
STM 2006

Through modeling to synthesis of security automata1

Fabio Martinelli2

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy

Ilaria Matteucci3

Istituto di Informatica e Telematica - C.N.R., Pisa, Italy
Dipartimento di Scienze Matematiche ed Informatiche, Università degli Studi di Siena

Abstract

We define a set of process algebra operators, that we callcontroller operators, able to mimic the behavior of security
automata introduced by Schneider in [17] and by Ligatti and al. in [3]. Security automata are mechanisms for enforcing
security policies that specify acceptable executions of programs.
Here we give the semantics of four controllers that act by monitoring possible un-trusted component of a system in order to
enforce certain security policies. Moreover, exploiting satisfiability results for temporal logic, we show how to automatically
build these controllers for a given security policy.

Keywords: partial model checking, safety properties, automated synthesis of controllers.

1 Overview

Recently, several papers tackled the formal definition of mechanisms for enforcingsecurity
policies (e.g., see [2,3,6,10,11,17]). A security policyspecifies acceptable executions of
programs. Examples of security policies areinformation flow, availability, access control
and so on (see [17]).

The focus of this paper is the study ofenforcement mechanismsintroduced by Schneider
in [17] and security automatadeveloped by Ligatti and al. in [3,6]. Security automata
monitor execution steps of some system, herein called thetarget, and terminate the target’s
execution if it is about to violate the security policy being enforced.

Here we model these security automata byprocess algebra operators(see [12]), acting
ascontroller operators. We propose a logical approach to the problem of monitoring sys-
tems in order to enjoy security policies. As matter of fact, we express security policies by a
temporal logic formula and we exploit a huge theory of process algebra and temporal logic
in order to synthesize controller operators.

1 Work partially supported by CNR project “Trusted e-services for dynamic coalitions” and by EU-funded project “Soft-
ware Engineering for Service-Oriented Overlay Computers”(SENSORIA) and by EU-funded project “Secure Software and
Services for Mobile Systems ”(S3MS).
2 Email: Fabio.Martinelli@iit.cnr.it
3 Email: Ilaria.Matteucci@iit.cnr.it

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

In [17], Schneider definedsecurity automataas a triple(Q, q0, δ) whereQ is a set of
states,q0 is the initial state and, beingAct the set of security-relevant actions,δ : Act ×
Q → 2Q is the transition function. A security automaton processes a sequence of actions
a1a2 . . . one by one. For each action, the current global stateQ′ is calculated, by initially
starting from{q0}. As eachai is read, the security automaton changesQ′ in ⋃

q∈Q′ δ(ai, q).
If the automaton can make a transition on a given action, i.e.Q′ is not empty, then the
target is allowed to perform that action. The state of the automaton changes according to
transition rules. Otherwise the target execution is terminated. A security property that can
be enforced in this way corresponds to asafety property(according to [17], a property is a
safety one, if whenever it does not hold in a trace then it does not hold in any extension of
this trace).

Starting from the work of Schneider described above, Ligatti and al. in [3,6] have de-
fined four different kinds of security automata which deal with finite sequences of actions:
the truncation automaton which can recognize bad sequences of actions and halts pro-
gram execution before a security property is violated, but cannot otherwise modify program
behavior. The behavior of these automata is similar to the behavior of security automata of
Schneider. Thesuppression automatoncan suppress individual program actions without
terminating the program outright in addition to being able to halt program execution. The
third automaton is theinsertion automaton. It is able to insert a sequence of actions into
the program actions stream as well as terminate the program. The last one is theedit au-
tomaton. It combines the power of suppression and insertion automaton hence it is able to
truncate actions sequences and can insert or suppress security-relevant actions at will.

In this paper we introduce four process algebra operatorsY .K X, whereX is the
target,Y is theprogram controller, i.e. the process that controls the behavior of the target,
andK is the name of the corresponding automaton. These operators are able to mimic the
behavior of the security automata briefly described above.

In order to express security policies we useµ-calculus formulae because many proper-
ties of systems are naturally specified by means of fixed points and it is very expressive.

Exploiting a huge theory for security analysis based on process algebra and using sat-
isfiability procedure for theµ-calculus, we show how to automatically synthesize program
controllersY , depending on the kind of security automata one chooses. Moreover for trun-
cation automata we show a method to build the maximal model.

This work represents a significant contribution to the previous works (see [3,6,7,17]),
where the synthesis problem for the security automata was not addressed. In fact, most of
the related works deal with the verification rather than with the synthesis problem.

Moreover, other approaches deal with the problem of monitoring the componentX to
enjoy a given property, by treating it as the whole system of interest. However, often not
all the system needs to be checked (or it is simply not convenient to check it as a whole).
Some components could be trusted and one would like to have a method to constrain only
the un-trusted ones (e.g. downloaded applets). Similarly, it could not be possible to build a
reference monitor for a whole distributed architecture, while it could be possible to have it
for some of its components.

In our approach we actually start from a propertyφ that a systemS must enjoy also
when it is composed with a possibly untrusted componentX. By using thepartial model
checkingtechnique, the propertyφ is projected on another one, sayφ′, depending only
on S andφ, that only the componentX must satisfy. This allows one to monitor only
the necessary/untrusted part of the system, hereX. Thus we can now forceX to enjoy
φ′ by using an appropriate controllerY ¤K X. (Note that as a special case we have the

2

opportunity to treatX as a whole system as in other approaches).
This paper is organized as follows.Section 2 presents the necessary background on

process algebras and (Generalized) Structured Operational Semantics (GSOS), logic and
security automata. Section 3 describes some process algebra operators (controllers) corre-
sponding to security automata under investigation. Section 4 shows how to automatically
build controller programs that enforce desired security policies. Section 5 shows how to
build the maximal model for truncation automata. Section 6 shows a simple example and
Section 7 concludes the paper.

2 Background

2.1 Operational semantics and process algebras

We recall a formal method for giving operational semantics to terms of a given language.
This approach is calledGeneralized Structured Operational Semantics(GSOS) (see [4]).
It permits to reason compositionally about the behavior of programs (terms).

2.1.1 GSOS format
Let V be a set of variables, ranged over byx, y, . . . and letAct be a finite set of actions,
ranged over bya, b, c A signatureΣ is a pair(F, ar) where:

• F is a set of function symbols, disjoints fromV ,
• ar : F 7→ N is arank functionwhich gives the arity of a function symbol; iff ∈ F and

ar(f) = 0 thenf is called aconstant symbol.

Given a signature, letW ⊆ V be a set of variables. It is possible to define the set of
Σ-termsover W as the least set such that every element inW is a term and iff ∈ F ,
ar(f) = n and t1, . . . , tn are terms thenf(t1, . . . , tn) is a term. It is also possible to
define anassignmentas a functionγ from the set of variables to the set of terms such that
γ(f(t1, . . . , tn)) = f(γ(t1), . . . γ(tn)). Given a termt, let V ars(t) be the set of variables
in t. A term t is closedif V ars(t) = ∅.

Now we are able to describe theGSOSformat. AGSOSruler has the following format:

{xi
aij−→ yij}1≤i≤k

1≤j≤mi
{xi 6 bij−→}1≤i≤k

1≤j≤ni

f(x1, . . . , xk)
c−→ g(x, y)

(1)

where all variables are distinct;x and y are the vectors of allxi and yij variables re-
spectively;mi, ni ≥ 0 andk is the arity off . We say thatf is theoperatorof the rule
(op(r) = f) andc is the action. AGSOSsystemG is given by a signature and a finite
set ofGSOSrules. Given a signatureΣ = (F, ar), an assignmentζ is effectivefor a term
f(s1, . . . , sk) and a ruler if:

(i) ζ(xi) = si for 1 ≤ i ≤ k;

(ii) for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ mi, it holds thatζ(xi)
aij−→ ζ(yij);

(iii) for all i, j with 1 ≤ i ≤ k and1 ≤ j ≤ ni, it holds thatζ(xi) 6 bij−→,

The formal semantics of terms is described by alabelled transition system(LTS, for short).
that is is a pair(E , T) whereE is the set of terms andT is a ternary relationT ⊆ (E ×
Act × E), known as atransition relation. The transition relation among closed terms can
be defined in the following way: we havef(s1, . . . , sn) c−→ s iff there exists aneffective
assignmentζ for a ruler with operatorf and actionc such thats = ζ(g(x, y)). There

3

Prefixing:
a.x

a−→ x
Choice: x

a−→ x′

x + y
a−→ x′

y
a−→ y′

x + y
a−→ y′

Parallel: x
a−→ x′

x‖y a−→ x′‖y
y

a−→ y′

x‖y a−→ x‖y′
x

l−→ x′ y
l̄−→ y′

x‖y τ−→ x′‖y′

Restriction: x
a−→ x′

x\L a−→ x′\L Relabeling: x
a−→ x′

x[f]
f(a)−→ x′[f]

Table 1
GSOSsystem for CCS.

exists a unique transition relation induced by aGSOSsystem (see [4]) and this transition
relation isfinitely branching.

2.1.2 An example: CCS process algebra
CCS of Milner (see [13]) is a language for describing concurrent systems. Here, we
present a formulation of Milner’sCCS in theGSOSformat.

The main operator is theparallel compositionbetween processes, namelyE‖F be-
cause, as we explain better later, it permits to model theparallel compositionof processes.
The notion of communication considered is a synchronous one, i.e. both processes must
agree on performing the communication at the same time. It is modeled by a simultaneous
performing of complementary actions that is represented by a synchronization action (or
internal action)τ .

Let L be a finite set of actions,̄L = {ā | a ∈ L} be the set of complementary actions
wherē is a bijection with̄̄a = a, Act beL∪L̄∪{τ}, whereτ is a special action that denotes
an internal computation step (or communication) andΠ be a set of constant symbols that
can be used to define processes with recursion. To give a formulation ofCCS dealing with
GSOS, we define the signatureΣCCS = (FCCS , ar) as follows.

FCCS = {0, +, ‖} ∪ {a.|a ∈ Act} ∪ {\L|L ⊆ L ∪ L̄} ∪ {[f]|f : Act 7→ Act} ∪Π.

The functionar is defined as follows:ar(0) = 0 and for everyπ ∈ Π we havear(π) = 0,
‖ and+ are binary operators and the other ones are unary operators.

The operational semantics ofCCS closed terms is given by means of theGSOSsystem
in table1 and it is described by anLTS. We denote byDer(E) the set of derivatives
of a (closed) termE, i.e. the set of process that can be reached through the transition
relation. Informally, a (closed) terma.E represents a process that performs an actiona
and then behaves asE. The termE + F represents the non-deterministic choice between
the processesE andF . Choosing the action of one of the two components, the other is
dropped. The termE‖F represents the parallel composition of the two processesE and
F . It can perform an action if one of the two processes can perform an action, and this
does not prevent the capabilities of the other process. The third rule of parallel composition
is characteristic of this calculus, it expresses that the communication between processes
happens whenever both can perform complementary actions. The resulting process is given
by the parallel composition of the successors of each component, respectively. The process
E\L behaves likeE but the actions inL ∪ L̄ are forbidden. To force a synchronization
on an action between parallel processes, we have to set restriction operator in conjunction
with parallel one. The processE[f] behaves like theE but the actions are renamedviaf .

4

2.1.3 Behavioral relation: Simulation
It is often necessary to compare processes that are expressed using different terms in order
to understand if there exists some behavioral relation between two processes and which one
(see [13]).

We present the notion ofobservational relationas follows.
E

τ⇒ E′ (or E ⇒ E′) if E
τ→∗

E′ (where
τ→∗

is the reflexive and transitive closure of the
τ→ relation);E

a⇒ E′ if E
τ⇒ a→ τ⇒ E′. 4

Now we are able to give the following definition.

Definition 2.1 Let (E , T) be an LTS of concurrent processes, and letR be a binary relation
over a set of processE . ThenR is said to be asimulation(denoted by¹) if, whenever
(E, F) ∈ R, if E

a→ E′ then∃F ′ ∈ E s.t.F
a⇒ F ′ and(E′, F ′) ∈ R.

2.2 Equationalµ-calculus and partial model checking

Equationalµ-calculus is a process logic well suited for specification and verification of
systems whose behavior is naturally described using state changes by means of actions. It
permits to express a lot of interesting properties likesafetyandlivenessproperties, as well
as allowing to express equivalence conditions over LTS. In order to define recursively the
properties of a given system, this calculus uses fixpoint equations. Leta be inAct andX
be a variable ranging over a finite set of variablesV . As we have already said, equational
µ-calculus is based on fixpoint equations that substitute recursion operators.X =µ A is a
minimal fixpoint equation, whereA is an assertion (i.e. a simple modal formula without
recursion operator), andX =ν A is a maximal fixpoint equation. The syntax of the asser-
tions(A) and of the lists of equations(D) is given by the following grammar:

A ::= X | T | F | A1 ∧A2 | A1 ∨A2 | 〈a〉A | [a]A

D ::= X =ν AD | X =µ AD | ε
where the symbolT meanstrue andF meansfalse; ∧ is the symbol of the standard con-
junction of formulae, i.e.A1 ∧ A2 holds iff both of the formulaeA1 andA2 hold, and∨
is the disjunction of formulae, soA1 ∨ A2 holds when at least one ofA1 andA2 holds.
Moreover〈a〉A is the (possibility operator). It means that “exists a transition labeled bya
after thatA holds”. On the other hand,[a]A is the (necessity operator) and means “for all
transitions labeled bya, A holds”. Roughly, the semanticsJDK of the list of equationsD
is the solution of the system of equations corresponding toD . According to this notation,
JDK(X) is the set of values of the variableX, andE |= D ↓ X can be used as a short
notation forE ∈ JDK(X). The formal semantics is in Table2. The following standard
result ofµ-calculus will be useful in the reminder of the paper.

Theorem 2.2 ([18]) Given a formulaφ it is possible to decide in exponential time in the
length ofφ if there exists a model ofφ and it is also possible to give an example of such
model.

Partial model checking(pmc) is a technique that was originally developed for composi-
tional analysis of concurrent systems (processes) (see [1]). In order to explain how partial
model checking works, we give the intuitive idea underlying it describingpmcw.r.t. the
parallel operator as follows: proving thatE‖F satisfies a formulaφ (E‖F |= φ) is equiv-
alent to proving thatF satisfies a modified specificationφ//E

(F |= φ//E), where//E is

4 Note that it is a short notation forE
τ⇒ Eτ

a→ E′τ
τ⇒ E′ whereEτ andE′τ denote intermediate states (not relevant in

our framework).

5

JTK′ρ = S JFK′ρ = ∅ JXK′ρ = ρ(X) JA1 ∧A2K′ρ = JA1K′ρ ∩ JA2K′ρ
JA1 ∨A2K′ρ = JA1K′ρ ∪ JA2K′ρ J〈a〉AK′ρ = {s | ∃s′ : s

a→ s′ ands′ ∈ JAK′ρ}
J[a]AK′ρ = {s | ∀s′ : s

a→ s′ impliess′ ∈ JAK′ρ}

We uset to represent union of disjoint environments. Letρ be the environment (a function
from variables to values) andσ be in{µ, ν}, thenσU.f(U) represents theσ fixpoint of the
functionf in one variableU .
JεKρ = [] JX =σ AD′Kρ = JD′K(ρt[U ′/X]) t [U ′/X]
whereU ′ = σU.JAK′(ρt[U/X]tρ′(U)) andρ′(U) = JD′K(ρt[U/X]).
It informally says thatthe solution to(X =σ A)D is theσ fixpoint solutionU ′ of JAK
where the solution to the rest of the lists of equationsD is used as environment.

Table 2
Equationalµ-calculus

X//[f] = X 〈a〉A//[f] =
∨

b:f(b)=a〈b〉(A//[f])

[a]A//[f] =
∧

b:f(b)=a[b](A//[f]) A1 ∧A2//[f] = (A1//[f]) ∧ (A2//[f])

A1 ∨A2//[f] = (A1//[f]) ∨ (A2//[f]) T//[f] = T F//[f] = F

Table 3
Partial evaluation function for relabeling operator.

the partial model checking function w.r.t. the parallel composition operator (see [1] for the
formal definition). The formulaφ is specified by the use of theequationalµ-calculus. A
useful result on partial model checking is the following.

Lemma 2.3 ([1]) Given a processE‖F and a formulaφ we have:E‖F |= φ iff F |=
φ//E .

The reduced formulaφ//E depends only on the formulaφ and on the processE. No
information is required on the processF which can represent a possible enemy. Thus,
given a certain systemE, it is possible to find the property that the enemy must satisfy
to successfully attack the system. It is worth noticing that partial model checking function
may be automatically derived from the semantics rules used to define a language semantics.
Thus, the proposed technique is very flexible.

A lemma similar to Lemma2.3 holds for a great range of process algebra operators
modeled byGSOS (see [1,8]). The partial model checking functions for relabeling opera-
tor is given in Table3.

2.2.1 Characteristic formulae
A characteristic formulais an equationalµ-calculus formula that completely characterizes
the behavior of a (state in an) LTS modulo a chosen notion of behavioral relation. Following
the reasoning used in [5,14], we characterize a process w.r.t. simulation as follows.

Definition 2.4 Given a finite state processE, its characteristic formula (w.r.t. simula-
tion) DE ↓ XE is defined by the following equations: for everyE′ ∈ Der(E), XE′ =ν∧

a∈Act([a](
∨

E′′:E′ a⇒E′′ XE′′)).

The following proposition holds.

6

Lemma 2.5 LetE be a finite-state process and letφE,¹ be its characteristic formula w.r.t.
simulation, thenF ¹ E ⇔ F |= φE,¹.

2.3 Enforcement mechanisms and Security automata

In this paper we choose to follow the approach given by Ligatti and al. in [3] to describe
the behavior of four different kinds of security automata.

A security automatonat least consists of a (countable) set of states, sayQ, a set of
actionsAct and a transition (partial) functionδ. Each kind of automata has a slightly
different sort of transition functionδ, and these differences account for the variations in
their expressive power. The exact specification ofδ is part of the definition of each kind of
automaton. We useσ to denote a sequence of actions,· for the empty sequence andτ 5 to
represent an internal action.

The execution of each different kind of security automataK is specified by a labeled
operational semantics. The basic single-step judgment has the form(σ, q) a−→K (σ′, q′)
whereσ′ andq′ denote, respectively, the action sequence and the state after that the au-
tomaton takes a single step, anda denotes the action produced by the automaton. The
single-step judgment can be generalized to a multi-step judgment(σ, q)

γ
=⇒K

6 (σ′, q′),
whereγ is a sequence of actions, as follows.

(σ, q) .=⇒K (σ, q)
(Reflex)

(σ, q) a−→K (σ′′, q′′) (σ′′, q′′) γ
=⇒K (σ′, q′)

(σ, q)
a;γ
=⇒K (σ′, q′)

(Trans)

The operational semantics for each security automaton is given below.

Truncation automaton. The operational semantics of truncation automata is:
if σ = a;σ′ andδ(a, q) = q′

(σ, q) a−→T (σ′, q′) (T-Step)

otherwise
(σ, q) τ−→T (·, q) (T-Stop)

Suppression automaton.It is defined as(Q, q0, δ, ω) whereω : Act × Q → {−, +}
indicates whether or not the action in question should be suppressed (-) or emitted (+).
if σ = a;σ′ andδ(a, q) = q′ andω(a, q) = +

(σ, q) a−→S (σ′, q′) (S-StepA)

if σ = a;σ′ andδ(a, q) = q′ andω(a, q) = −

(σ, q) τ−→S (σ′, q′) (S-StepS)

otherwise
(σ, q) τ−→S (·, q) (S-Stop)

Insertion automaton. It is defined as(Q, q0, δ, γ) whereγ : Act × Q → Act × Q that
specifies the insertion of an action into the sequence of actions of the program. It is
necessary to note that in [3,6] the automaton inserts a finite sequence of actions instead

5 In [3] internal actions are denoted by·. According to the standard notation of process algebras, we useτ to denote an
internal action.
6 Consider a finite sequence of visible actionsγ = a1, . . . , an. Here we use⇒ to denote automata computations. Before
we use the same notation for process algebra computations. The meaning of the symbol will be clear from the context.

7

of only one action, i.e., using the functionγ, it controls if a wrong action is performed.
If it holds, the automaton inserts a finite sequence of actions, hence a finite number of
intermediate states. Without loss of generality, we consider that it performs only one
action. In this way we openly consider all intermediate states. Note that the domain ofγ
is disjoint from the domain ofδ in order to have a deterministic automata.
if σ = a;σ′ andδ(a, q) = q′

(σ, q) a−→I (σ′, q′) (I-Step)

if σ = a;σ′ andγ(a, q) = (b, q′)

(σ, q) b−→I (σ, q′) (I-Ins)

otherwise
(σ, q) τ−→I (·, q) (I-Stop)

Edit automaton. It is defined as(Q, q0, δ, γ, ω) whereγ : Act × Q → Act × Q that
specifies the insertion of a finite sequence of actions into the program’s actions sequence
andω : Act × Q → {−, +} indicates whether or not the action in question should be
suppressed (-) or emitted (+). Also hereω andδ have the same domain while the domain
of γ is disjoint from the domain ofδ in order to have a deterministic automata.
if σ = a;σ′ andδ(a, q) = q′ andω(a, q) = +

(σ, q) a−→E (σ′, q′) (E-StepA)

if σ = a;σ′ andδ(a, q) = q′ andω(a, q) = −

(σ, q) τ−→E (σ′, q′) (E-StepS)

if σ = a;σ′ andγ(a, q) = (b, q′)

(σ, q) b−→E (σ, q′) (E-Ins)

otherwise
(σ, q) τ−→E (·, q) (E-Stop)

3 Modeling security automata with process algebra

In this section we give the semantics of some process algebra operators, denoted byY .K

X whereK ∈ {T, S, I, E} 7 , that act ascontroller operators. These permit to control
the behavior of the (possibly untrusted) componentX, given the behavior of the control
programY .

3.1 Our controller operators in process algebra

Here we define our controller operators by showing their behavior trought semantics rules.
We denote withE the program controller and withF the target. We work, without loss of
generality, under the additional assumption thatE andF never perform the internal action
τ .
7 We choose these symbols to denote four operators that have the same behavior of truncation, suppression, insertion and
edit automata, respectively.

8

3.1.1 Truncation automata:.T

E
a→ E′ F a→ F ′

E .T F
a→ E′ .T F ′

This operator models the truncation automaton that is similar to Schneider’s automaton
(when considering only deterministic automata, e.g., see [3,6]). Its semantics rule states
that if F performs the actiona and the same action is performed byE (so it is allowed in
the current state of the automaton), thenE .T F performs the actiona, otherwise it halts.

Proposition 3.1 LetEq =
∑

a∈Act\{τ}





a.Eq′ iff δ(a, q) = q′

0 othw
be the control process and letF be the target. Each sequence of actions that is an output
of a truncation automaton(Q, q0, δ) is also derivable fromEq .T F and vice-versa.

3.1.2 Suppression automata:.S

E
a→ E′ F a→ F ′

E .S F
a→ E′ .S F ′

E
−a−→ E′ F

a→ F ′

E .S F
τ→ E′ .S F ′

where−a is a control action not inAct (so it does not admit a complementary action). As
for the truncation automaton, ifF performs the same action performed byE alsoE .S F
performs it. On the contrary, ifF performs an actiona thatE does not perform andE can
perform the control action−a thenE .S F performs the actionτ thatsuppressesthe action
a, i.e.,a becomes not visible from external observation. Otherwise,E .S F halts.

Proposition 3.2 LetEq,ω =
∑

a∈Act\{τ}





a.Eq′,ω iff ω(a, q) = + andδ(a, q) = q′

−a.Eq′,ω iff ω(a, q) = − andδ(a, q) = q′

0 othw
be the control process and letF be the target. Each sequence of actions that is an output
of asuppression automaton(Q, q0, δ, ω) is also derivable fromEq,ω .S F and vice-versa.

3.1.3 Insertion automata:.I

E
a→ E′ F

a→ F ′

E .I F
a→ E′ .I F ′

E 6 a→ E′ E
+a.b−→ E′ F

a→ F ′

E .I F
b→ E′ .I F

8

where+a is an action not inAct. If F performs an actiona that alsoE can perform, the
whole system makes this action. IfF performs an actiona thatE does not perform andE
detects it by performing a control action+a followed by an actiob, then the whole system
perform b. It is possible to note that in the description of insertion automata in [3] the
domains ofγ andδ are disjoint. In our case, this is guarantee by the premise of the second

rule in which we have thatE 6 a−→ E′, E
+a.b−→ E′. In fact for the insertion automata, if a

pair (a, q) is not in the domain ofδ and it is in the domain ofγ it means that the action
a and the stateq are not compatible so in order to change state an action different froma
must be performed. It is important to note that it is able to insert new actions but it is not
able to suppress any action performed byF .

8 This meansE
+a−→ Ea

b−→ E′. However we consider+a.b as a single action, i.e. the stateEa is hide and we do not
consider it inDer(E).

9

Proposition 3.3 LetEq,γ =
∑

a∈Act\{τ}





a.Eq′,γ iff δ(a, q)

+a.b.Eq′,γ iff γ(a, q) = (b, q′)

0 othw
be the control process and letF be the target. Each sequence of actions that is an output
of an insertion automaton(Q, q0, δ, γ) is also derivable fromEq,γ .I F and vice-versa.

3.1.4 Edit automata:.E

In order to do insertion and suppression together we define the following controller opera-
tor. Its rules are the union of the rules of the.S and.I .

E
a→ E′ F

a→ F ′

E .E F
a→ E′ .E F ′

E
−a−→ E′ F

a→ F ′

E .E F
τ→ E′ .E F ′

E 6 a→ E′ E
+a.b→ E′ F

a→ F ′

E .E F
b→ E′ .E F

This operator combines the power of the previous two ones.

Proposition 3.4 LetEq,γ,ω =
∑

a∈Act\{τ}





a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = +

−a.Eq′,γ,ω iff δ(a, q) = q′ andω(a, q) = −
+a.b.Eq′,γ,ω iff γ(a, q) = (b, q′)

0 othw
be the control process and letF be the target. Each sequence of actions that is an output
of anedit automaton(Q, q0, δ, γ, ω) is also derivable fromEq,γ,ω .E F and vice-versa.

It is important to note that we introduced the control action−a in the semantics of.S

and+a in the semantics of.I in order to find operators that were as similar as possible
to suppression and insertion automata, respectively. Other definitions could be possible,
although some attempts we made failed on defining a tractable semantics.

4 Synthesis of controller programs

Exploiting our framework we can build a program controllerY which allows to enforce a
desired security property for any target systemX. We present an extension of [10]. Here
we have four different operators and in particular we have to deal with control actions.

Let S be a system, and letX be one component that may be dynamically changed (e.g.,
a downloaded mobile agent) that we consider a possibly untrusted one. We would like that
for any actual behavior ofX, the systemS‖X enjoys a security property expressed by a
logical formulaφ, i.e.,∀X (S‖X) |= φ.

In order to protect the system we might simply check the correctness of each processX
before it is executed or, if this is not possible (or not desirable), we may define a controller
that, in any case, forces each process to behave correctly. Here, we study here how to build
a program controller in order to force the unknown component to behave correctly. Thus,
we want to find a control programY such that:

∀X (S‖Y .K X) |= φ (2)

By using the partial model checking approach proposed in [9], we can focus on the
properties ofY .K X, i.e.:

∃Y ∀X (Y .K X) |= φ′ (3)

10

whereφ′ = φ//S .
In order to manage the universal quantification in (3), we prove the following proposi-

tion.

Proposition 4.1 For everyK ∈ {T, S, I, E} Y .K X ¹ Y [fK] holds, wherefK is a
relabeling function depending onK. In particular,fT is the identity function onAct 9 and

fS(a) =





τ if a = −a

a othw
fI(a) =





τ if a = +a

a othw
fE(a) =





τ if a ∈ {+a,−a}
a othw

Now we restrict ourselves to a subclass of equationalµ-calculus formulae that is de-
noted byFrµ. This class consists of equationalµ-calculus formulae without〈 〉. It is easy
to prove that this set of formulae is closed under the partial model checking function and
the following result holds.

Proposition 4.2 Let E andF be two finite state processes andφ ∈ Frµ. If F ¹ E then
E |= φ ⇒ F |= φ.

At this point in order to satisfy the formula (3) it is sufficient to have:

∃Y Y [fK] |= φ′

To further reduce the previous formula, we can use the partial model checking function for
relabeling operator. Hence, for everyK ∈ {T, S, I, E} we calculateφ′′K = φ′//[fK]

. Thus

we obtain:
∃Y Y |= φ′′K 10 (4)

In this way, we obtain a satisfiability problem inµ-calculus that can be solved by Theorem
2.2.

5 Synthesis of Maximal Model

In the previous section we have shown a method to synthesize a program controller for each
of controller operators defined in section3.1. As matter of fact, we find a deterministic
process that does not performτ actions and that is a model for a givenµ-calculus formula.

In this section we define the notion ofmaximal modelw.r.t. the simulation relation
and show how it is possible to synthesize amaximal program controllerY for the operator
Y .T X.

We define the notion of maximal model w.r.t. the relation of simulation as follows.
A processE is a maximal model for a given formulaφ iff E |= φ and∀E′ s.t. E′ |=
φ, E′ ¹ E (see [15,16]). Informally, the maximal program controllerY is the process that
restricts as little as possible the activity of the targetX.

In order to find the maximal model we exploit the theory developed by Walukiewicz in
[19].

Usually the discovered model is a non-deterministic process. In order to find a deter-
ministic model we consider a subset of formulae ofFrµ without∨. This set of formulae is

9 Here the setAct must be consider enriched by control actions.
10Even if the processY performs some actionsτ it is possible to obtain fromY another processY ′ with only visible actions
that is a deterministic model ofφ.

11

called theuniversal conjunctiveµ-calculus formulae, ∀∧µC. It is easy to prove that∀∧µC
is closed under the partial model checking function (see [5]).

Proposition 5.1 Given a formulaφ ∈ ∀∧µC, a maximal deterministic modelE of this
formula exists.

In order to generate the maximal modelE, we find a model forφ ∧ ψ whereψ = X,
X =ν

∧
α∈Act\{τ}([α]F ∨ (〈α〉X ∧ [α]X)). The formulaψ permits us to check all the

actions inAct. Exploiting the theory of Walukievicz, we find a deterministic modelE for
φ ∧ ψ that does not performτ actions. It is obviously a model ofφ. The following lemma
holds.

Lemma 5.2 LetE′ |= φ with φ ∈ ∀∧µC. Then the model ofφ∧ψ E, is such thatE′ ¹ E.

HenceE is the maximal model forφ.

6 A simple example
Consider the processS = a.b.0 and consider the following equational definitionφ = Z
whereZ =ν [τ]Z ∧ [a]W andW =ν [τ]W ∧ [c]F. It asserts that after every actiona, an
actionc cannot be performed. LetAct = {a, b, c, τ, ā, b̄, c̄} be the set of actions. Applying
the partial evaluation for the parallel operator we obtain, after some simplifications, the
following system of equation, that we denoted withD.

Z//S
=ν [τ]Z//S

∧ [ā]Z//S′ ∧ [a]W//S
∧W//S′ Z//0

= T

W//S′ =ν [τ]W//S′ ∧ [b̄]W//0
∧ [c]F W//0

= T

Z//S′ =ν [τ]Z//S′ ∧ [b̄]Z//0
∧ [a]W//S′

W//S
=ν [τ]W//S

∧ [ā]W//S′ ∧ [c]F

whereS
a−→ S′ soS′ is b.0.

The information obtained through partial model checking can be used to enforce a
security policy. In particular, choosing one of the four operators and using its definition we
simply need to find a processY [fK], whereK depend on the chosen controller, that is a
model for the previous formula.

In this simple example we choose the controller operator.S . Hence we apply the partial
model checking for relabeling functionfS to the previous formula, that we have simplified
replacingW//0

andZ//0
by T (and assumed thatY can only suppressc actions). We

obtainD//fS
as follows.

Z//S,fS
=ν [τ]Z//S,fS

∧ [−c]Z//S,fS
∧ [ā]Z//S′,fS

∧ [a]W//S,fS
∧W//S′,fS

W//S′,fS
=ν [τ]W//S′,fS

∧ [−c]W//S′,fS
∧ [b̄]T ∧ [c]F

Z//S′,fS
=ν [τ]Z//S′,fS

∧ [−c]Z//S′,fS
∧ [b̄]T ∧ [a]W//S′,fS

W//S,fS
=ν [τ]W//S,fS

∧ [−c]W//S,fS
∧ [ā]W//S′,fS

∧ [c]F
We can note the processY = a. − c.0 is a model ofD//fS

. Then, for any componentX,
we haveS‖(Y .S X) satisfiesφ. For instance, considerX = a.c.0. Looking at the first
rule of.S , we have:
(S‖(Y .S X)) = (a.b.0‖(a.− c.0 .S a.c.0)) a−→ (a.b.0‖(−c.0 .S c.0))
Using the second rule we eventually get:
(a.b.0‖(−c.0 .S c.0)) τ−→ (a.b.0‖0 .S 0)

12

and so the system still preserves its security since the actions performed by the component
X have been prevented from being visible outside.

7 Conclusion and Future work

We illustrated some results towards a uniform theory for enforcing security properties.
With this work, we extended a framework based on process calculi and logical techniques,
that have been shown to be very suitable to model and verify several security properties, to
tackle also synthesis problems of secure systems.

As future work we plan to implement the theory here showed in order to generate the
program controllers and to extend it in other application scenarios as the time-based ones.
AcknowledgementWe thank the anonymous referees of STM06 for valuable comments
that helped us to improve this paper.

References

[1] Andersen, H. R.,Partial model checking, in: LICS ’95: Proceedings of the 10th Annual IEEE Symposium on Logic in
Computer Science(1995), p. 398.

[2] Bartoletti, M., P. Degano and G. Ferrari,Policy framings for access control, in: Proceedings of the 2005 workshop on
Issues in the theory of security, Long Beach, California, 2005, pp. 5 – 11.

[3] Bauer, L., J. Ligatti and D. Walker,More enforceable security policies, in: I. Cervesato, editor,Foundations of Computer
Security: proceedings of the FLoC’02 workshop on Foundations of Computer Security(2002), pp. 95–104.

[4] Bloom, B., S. Istrail and A. R. Meyer,Bisimulation can’t be traced, J.ACM42 (1995).

[5] Gnesi, S., G. Lenzini and F. Martinelli,Logical specification and analysis of fault tolerant systems through partial
model checking, International Workshop on Software Verification and Validation (SVV), ENTCS. (2004).

[6] Ligatti, J., L. Bauer and D. Walker,Edit automata: Enforcement mechanisms for run-time security policies, International
Journal of Information Security4 (2005).

[7] Ligatti, J., L. Bauer and D. Walker,Enforcing non-safety security policies with program monitors, in: 10th European
Symposium on Research in Computer Security (ESORICS), 2005.

[8] Martinelli, F., “Formal Methods for the Analysis of Open Systems with Applications to Security Properties,” Ph.D.
thesis, University of Siena (1998).

[9] Martinelli, F.,Partial model checking and theorem proving for ensuring security properties, in: CSFW ’98: Proceedings
of the 11th IEEE Computer Security Foundations Workshop(1998).

[10] Martinelli, F. and I. Matteucci,Partial model checking, process algebra operators and satisfiability procedures for
(automatically) enforcing security properties, Presented at the International Workshop on Foundations of Computer
Security (FCS05) (2005).

[11] Martinelli, F. and I. Matteucci,Modeling security automata with process algebras and related results(2006), presented
at the 6th International Workshop on Issues in the Theory of Security (WITS ’06) - Informal proceedings.

[12] Milner, R.,Synthesis of communicating behaviour, in: Proceedings of 7th MFCS, Poland, 1978.

[13] Milner, R., “Communicating and mobile systems: theπ-calculus,” Cambridge University Press, 1999.

[14] Müller-Olm, M., Derivation of characteristic formulae, in: MFCS’98 Workshop on Concurrency, Electronic Notes in
Theoretical Computer Science (ENTCS)18 (1998).

[15] Riedweg, S. and S. Pinchinat,Maximally permissive controllers in all contexts, in: Workshop on Discrete Event Systems,
Reims, France, 2004.

[16] Riedweg, S. and S. Pinchinat,You can always compute maximally permissive controllers under partial observation
when they exist., in: Proc. 2005 American Control Conference., Portland, Oregon, 2005.

[17] Schneider, F. B.,Enforceable security policies, ACM Transactions on Information and System Security3 (2000),
pp. 30–50.

[18] Street, R. S. and E. A. Emerson,An automata theoretic procedure for the propositionalµ-calculus, Information and
Computation81 (1989), pp. 249–264.

[19] Walukiewicz, I., “A Complete Deductive System for theµ-Calculus,” Ph.D. thesis, Institute of Informatics, Warsaw
University (1993).

13

