest of the net
(t “ all). Once a message is found, rule [N-par] permits terminating the search
without affecting the other accounts of the network.

Rule [N-follow1] extends the followings list of account u with username u1

when the former is not a follower of the latter; consequently, extends the timeline
T with messages (i.e. tweets and retweets) sent by u1. Rule [N-follow2] is used
to let the follow action pass without affecting the timeline and the following list
of u when this account is already a follower of u1. Rule [N-unfollow] performs
the inverse operations, i.e. it removes u1 from F and the messages sent by u1

from T . Rule [N-par] is used when an action find, follow or unfollow has
taken place in a part of a network, in order to allow the whole network to evolve
accordingly. This rule cannot be used instead when other kinds of action are
executed, i.e., when a message is sent or deleted/undone. Indeed, as explained
before, in such cases specific rules for the propagation of action effects must be
used. Notably, for the sake of simplicity, if the argument u1 of actions follow
and unfollow does not correspond to an account of the network, or it is the
same account performing such actions, rules [N-follow] and [N-unfollow]
cannot be applied and, hence, the actions are blocked. In fact, this kind of
situations cannot take place in Twitter, where only existing accounts can be
object of actions follow and unfollow.

Finally, rule [N-str] states that structural congruent nets have the same
transitions.

We can now formally define the class of reachable networks, and conclude
with an example.

Definition 1 (Reachable networks). The set of reachable networks is the closure

under
λ- of the set of terms generated by the following grammar:

N ::“ u : ε : ε : F : B | N1 ‖ N2
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Example 2 (Tweet-retweet-retweet-delete). Let N be the network defined in
the Example 1. The behaviour Bm of the account um can evolve as follows:

Bm
tweetpHello,id1q- B1m

Now, by applying rule [N-tweet], the message m1 “ xid1, , ,Hello, , , umy is
produced. Then, by applying rule [N-deliver], m1 is delivered to ug (since ug
is a follower of um). Thus, the resulting transition is:

N xid1, , ,Hello, , ,umy- N 1 “ um : m1 : ε : ε :B1m ‖ ug : m1 : ε : um :Bg ‖ ud : ε : ε : ug :Bd

Similarly, ug and ud perform their actions as follows:

N 1
ug :foundpm1q- m2- ud:foundpm2q- m3- N 2 “

um : m1 : pm2,m3q : ε :B1m ‖ ug : pm1,m2q : m3 : um :nil ‖ ud : pm2,m3q : ε : ug :nil

where messages m2 and m3 are xid2, id1, ,Hello, um, um, ugy and xid3, id1, ,Hello, um, ug, udy,
respectively. Finally, um performs the find and delete actions:

N 2 um:foundpm3q- deletepidq- N3“um : ε : ε : ε :nil ‖ ug : ε : ε : um :nil ‖ ud : ε : ε : ug :nil

As in Figure 1, the action produces a domino-effect that removes all messages
from the timelines and notification lists.

4. An example interaction with counterintuitive effects

Twitter provides users with a basic set of simple features to communicate
each other over the platform. Despite the apparent simplicity of such features,
the combination of some communication actions can lead to counterintuitive
effects.

We consider three Twitter accounts, say @mickey , @donald , and @goofy .
We suppose that the three accounts belong to three distinct researchers, Mickey
Mouse, Donald Duck, and Goofy, respectively. Mickey and Donald are colleagues
and follow each others on Twitter, while Goofy is neither a follower nor a follow-
ing of both. This scenario is rendered in our formalism as the following network
(for the sake of presentation, we consider empty the timelines and notifications
lists of the accounts at the beginning of the interaction):

um : ε : ε : ud : Bm ‖ ud : ε : ε : um : Bd ‖ ug : ε : ε : ε : Bg

Mickey is attending a conference on Social Informatics and listens with in-
terest to Goofy’s talk on his recent results on using formal methods for the
specification of the Twitter interaction patterns. Since Mickey and Donald are
performing research on very related topics, Mickey sends an enthusiastic tweet
mentioning both Donald and Goofy, with the following text: “@donald great
work by @goofy on #formalmethods and Twitter! Let’s start a collaboration!”.
Thus, the behaviour of the Mickey’s account is:

Bm “ tweetp“ud great work by ug on#formalmethods and Twitter ! . . . ”, xq. B1m

Such a tweet, called hereafter the original tweet and denoted by m1, appears
on (1) Donald’s user timeline, since Donald follows Mickey, and on Donald’s
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Figure 4: Donald’s reply is visible on Goofy’s notification list

notifications list, since Donald has been mentioned; (2) Goofy’s notifications
list, since Goofy has been mentioned, but Goofy does not follow Mickey; and (3)
Mickey’s user timeline:

um : m1 : ε : ud : B 1m ‖ ud : m1 : m1 : um : Bd ‖ ug : ε : m1 : ε : Bg

It happens that Donald has listened some rumours on Goofy’s professional repu-
tation. Quite recklessly, he replies to the original tweet, although removing the
mention to him: in that reply, called hereafter the replying tweet and denoted
by m2, Donald writes the following “@mickey don’t go for it, waste of time”.
Note that mention to @mickey is automatically inserted in the replying tweet,
being it a reply to the original tweet sent by Mickey. By default, the reply
contains all the mentions included in the original tweet, thus, in this case, it au-
tomatically contains @goofy . However, Donald manually removes the mention
to @goofy from the reply, before sending it. Thus, the behavior of the Donald’s
account is:

Bd “ findpÓ7“ um ^#formalmethods P hashtagspÓ4q, zq@ud.
replypz, “um don 1t go for it , waste of time2, tugu, x1q. B1d

Notably, the reply is triggered by the presence in the @donald account of a mes-
sage whose sender is @mickey and whose text contains the hashtag #formalmethods
(in fact, function hashtagsp¨q returns all hashtags in the text passed as argu-
ment).

Donald’s reply (1) appears on Mickey’s user timeline, since Mickey follows
Donald, and on Mickey’s notifications list, since Mickey has been mentioned;
(2) appears on Donald’s user timeline; and (3) quite surprisingly, is added to a
conversation on Goofy’s notifications list, even if the mention to Goofy has been
explicitly removed. In particular, the reply is tied to the original tweet, and
it is visible on Goofy’s notifications list upon clicking on the “expand” button.
Figure 4 shows the screenshot of Goofy’s notifications list, upon clicking on the
“expand” button. Formally, we have:

um : pm1 ,m2 q : m2 : ud : B 1m ‖ ud : pm1 ,m2 q : m1 : um : B 1d ‖ ug : ε : m1 : ε : Bg

wherem1 at ug now allows Goofy accessing the messagem2. In fact, as explained
in the section devoted to the presentation of our formalism, the identifiers in a
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message can be thought of as links to retrieve other messages. In our example,
the identifier of m1 (i.e., its first field) can be used to retrieve m2, because m2 Ó3

is set to the m1’s identifier (since m2 is a reply to m1).
Finally, having seen the message of Donald, Mickey decides to remove his

tweet, which is expressed in our formalism as an action deletepxq. This removes
all occurrences of m1, leaving untouched those of m2:

um : m2 : m2 : ud : B2m ‖ ud : m2 : ε : um : B 1d ‖ ug : ε : ε : ε : Bg

However, we can notice that, even if the reply message is still around, Goofy
now has no direct link to it.

This example also shows that our formalisation mainly focus on studying
the ways to access the available information in the considered Twitter network.
Indeed, despite in Twitlang all messages in the network are potentially accessi-
ble by visiting user profile pages, usually only a restricted set of messages are
relevant for a given user. Indeed, we may restrict our study (and we typically do
that) to messages that are ‘directly reachable’ to a user, as they appear in her
timeline or notification list, or are ‘indirectly reachable’ via the expand facility.

5. Twitlanger: executable Twitlang in Maude

Maude is “a programming language that models (distributed) systems and
the actions within those systems” [10]. The systems are specified by defining
algebraic data types axiomatising system states, and rewrite rules axiomatising
local transitions of the system.

In this section, we present Twitlanger, the interpreter for Twitlang written
in Maude. Four basic Maude modules represent the core of Twitlanger:

• TWITLANG-SYNTAX provides declarations of sorts, e.g., networks, mes-
sages, actions and behaviours, and operators on those sorts that are de-
fined in the language syntax. It also defines subsort relationships which
are mainly used to capture the hierarchy between sets and respective ele-
ments. This module also provides reserved ground terms representing the
names of actions (tweet, delete, find, etc.) and network-level labels (found,
added, etc.). Given the similarities between behaviours in Twitlang and
processes in CCS [7], we used Verdejo and Mart́ı-Oliet state-of-the-art
implementation of CCS in Maude [11] as a foundation for operators defi-
nition.

• TWITLANG-CONTEXT defines the top-level behaviours’ context that
supports behaviour definition in terms of bindings to identifiers.

• TWITLANG-SUPPORT defines equations that provide support operators
used in rewrite rules for behaviour unfolding and network transitions.

• TWITLANG-SEMANTICS defines rewrite rules, alongside additional op-
erators and equations introduced to allow for a more compact and readable

19



fmod

TWITLANG-
SYNTAX

fmod

TWITLANG-
CONTEXT

Syntax
mod

TWITLANG-
SUPPORT

mod

TWITLANG-
SEMANTICS

Semantics Checker

TWITLANGER

Twitlang
specification

Model
checking
results

Network
Evolution 

LTL
formulae

Figure 5: Twitlanger architecture

definition of the transition rules. The latter represent the operational se-
mantics rules for behaviours and networks defined in Tables 3, 4 and 5 of
Section 3.

At architecture level, the Maude modules described above are logically or-
ganised in components, as shown in Figure 5 (where red arrows represent inputs,
green arrows represent outputs, and dashed arrows represent use dependences
among modules). The Syntax component allows Twitlanger users to interface
with the tool, by providing as input a Twitlang specification. The Semantics
component permits studying the evolution of the Twitlang network defined in
the input specification, by exploring its computations. This information can be
directly returned as output (interpreter facility of Twitlanger) or given as in-
put to the Checker component. This latter component (whose Maude modules
are described in Section 5.3) takes as a further input the LTL formulae to be
verified over the specification and performs the verification (analysis facility),
whose results are returned as output.

Maude uses appropriate strategies for rule application. The default strategy
is implemented by the rewrite command, that explores one possible sequence
of rewrites, starting by a set of rules and an initial state [10]. To prevent
undesirable looping caused by recursive rewrites inside operator arguments, we
have adopted an approach similar to the one described in [11], where operators
defining the evolution of behaviours and networks are declared as “frozen”.

5.1. From Twitlanger 1.5 to version 2.6

One of the main goals of the first version of the interpreter (1.x), presented
in [1], was to provide a form of “validation” to Twitlang. This objective guided
the development towards a Maude specification as faithful as possible to the
theoretical semantics, by matching transition rules to rewrite rules almost at a
1:1 ratio. However, one of the drawbacks of early versions of Twitlanger was
the impossibility of producing more than a one-step successor of a given state
using Maude’s rewrite command. With the updated version 2.x of Twitlanger
this restriction has been lifted in order to correctly integrate the Maude model
checker with the interpreter. As a result of the shift in priorities, additional
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efforts have been dedicated to optimize the code for analysis efficiency and
performance.

Besides small tweaks and bug-fixes, the prominent modification introduced
moving to version 2.x of the interpreter was the removal of all the rewrite rules
used to realize propagation effects over the network (i.e., transition rules [N-
deliver], [N-delPropag], [N-undoPropag] and [N-par]). The remaining
rewrite rules have been redesigned to propagate their effects on the rest of
the network using equations, which are in general much less computationally
taxing. At the same time, this change “hides” intermediary propagation states
to the Maude Model Checker - reasoning at the level of rewrite rules - that are
not relevant for the properties of interest, thus delivering better performances
without loss of meaningful information.

It should be noted that these modifications do not affect the correctness of
the interpreter as the equational rules used for effect propagation are confluent
(i.e., effects are “local” within each single user’s network, thus the order of
evaluation does not affect the outcome) and terminating for a finite set of users
in the system.

To evaluate the improvements achieved in the new version of Twitlanger, we
have realised two simple benchmarks that consist in measuring the time needed
to compute all the configurations of two parametric test systems6. Each system
is characterised by a network definition that is parametric in the number of
users of specific “classes”.

Experiment 1. This simple experiment consists in a system characterized by
two classes of users, Active and Passive, defined in Twitlang by the following
accounts:

• Active : ε : ε : ε : tweetp“Hello”, xq.deletepxq. tweetp“Bye”, yq.nil

• Passive : ε : ε : Active : nil

While the behaviour of Active users is very simple, it can give a good indica-
tion on the performance improvement achieved by managing tweet/delete effects
propagation with equations instead of rules. Passive users, on the other hand,
are quite simply users that do nothing but follow Active users, thus receiving
their tweets.

The obtained results are shown in Table 6 and in the respective graph of
Figure 6.

Although the performance gap is evident, it is worth pointing out how the
first, unoptimised version of the interpreter is extremely sensitive even to very
small variations on the number of users, to the point that with just two Active

6 Notice that the following results are mainly intended to show how the two versions of
the interpreter compare, while they do not necessarily reflect the achievable performances in
a dedicated environment as all the benchmarks have been conducted on a common portable
computer with limited processing power.
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No. Passive
No. 1 Active No. 2 Active

v1.5 (s) v2.6 (s) v1.5 (s) v2.6 (s)

1 0.047 0.040 0.748 0.043
2 0.059 0.040 4.389 0.044
3 0.127 0.040 25.526 0.052
4 0.445 0.040 146.125 0.047
5 1.973 0.040 788.612 0.046

Table 6: Experiment 1 completion times

1 2 3 4 5

10-1

100

101

102

103

t (
s)

NP

 v1.5 NA=1
 v2.6 NA=1
 v1.5 NA=2
 v2.6 NA=2

Figure 6: Experiment 1 completion times (NA/NP being the number of Active and Passive
users, respectively)

ones the completion time increases by almost one order of magnitude for each
additional Passive user.

On the other hand the newer and optimised version of the interpreter is seem-
ingly not affected by such small variations on the populations of the benchmark
experiment.

Experiment 2. This second experiment consists in a system characterised by
three classes of users: Main, Active and Passive. As in Experiment 1, the
only classes of users that are subject to changes in population to evaluate the
performance of the interpreters are Active and Passive, as class Main has always
a fixed population of one instance. The characteristics of the three classes are
defined in Twitlang as follows:

• Main : ε : ε : ε : tweetp“Hello”, xq.findpÓ7“ Active, zq@Main. retweetpz, yq.nil

• Active : ε : ε : Main : findpÓ7“Main, z1q@Main. replypz1, “Bye”, tu, x1q.nil

• Passive : ε : ε : Active : nil
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The obtained results are shown in Table 7 and in the respective graph of
Figure 7.

No. Passive
No. 1 Active No. 2 Active

v1.5 (s) v2.6 (s) v1.5 (s) v2.6 (s)

1 0.210 0.040 16.648 0.050
2 0.916 0.041 145.212 0.050
3 5.290 0.041 1057.778 0.051
4 29.673 0.043 6877.158 0.050
5 155.773 0.041 41160.268 0.051

Table 7: Experiment 2 completion times

1 2 3 4 5
10-2

10-1

100

101

102

103

104

105

t (
s)

NP

 v1.5 NA=1
 v2.6 NA=1
 v1.5 NA=2
 v2.6 NA=2

Figure 7: Experiment 2 completion times (NA/NP being the number of Active and Passive
users, respectively)

Despite having a slightly more complex scenario compared to Experiment 1,
the overall results are roughly the same, showing how the new version of Twit-
langer is not affected by the tested variations in the population of Active and
Passive user classes, while the first release of the interpreter exhibits execution
times exponentially proportional to the system’s population.

While these preliminary results are encouraging, the tested populations have
been restrained in order to obtain “reasonable” execution times on version 1.5
of Twitlanger, but evidently they are not big enough to be representative of
real-world scenarios nor they tax the new version of the interpreter to the point
of allowing us to assess its actual limitations.

To partially address this, we made Twitlanger 2.6 run the previous bench-
marks again with a larger variation in the population of both Active and Passive
users. The results are shown in Tables 8 and 9, and in the respective graphs of
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Figures 8 and 9.

NP \ NA 1 2 3 4 5

10 0.049 s 0.047 s 0.183 s 4.674 s 376.464 s
100 0.044 s 0.065 s 0.516 s 16.435 s 1124.375 s
200 0.046 s 0.085 s 0.974 s 29.542 s 1948.732 s
300 0.048 s 0.110 s 1.344 s 41.424 s 2731.477 s
400 0.050 s 0.130 s 1.637 s 54.872 s 3579.970 s
500 0.051 s 0.152 s 2.148 s 67.180 s 4346.298 s
600 0.055 s 0.161 s 2.430 s 80.736 s 5166.600 s

No. of states 4 29 436 10761 372594

Table 8: Experiment 1 completion times for Twitlanger 2.6

0 100 200 300 400 500 600
10-2

10-1

100

101

102

103

104

 NA=1
 NA=2
 NA=3
 NA=4
 NA=5t (

s)

NP

Figure 8: Experiment 1 completion times for Twitlanger 2.6 (NA/NP being the number of
“Active” and “Passive” users, respectively)

The results of these benchmarks outline a performance figure indicating that
Twitlanger 2.6, in its current state, can handle well Twitlang definitions of
systems with a large number of “passive” users following a limited number of
“active” ones. This kind of configuration, referred to as “hubs” in network
theory, can fit many interesting real-world use cases.

5.2. Twitlanger: an example

The example presented in Section 4 can be used to demonstrate how a Twit-
lang specification can be coded to be accepted by Twitlanger, and how to use
it to elaborate all the reachable states.

The representation of each state in Twitlanger has the following structure:
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NP \ NA 1 2 3 4 5

10 0.070 s 0.052 s 0.133 s 0.710 s 4.585 s
100 0.044 s 0.074 s 0.330 s 1.987 s 12.676 s
200 0.047 s 0.103 s 0.547 s 3.514 s 21.733 s
300 0.050 s 0.126 s 0.704 s 4.660 s 29.920 s
400 0.055 s 0.161 s 1.000 s 6.085 s 39.012 s
500 0.056 s 0.186 s 1.159 s 7.355 s 48.635 s
600 0.061 s 0.215 s 1.397 s 8.841 s 56.090 s

No. of states 6 32 190 1057 5479

Table 9: Experiment 2 completion times for Twitlanger 2.6
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Figure 9: Experiment 2 completion times for Twitlanger 2.6 (NA/NP being the number of
“Active” and “Passive” users, respectively)

!(id-counter,

{network-label_1}

{network-label_2}

...

{network-label_N}

(user_1 : timeline_1 : notification-list_1 : following-list_1 : behaviour_1)

||

...

||

(user_M : timeline_M : notification-list_M : following-list_M : behaviour_M)

The id-counter, as the name suggests, is an integer counter that is stored in
the state representation and indicates the next “fresh” id that can be assigned
to a message. Each time an id is assigned, the id-counter is accordingly
incremented by 1. This is a very simple implementation that ensures extremely

25



low overhead on the interpreter and it effectively realises the pre-condition id R
idspT,N,Bq in Table 4 if the value of id-counter in the initial specification
is chosen strictly greater than all the ids of messages already present in the
system.

The network realising the example can be encoded in the machine-readable
syntax of Twitlang as follows:

!(1,

(Donald : empty : empty : Mickey :

find(predP7(Mickey) & predHashTag(# ’formalmethods),z)@ Donald) .

reply(z, @ Mickey ’dont ’go ’for ’it ’waste ’of ’time, @ Goofy, y) . nil)

||

(Goofy : empty : empty : emptyfl : nil)

||

(Mickey : empty : empty : Donald :

tweet(@ Donald ’great ’work ’by @ Goofy ’on # ’formalmethods ’and

’Twitter, x) . find(predP7(Donald),z’)@ Mickey . delete(x) . nil)

No network label is initially present, as no user has yet performed any ac-
tion. Then, the interpreter can be used to evaluate the evolution of the network,
verifying that the exploration yields the expected outcome. Indeed, provided
that the specification includes an equation stating that the term example cor-
responds to the given initial state, by issuing the following command:

search example =>* T:Twitter .

we obtain a full unfolding of the possible rewrite traces, up to the final state
(from now on, for the sake of compactness, we will use M1 and M2 to refer to
the original tweet from Mickey and the reply message from Donald, respectively
having id equal to 1 and 2):

!(3,

{M1}

{(Donald :Nfound(M1))}

{M2}

{(Mickey :Nfound(M2))}

{(Mickey :Ndelete(1))}

(Donald : M2 : empty : Mickey : nil)

||

(Goofy : empty : empty : emptyfl : nil)

||

(Mickey : M2 : M2 : Donald : nil)

Note that, contrary to Nfound, the Ndelete network label takes as second ar-
gument only the id of the tweet instead of the whole message, coherently with
the transition labels λ of Twitlang defined in Section 3.3.

This last state cannot be further unfolded as all the behaviours of the users
in the network have been reduced to the inert behaviour nil.

Further analyses of the interactions can be performed by invoking search

with the such that clause, effectively introducing a condition that the solutions
have to fulfil. For instance, we may use the auxiliary operator expand, which
evaluates accessible messages through direct linking (without resorting to the
find action) from a specific user’s perspective:
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search example =>* T:Twitter such that ( M2 in expand(Goofy,1,T:Twitter) ) .

The command basically says “find all states of the system in which user Goofy
can access message M2 via a one-hop link”. The output produced by the in-
terpreter in this case is comprised of two solutions, the first one describing the
trace and the state:

!(3,

{M1}

{(Donald :Nfound(M1))}

{M2}

(Donald : M1 ; M2 : M1 : Mickey : nil)

||

(Goofy : empty : M1 : emptyfl : nil)

||

(Mickey : M2 ; M1 : M2 : Donald :

find(predP7(Donald),z’)@ Mickey . delete(1) . nil)

which represents the system configuration after Donald replies to Mickey. It
shows that indeed Goofy is able to easily access M2 as soon as the message
is published, even though it carries no mention of him. On the other hand,
the only other solution found by the interpreter that satisfies the clause is the
subsequent state in which Mickey has performed the find action. These results
confirm that, after deleting M1, Goofy loses his only direct link to M2 and, thus,
he cannot access it without resorting to an explicit find.

5.3. Integration with the Maude LTL Model Checker

The Maude LTL model checker [12] is an on-the-fly explicit-state model
checker provided as a module that can be imported into a Maude specification
and used to verify properties written in linear temporal logic.

Given a set of atomic propositions AP , formulae of the propositional linear
temporal logic LTL(AP ) can be inductively defined as follows:

• True: T P LTLpAP q; this formula holds always.

• Atomic propositions: if p P AP , then p P LTLpAP q; this formula holds
at a given state of the system whenever the proposition p is satisfied by
this current state.

• Next operator: if ϕ P LTLpAP q, then ˝ϕ P LTLpAP q; this formula holds
at a given state when the subformula ϕ holds at the next state.

• Until operator: if ϕ,ψ P LTLpAP q, then ϕ U ψ P LTLpAP q; this formula
holds at a given state when the subformula ψ holds at the current or a
future state and ϕ continuously holds until then.

• Boolean connectives: if ϕ,ψ P LTLpAP q, then the formulae  ϕ and
ϕ _ ψ are in LTLpAP q; these operators have the standard meaning of
logical negation and disjunction.
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Figure 10: Twitlanger architecture: Checker component in detail

Additional LTL connectives can be defined from the above minimal set and
are included in Table 10 along with their syntax in the Maude model checker;
we refer to [12] for a more complete list of derived operators supported by the
Maude LTL model checker.

Table 10: Linear temporal logic operators and their syntax in Maude LTL model checker

Operator Syntax Syntax (Maude) Primitive rep.
Next operator ˝ϕ O_ -
Until operator ϕ U ψ _U_ -
Boolean OR ϕ_ ψ _\/_ -
Boolean NOT  ϕ ~_ -
Boolean AND ϕ^ ψ _/\_  p ϕ_ ψq
Implication ϕÑ ψ _->_  ϕ_ ψ
Eventually ♦ϕ <>_ T U ϕ
Henceforth lϕ []_  ♦ ϕ
Leads-to ϕ ψ _|->_ lpϕÑ p♦ψqq

As detailed in [12], by fixing a distinguished sort State, the initial model of a
Maude’s rewrite theory R has an underlying Kripke structure KpR, Stateq given
by the total binary relation extending its one-step sequential rewrites. Since
Kripke structures are models of temporal logic, in order to obtain a language
of LTL properties for the rewrite theory R, the only additional ingredients
required are atomic predicates for K, which can be specified as equationally-
defined computable state predicates.

In practice, integrating and using the Maude LTL model checker in Twit-
langer is quite straightforward (see Figure 10). A new module, which we called
TWITLANGER-PREDS, has to be defined to include the predefined MODEL-CHECKER

module and specifying:

• the subsort declaration that identifies which sort in the specification will
be used as State of the Kripke structure: in our case this declaration
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corresponds to subsort Twitter < State . (where State is a key sort
of the MODEL-CHECKER module);

• the syntax of the state predicates relevant for the analysis through oper-
ators and constants of sort Prop (which is a subsort of Formula in the
MODEL-CHECKER module);

• the semantics of the state predicates via equations involving the operator
|= defined in the MODEL-CHECKER module as follows:

op _|=_ : State Prop -> Result [special ...] .

Once this module is set up, it can be used to model check any LTL formula
form that involves the defined state predicates, given an initial state init, by
issuing the following Maude command:

reduce modelCheck(init,form) .

Assuming that the set of reachable states is finite, Maude will either return true

if form holds, or a counterexample, if it does not hold.
To simplify the definition of the module, operations supporting the analy-

sis of Twitlang specifications (e.g., to access the messages in a user timeline
or managing the message linking) are provided in the TWITLANGER-ANALYSIS

module.
Moreover, for the purpose of performing analyses on basic message deliv-

ery/visibility over Twitter accounts, we have defined a small set of state predi-
cates:

• op tweetSent : Predicate -> Prop .

given a predicate P over messages (just like the one used for the find
action, not to be confused with state predicates), this property holds in
any state reached after a tweet matching P has been sent;

• op tweetFound : Predicate User -> Prop .

given a predicate P over messages and a username U , this property holds
in any state reached after a tweet matching P has been found (via action
find) by U ;

• ops tweetInTimeline tweetInNList tweet@User : Predicate User -> Prop .

given a predicate P over messages and a username U , these three proper-
ties hold in any state where a tweet matching P is present respectively in
U ’s timeline, notification list, or either of them;

• op tweet@Users : Predicate UserList -> Prop .

given a predicate P over messages and a list of usernames LU , this property
holds in any state where a tweet matching P is present —either in the
timeline or the notification list— in all the accounts whose usernames are
in the list LU ;
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• op tweetDeleted : Id User -> Prop .

given a message identifier id and an account username u, this property
holds in any state reached after the tweet with identifier id has been
deleted by u;

• op retweetUndone : Id User -> Prop .

given a message identifier id and an account username u, this property
holds in any state reached after the retweet with identifier id has been
undone by u.

In Section 6 we will show how these state predicates can be used to specify LTL
formulae encoding relevant properties for analysing interactions among Twitter
accounts via Twitlanger.

A more comprehensive overview of Twitlanger, alongside the access to the
complete Maude implementation of the Twitlanger modules and examples dis-
cussed in this paper are available at http://sysma.imtlucca.it/tools/twitlanger/.

6. Twitlang(er) at work on a case study from the academic domain

To better understand the benefits of employing Twitlang to model commu-
nications in Twitter, in this section we present and analyse a richer and more
concrete case study. The reference domain is an academic one, constituted by a
small group of users representing the staff and students in a university who are
involved (both actively and passively) in several communications with different
topics and intended audiences.

We selected the following set of user accounts: University , Director , Office,
Professor , and Studenti . Figure 11 shows the pictorial representation of Twit-
ter accounts and relationships possibly involved in such a scenario. In this
schematic representation, rounded rectangles represent those Twitter accounts
significant for the case study. Notice also that we included a “Twitter cloud”
in the schema, representing a subset of the entire Twitter network that follows
the official University account. Incoming arrows represent follow relationships
(e.g., University follows Director , which in its turn follows Office, etc.). It is
worth noting that the depicted configuration has been defined on the base of
reasonable hypotheses, but it is obviously not meant to be exhaustive and other
relationships could have been introduced. Finally, in yellow we have highlighted
possible communications that the accounts at stage are interested to generate,
and the related expected receivers. For example:

• Professor is mainly interested in sending notices about didactic updates
to Studenti accounts;

• Director produces both external communications targeted at University
and the rest of Twitter, as well as internal communications meant for
Office, Professor and Studenti .
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@University @Director

@Office

@StudentA @StudentB

@Professor

external comm -> @University all (Twitter)
internal comm -> @Office @Professor @Student

didactic updates -> @Student
students comm -> @Student
prof comm -> @Professor
internal activities -> @Student @Professor

Twitter

public initiatives -> all (Twitter)

Figure 11: Accounts and their relationships in the university case study

To demonstrate some basic operations with the Maude LTL model checker in
combination with Twitlanger, we can start defining a simple behaviour for the
University account, by adding the following definition to the context:

’Bu = def ( tweet(’Academic ’Year ’Inauguration ’2016 ’tomorrow,x) .

tweet(’Open ’call ’for ’researchers,y) . nil )

Then we can verify that the user representing the Twitter cloud eventually
receives both messages sent from University . We can formalize this property
with the following LTL formula:

eq form1 =

( tweetSent(predP4(tweet-inaug)) |-> tweet@User(predP4(tweet-inaug),TwtCloud) )

/\

( tweetSent(predP4(tweet-call)) |-> tweet@User(predP4(tweet-call),TwtCloud) ) .

where the predicate predP4 yields true when evaluated on a message whose tex-
tual content (i.e., the fourth field of the message tuple) matches the argument.
For the sake of compactness, we used the terms tweet-inaug and tweet-call

to refer to the contents of the two tweets sent by University .
We can thus ask the model checker to see whether the specification case-study

satisfies the formula by issuing the command:

reduce modelCheck(case-study,form1) .

which unsurprisingly returns true. Indeed this property is trivially satisfied
considering that the TwtCloud account follows University , thus all tweets sent
by it are bound to appear on TwtCloud ’s timeline.

Similarly, we can check that, in this context, at no point Director will have
tweets sent by University in his timeline or notification list, by means of the
formula:

eq form2 = [] ~ ( tweet@User(predP7(University),Director) ) .
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that the Maude model checker proves again to be true.
Supposing that Director needs to issue an internal communication directed

at the faculty, we might want to verify that the Twitter cloud does not receive
such a message in its timeline or notification list, despite its indirect following
connection to Director through University . We can thus enrich the initial state
by defining the behaviour of Director as:

’Bd = def ( tweet(’Scientific ’Board ’meeting ’canceled,x) . nil )

and then express the relevant property as the formula:

eq form3 = [] ~ ( tweet@User(predP4(tweet-meeting),TwtCloud) ) .

Furthermore, we could modify the Twitter cloud behaviour in order to capture
the very common user practice of looking for tweets browsing another account’s
profile page:

’Btwt = def ( (find(predP4(tweet-meeting),z)@University) . nil )

and verify that the message sent by Director cannot be accessed from the profile
page of University by testing the formula:

eq form4 = [] ~ ( tweetFound(predP4(tweet-meeting),TwtCloud) ) .

As expected, formulae form3 and form4 turn out to be satisfied.

Now, consider a different scenario within the same context where Professor
has to issue a communication regarding an exam and he would like all Studenti
accounts to receive it. We can initially define Professor ’s behaviour as follows:

’Bp1 = def ( tweet(#(’exam) ’will ’take ’place ’in ’classroom ’A5,x) . nil )

Then, we can express the desired property as the LTL formula:

eq form5 = tweetSent(predP4(tweet-exam)) |->

( tweet@Users(predP4(tweet-exam),(StudentA ;; StudentB)) ) .

where tweet-exam is again a compact notation for the content of the tweet sent
by Professor , while ;; denotes the concatenation operator among list elements.
Invoking the model checker with this formula over the initial state enriched with
the behaviour ’Bp1, it returns a counterexample, meaning that the property does
not hold. The counterexample provided by the Maude model checker is a pair
consisting of two lists of transitions: the first one is a finite path starting from
the provided initial state, and the second one describes a loop. In our case, the
second element is simply a deadlock state that is reached once the behaviour
associated to each account reduces to nil and thus the system can no longer
evolve:

!(4,

{< 1 null null (tweet-inaug) none none University >}

{< 2 null null (tweet-call) none none University >}

{< 3 null null (tweet-exam) none none Professor >}

(University : < 2 null null (tweet-call) none none University > ;

< 1 null null (tweet-inaug) none none University >

: empty : Director : nil)
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||

(Director : empty : empty : Office : nil)

||

(Office : < 3 null null (tweet-exam) none none Professor >

: empty : Director ;; Professor : nil)

||

(Professor : < 3 null null (tweet-exam) none none Professor >

: empty : Office ;; Director : nil)

||

(StudentA : empty : empty : Office : nil)

||

(StudentB : < 3 null null (tweet-exam) none none Professor >

: empty : Office ;; Professor : nil)

||

(TwtCloud : < 2 null null (tweet-call) none none University > ;

< 1 null null (tweet-inaug) none none University >

: empty : University : nil)

The outcome is not surprising, as StudentA does not follow Professor (see Fig-
ure 11) and thus it did not receive the tweet related to the exam.

Considering Twitter’s communication characteristics, there is a variety of
alternative configurations that can fulfill form5, some of which are as follows:

1. Professor mentions StudentA and StudentB in the tweet:

’Bp2 = def ( tweet(@(StudentA) @(StudentB) tweet-exam,x) . nil )

This solution has the advantage of making the tweet to appear in both
students’ notification lists, which in Twitter makes such messages more
evident to the receiver compared to tweets present in the account’s time-
line, as they are collected separately. On the other hand, this approach
does not scale well, and quickly becomes infeasible with the growing num-
ber of students (if anything, because a tweet is naturally enclosed in 140
characters, including mentions).

2. Each student interested in the exam must follow the professor account:

’Bs = def ( follow(Professor) . nil )

This solution has the benefit of decentralising the responsibility of defin-
ing the recipients of the communication from the sender and let only the
interested students be involved in the related tweets. However, this ap-
proach requires a change in the behaviours of users in the system who are
not necessarily controllable by the university (i.e., students) and may not
be willing to timely update their following list.

3. Assuming that, like in our initial configuration, each Studenti follows the
Office, the latter could adopt the policy of retweeting tweets sent by
Professor having hashtag #exam:

’Bo = def (find(predHashTag(#(’exam)) & predP7(Professor),z)@Office .

retweet(z,y) . nil )

Of course, this third solution has the implication that all the students
—following Office— will receive the tweet about the exam, independently
from their interest in it.
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Giving as input to the Maude model checker different initial states realising
the three proposed solutions, we obtain a positive result for the satisfaction of
form5 in all instances.

It should be noted that the way the behavioural context is defined in Twit-
langer allows to define recursive behaviours. This would support a modifica-
tion of the third solution in order to model a simple bot that keeps retweeting
matching messages from Professor . To make it work properly, though, this
would require some additional “tricks” in the behaviours of the accounts to pre-
vent Office from retweeting the same tweet indefinitely, and most importantly
it would be problematic to use in conjunction with the Maude model checker as
it cannot handle an infinite set of reachable states.

We conclude this section by illustrating further properties relevant for the
case study, which also allow us to show other LTL operators at work. First, let
us consider the case in which Office tweets a communication with all students
as expected target; when the communication will not be considered relevant
anymore, Office will delete it. We can formalise the property that the commu-
nication is available to Studenti accounts, until it is not deleted, as follows:

eq form6 = tweetSent(predP4(tweet-communication) & predP1(1)) |->

( tweet@Users(predP4(tweet-communication),(StudentA ;; StudentB))

U tweetDeleted(1,Office) ) .

This property is naturally expressed by resorting to the Until operator. As
expected, the formula is satisfied.

Consider now the case in which the Director updates an internal commu-
nication previously sent, by changing the time of a meeting. We can formalise
two properties as follows:

• whenever the updated communication is sent, the old communication does
no longer appear:

eq form7 = [] tweetSent(predP4(tweet-new-communication)) ->

( [] ~(tweet@User(predP4(tweet-old-communication),Director)) ) .

• the old communication appears until the new one is sent:

eq form8 = [] tweetSent(predP4(tweet-old-communication)) ->

( tweet@User(predP4(tweet-old-communication),Director) )

U tweetSent(predP4(tweet-new-communication) ) .

This pair of properties is interesting because it may seem reasonable that both
of them are satisfied. However, as demonstrated by their verification, this is not
the case. Indeed, assuming that the Director deletes the old communication
before emitting the updated one, form7 holds while form8 does not. This hap-
pens because there are some system states in which the old communication is
cancelled but the new one has not been tweeted yet. Instead, assuming that the
Director deletes the old communication after emitting the updated one, form8
holds while form7 does not. Therefore, the two properties never hold at the
same time.
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Finally, let us consider a communication tweeted by a Professor and retweeted
by Office. We may expect that a message with this content is not available to
Studenti accounts after Office undoes the retweet. This property can be for-
malised as follows:

eq form9 = tweetSent(predP4(tweet-prof-communication) & predP1(2)) |->

( retweetUndone(2,Office) ->

[] ( ~ tweet@User(predP4(tweet-prof-communication),StudentA)

/\ ~ tweet@User(predP4(tweet-prof-communication),StudentB) ) ) .

This formula, however, is not satisfied. In fact, in this case, since the deletion
action acts on a retweet rather than a tweet, the effect involves only the retweet
messages. In particular, since the account StudentB directly follows Professor ,
it has received the original tweet, besides the retweet. Therefore, the pred-
icate tweet@User(predP4(tweet-prof-communication),StudentB) evaluates
to true and, hence, the formula argument of the Henceforth operator, as well as
the overall formula form9, is false.

7. Related work

Recent studies have put a spotlight on Twitter in a variety of research areas.
Remarkably, efforts have been spent towards the characterisation of those social
dynamics, which are inferred through the analysis of the platform and have an
impact on real life (and vice versa). Usually, the existing studies concern two
important dimensions: the Twitter network and the tweets content.

Focusing on network aspects, the general idea is to characterise significant
users’ behaviours in terms of kind and frequency of their Twitter interactions.
Authors of [5] provide a characterisation of the topological features of the Twit-
ter follow graph, mainly aiming at answering questions related to the inner
nature of the platform, e.g.: “Is Twitter a social network or an information net-
work?”. From the analysis they carried on, conclusions are that Twitter evolves
towards a social network. Indeed, even if the “follow” relationships is primarily
about information consumption, many relationships are instead “built on so-
cial ties”. Similar issues are addressed in [13], where two Twitter networks are
identified: a network made of followers and friends that shows a certain level of
stability and a “topical” network, characterised by a high level of contingency.
The work investigates how the two networks influence each other (for example,
whether the participation in the same hashtag-based conversation changes the
follower list of the involved accounts). Finally, work in [14] models information
propagation through different social networks (among them, Twitter). While
the mentioned works concern information and social aspects of Twitter, we are
interested in the effects of user interactions in terms of message spreading. In
order to properly address aspects concerning the dynamic evolution of social
relationships with Twitlang, we should probably consider an extension of the
language including username passing, i.e., the capability of binding variables to
dynamically discovered usernames, in the style of name passing in π-calculus [9].
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The second prominent area of research is the analysis of the tweets content,
motivated by a number of goals, such as, e.g., personalised message recommen-
dation, breaking news detection, and sentiment analysis. As examples, aiming
at making tweets useful for recommendations, authors of [15] propose a method
for enriching the semantics of tweets, by identifying and detailing, e.g., topics,
persons, events mentioned in tweets. The usefulness of the platform for real-
time crisis management has been tested by various work, see, e.g. [16, 17], where
technologies were investigated for understanding the semantic meaning of Twit-
ter messages. Authors of [18] study the Twitter hashtags ability to represent
real-world entities, by comparing hashtags characteristics with Semantic Web
“strong identifiers” features. By analysing a dataset of Twitter conversations,
work in [19] measures the “economy of attention” in the Twitter world. As pre-
dicted by Dunbar’s theory, Twitter users can entertain a maximum of 100-200
stable relationships and are limited by cognitive and biological constraints as
well as in the real world. Revealing the sentiment behind a tweet is motivated
by several reasons. For example, sentiment analysis may help in the assessment
of a global overview, i.e., to figure out how many opinions on a certain topic
are positive or negative (see, e.g., the series of work in [20, 21] for a polarity
evaluation of tweets). Still related to polarity detection and sentiment analy-
sis, both works in [22, 23] detect the “public sentiment” over real tweets-sets
and associate its fluctuations with a timeline of notable events that took place
in the period tweets were collected. The authors of [24] address the problem
of using text-mining tools to understand tweets (whose restricted length may
prevent such tools from being employed to their full potential). The authors
propose several schemes to train standard tools and compare their quality and
effectiveness.

In our work, we have mainly strived to put the basis for analysing the com-
munications among a (sub)network of Twitter accounts. For achieving the goal,
instead of exclusively focusing on the content of tweets and/or on social aspects
of the Twitter interactions, we carried on a novel study on the effects of such
interactions, from the point of view of the Twitter user, with a special care
on understanding and characterising the communication mechanisms underly-
ing the message spreading. To the best of our knowledge, there is no previous
attempt to rigorously formalise Twitter interaction patterns. Instead, a series
of blogs offer to the general public some useful, yet informal, tips on tweets,
retweets, and replies, see, e.g., [25]. We based our formalisation on experiments
that we have extensively carried out to properly define the Twitlang semantics.
In this task, we were also supported by the explanation offered by the Twitter
staff and available online7.

Proposing a syntax and associated semantics able to describe the cause-effect
relationships among communicating Twitter accounts should not be considered
as a standalone work. Indeed, our formalisation aims at putting rigorous basis

7https://support.twitter.com/articles/119138 and https://support.twitter.com/

articles/164083
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for a uniform approach to Twitter accounts’ properties specification and analy-
sis. The first, significant step in this direction is given by the implementation of
the Twitlanger tool. In Section 6 we focused our attention to the evaluation of
communication properties, mainly based on follow relationships among a set of
Twitter accounts. We could easily extend our approach, still towards the ver-
ification of communication properties, but exploiting a richer set of conditions
over additional characteristics of the accounts. As instances of properties veri-
fiable with minimal modification to Twitlang, we could verify that account @X
actually receives tweets from all the accounts that twitted the hashtag #hash-
tag. Furthermore, let the reader consider that account @Y is representative of
company W; the account @Y would like to be sure that his tweets will reach all
the accounts that have retweeted (or have replied to) tweets from the W’s com-
petitors. As a further example, account @Z would aim at not receiving tweets
from accounts that, e.g., use to reply with a certain frequency, have no image
in their profiles, use to tweet more URLs than plain text, etc.

Noticeably, the last example reminds behaviours typical of malicious Twitter
accounts, as pointed out in, e.g., [26]. Indeed, Twitter versatility and spread of
use have made it the ideal arena for proliferation of anomalous accounts, that be-
have in unconventional ways. Literature has focused its attention on spammers,
that is, those accounts actively putting their efforts in spreading malware, send-
ing spam, and advertising activities of doubtful legality (see, e.g., [27]) as well
as on fake followers, corresponding to Twitter accounts specifically exploited to
increase the number of followers of a target account (see, e.g., [28, 29]). Inter-
estingly, a brand new branch on research in the area is the one of anomalous
groups detection. As spammers evolve, standard classification techniques may
not be effective anymore and new ones are being proposed to catch behavioural
commonalities of groups of accounts, see, e.g., work in [30, 31]. One of our
research goals for the future is to leverage the Twitlang(er) approach also for
distinguishing genuine accounts from anomalous ones, by making use of the
analysis techniques enabled by the formal semantics and based on behavioural
characteristics, like, e.g., the frequencies of tweets and retweets and the massive
presence of URLs in tweets.

We think that our work can be extended in several directions, in order to en-
able some of the analyses mentioned above. In fact, our formalism could serve as
a uniform, common formal ground for modelling and analysing Twitter accounts’
behaviour. For example, quantitative information could be added to model the
frequency of actions (by resorting, e.g., to a stochastic approach). Also, the
current semantics of our language assumes that all the accounts under inves-
tigation are public. As anticipated in the Introduction, considering protected
accounts would have led to modifying the modalities through which tweets flow
in the network. In this regard, we acknowledge the work in [32, 33, 34], where
we assist to a paradigm shift on modelling privacy settings and access control
policies on social networks. In fact, we see how, from standard access control
mechanisms, the research trend moves forward towards considering the relation-
ships among the accounts in the network. Other models, like the one in [35],
consider a variant of Dynamic Epistemic Logic to model both public and pri-
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vate announcements on Facebook. We do not exclude to update Twitlang to
deal with protected accounts, even if, in the current work, we have been more
interested in modelling and analysing settings where the accounts are public.

We conclude the section by comparing Twitlang with some of the closely re-
lated works from the process calculi literature, which are not specifically devised
for Twitter but have nevertheless inspired some features of our formalism. The
network layer of Twitlang and, in particular, the tuple-based format of messages,
take inspiration from Klaim [36]. However, the communication between Klaim
network nodes takes place via Linda-like primitives and is only dyadic, while a
Twitlang account can atomically send messages via Twitter-like primitives to
multiple accounts. A similar form of multicast communication is provided by
SCEL [37], which anyway is established on a generic attribute-based approach,
specifically devised for dealing with dynamic formation of autonomic component
ensembles. The attribute-based communication of SCEL could be exploited to
model the delivery of tweets to their target accounts, but it is not suitable
for atomically removing messages from multiple accounts as required by actions
delete and undo. Moreover, with respect to SCEL, and other formalisms based
on π-calculus [9], Twitlang is not equipped with the restriction operator, which
is indeed not necessary for the scope of our study. Finally, Twitlang behaviours
are defined by composing Twitter actions by means of some operators borrowed
from CCS, i.e. action prefixing, nondeterministic choice, parallel composition
and invocation of process definitions.

8. Concluding remarks

In this work, we have extended Twitlang, a formal language to model com-
munication interactions on Twitter. The operational semantics of the language
allows to know in advance which are the effects of the basic actions that Twit-
ter users daily perform, without the need of setting up experiments (which, of
course, we have extensively carried out to properly define our formal seman-
tics). On top of the formal semantics, we have improved the computational
performances of Twitlanger, the interpreter of the language written in Maude.
As a further progress, the Maude model checker supporting automatic analysis
has been incorporated into Twitlanger, thus enabling verification of Twitter in-
teractions properties. We tested the benefits of the whole approach over a non
trivial case study inspired by an application of Twitter to everyday communi-
cation tasks.

It is worth noting that the language is currently able to capture the core
aspects of Twitter communications, i.e., standard behavioural patterns, like
posting a tweet, replying to, or retweeting a particular tweet. However, it could
be easily extended by giving both the syntax and the semantics rules for more
specific features, as direct messages, retweets including new text, and blocking
of an account. Concerning peculiar behaviours, an example, which perhaps not
everyone is aware of, is as follows: putting a mention at the very beginning of
a tweet implies that the tweet is sent only to the intersection of the author’s
followers and of the mentioned account’s followers. This and other peculiarities,
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if considered relevant for specific analyses, could be incorporated within our
approach.

We also plan to carry out a comprehensive study of interesting properties for
Twitter networks. In this paper, indeed, the verification of properties relevant
for the considered case study is used to illustrate the feasibility and effectiveness
of the approach we propose, while a more complete report of properties is out
of its scope.

Concerning our tool, Twitlanger, we aim as future work at improving its
performance and usability. Indeed, for a practical use in large case studies, the
performance of the tool needs to be enhanced. As discussed in Section 5.1, a
significant gain in this respect has been already achieved passing from version 1.x
to 2.x. Further improvements could be made by still working on the Maude code,
or by integrating other analysis tools, such as MultiVeStA [38] or the Maude
LTLR model checker [39]. On the other hand, for achieving better performances,
a more drastic reengineering of the tool could consist in the production of a new
implementation using a classic programming language (e.g., C, C++, Java). In
this case, the Maude implementation of Twitlanger would serve as guideline for
the new implementation and, most of all, as reference implementation to be used
as a means of comparison to ensure the faithfulness of the new implementation
to the operational semantics of Twitlang. Regarding the usability of the tool,
we aim at developing a user-friendly, on-line service, based on Twitlanger. In
particular, our intention is to make the tool more accessible via a graphical
user interface. On the one hand, it will allow users to define (parts of) Twitlang
specifications by means of a graphical editor. On the other hand, it will allow to
perform analysis by means of simple questions and easy-to-understand answers.
This latter point would simply rely on the use of structured questions, or even
on techniques for automatically converting natural language to LTL logic.
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