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Abstract

We define a set of(s)rocess algebra operators, that wecoattoller operators able to mimic the behavior of security
automata introduced by Schneider and by Ligatti and al. in3]. Security automata are mechanisms for enforcing
security policies that specify acceptable executions of programs. ) )

Here we give the semantics of four controllers that act by monitoring possible un-trusted component of a system in order to
enforce certain security policies. Moreover, exploiting satisfiability results for temporal logic, we show how to automatically
build these controllersfor a given security policy.

Keywords: partial model checking, safety properties, automated synthesis of controllers.

1 Overview

Recently, several papers tackled the formal definition of mechanisms for enfeezngty
policies(e.g., see3,3,6,10,11,17]). A security policyspecifies acceptable executions of
programs. Examples of security policies armation flow, availability, access control
and so on (se€l[]).

The focus of this paper is the studyasiforcement mechanismméroduced by Schneider
in [17] and security automataleveloped by Ligatti and al. im3[6]. Security automata
monitor execution steps of some system, herein calletbtiget and terminate the target’s
execution if it is about to violate the security policy being enforced.

Here we model these security automatgbgcess algebra operatofsee [L2]), acting
ascontroller operators We propose a logical approach to the problem of monitoring sys-
tems in order to enjoy security policies. As matter of fact, we express security policies by a
temporal logic formula and we exploit a huge theory of process algebra and temporal logic
in order to synthesize controller operators.
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In [17], Schneider definedecurity automatas a triple(Q, qo, ) whereQ is a set of
statesyy is the initial state and, beingct the set of security-relevant actions; Act x
Q — 29 is the transition function. A security automaton processes a sequence of actions
aias ... one by one. For each action, the current global s@ites calculated, by initially
starting from{qo }. As eachy; is read, the security automaton chan@é quQ, 0(ai, q).

If the automaton can make a transition on a given action, @eis not empty, then the
target is allowed to perform that action. The state of the automaton changes according to
transition rules. Otherwise the target execution is terminated. A security property that can
be enforced in this way corresponds teadety propertfaccording to 17], a property is a
safety one, if whenever it does not hold in a trace then it does not hold in any extension of
this trace).

Starting from the work of Schneider described above, Ligatti and aB3,@) have de-
fined four different kinds of security automata which deal with finite sequences of actions:
the truncation automaton which can recognize bad sequences of actions and halts pro-
gram execution before a security property is violated, but cannot otherwise modify program
behavior. The behavior of these automata is similar to the behavior of security automata of
Schneider. Theuppression automatorncan suppress individual program actions without
terminating the program outright in addition to being able to halt program execution. The
third automaton is thasertion automaton. It is able to insert a sequence of actions into
the program actions stream as well as terminate the program. The last onedt the-
tomaton. It combines the power of suppression and insertion automaton hence it is able to
truncate actions sequences and can insert or suppress security-relevant actions at will.

In this paper we introduce four process algebra operadtorgc X, where X is the
target,Y is theprogram controlleri.e. the process that controls the behavior of the target,
andK is the name of the corresponding automaton. These operators are able to mimic the
behavior of the security automata briefly described above.

In order to express security policies we ysealculus formulae because many proper-
ties of systems are naturally specified by means of fixed points and it is very expressive.

Exploiting a huge theory for security analysis based on process algebra and using sat-
isfiability procedure for the:-calculus, we show how to automatically synthesize program
controllersY’, depending on the kind of security automata one chooses. Moreover for trun-
cation automata we show a method to build the maximal model.

This work represents a significant contribution to the previous works &&&,17]),
where the synthesis problem for the security automata was not addressed. In fact, most of
the related works deal with the verification rather than with the synthesis problem.

Moreover, other approaches deal with the problem of monitoring the compdanemt
enjoy a given property, by treating it as the whole system of interest. However, often not
all the system needs to be checked (or it is simply not convenient to check it as a whole).
Some components could be trusted and one would like to have a method to constrain only
the un-trusted ones (e.g. downloaded applets). Similarly, it could not be possible to build a
reference monitor for a whole distributed architecture, while it could be possible to have it
for some of its components.

In our approach we actually start from a propeftyhat a systent’ must enjoy also
when it is composed with a possibly untrusted compodénBy using thepartial model
checkingtechnique, the property is projected on another one, sa$, depending only
on S and ¢, that only the componenkX must satisfy. This allows one to monitor only
the necessary/untrusted part of the system, bereThus we can now forc& to enjoy
¢’ by using an appropriate controll&f >k X. (Note that as a special case we have the



opportunity to treafX as a whole system as in other approaches).

This paper is organized as followsSection 2 presents the necessary background on
process algebras and (Generalized) Structured Operational Semétfios1, logic and
security automata. Section 3 describes some process algebra operators (controllers) corre-
sponding to security automata under investigation. Section 4 shows how to automatically
build controller programs that enforce desired security policies. Section 5 shows how to
build the maximal model for truncation automata. Section 6 shows a simple example and
Section 7 concludes the paper.

2 Background

2.1 Operational semantics and process algebras

We recall a formal method for giving operational semantics to terms of a given language.
This approach is calle@Generalized Structured Operational Seman{G$0.S) (see #]).
It permits to reason compositionally about the behavior of programs (terms).

2.1.1 GSOS format

Let V be a set of variables, ranged overdyy, ... and letAct be a finite set of actions,
ranged over by, b, c. ... A signatureX. is a pair(F, ar) where:

e F'is a set of function symbols, disjoints from,

e ar : F'+— Nis arank functionwhich gives the arity of a function symbol; jff € F and
ar(f) = 0thenf is called aconstant symbol

Given a signature, lell’ C V be a set of variables. It is possible to define the set of
Y-termsover W as the least set such that every elemenitliris a term and iff € F,
ar(f) = n andty,...,t, are terms therf(¢y,...,t,) is a term. It is also possible to
define amassignmenas a functiony from the set of variables to the set of terms such that
Y(f(t1, ... tn)) = f(v(t1),...v(tn)). Given a termt, let Vars(t) be the set of variables
int. Atermt is closedif Vars(t) = 0.

Now we are able to describe tlesSOJormat. AGSOSuler has the following format:

aij 1<i<k bij \1<i<k
{wi =5 yihziem, Az Ah2=m,

flan,.. . xp) = g(z,y)

(1)

where all variables are distinct; andy are the vectors of alt; andy;; variables re-
spectively;m;,n; > 0 andk is the arity of f. We say thatf is the operator of the rule
(op(r) = f) andc is the action. AGSOSsystemg is given by a signature and a finite
set of GSOSrules. Given a signature = (F,ar), an assignmery is effectivefor a term
f(s1,...,sx) and arulerif:

() ¢(z;) =s;forl <i<k;
(i) foralli,jwith1 <:<kandl <j <m;,itholds that{(z;) 2, C(yij);

(ii) forallé,jwithl <i<kandl <j<n,, itholds that{(x;) 7/(’—%

The formal semantics of terms is described Wgteelled transition systerfL TS, for short).
that is is a pai(&, 7)) wheref is the set of terms and is a ternary relatiory C (£ x

Act x &), known as dransition relation The transition relation among closed terms can
be defined in the following way: we hayés,...,s,) — s iff there exists areffective
assignment for a ruler with operatorf and actionc such thats = ((g(«,y)). There
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a / a /
r—x y—uy

Prefixing: = Choice: T— T
a.xr — T rT+yYy—x T+Y—UY
a_ a IR A
Parallel: 2 ——> y—4J__ Z R
aly =2y =zlly — zlly zlly — 2’|y
a / a /
Restriction:—L——L Relabeling:—* %’ L
T\L = @ADL 2lf] = /(]
Table 1

GSOSsystem for CCS.

exists a unique transition relation induced b 80Ssystem (seed]) and this transition
relation isfinitely branching

2.1.2 Anexample: CCS process algebra
CCS of Milner (see [L3)) is a language for describing concurrent systems. Here, we
present a formulation of Milner€’C'S in the GSOSormat.

The main operator is thparallel compositionbetween processes, namély| F' be-
cause, as we explain better later, it permits to modeptrallel compositiorof processes.
The notion of communication considered is a synchronous one, i.e. both processes must
agree on performing the communication at the same time. It is modeled by a simultaneous
performing of complementary actions that is represented by a synchronization action (or
internal action)r.

Let £ be a finite set of actions] = {a | a € L} be the set of complementary actions
whereis a bijection witha = a, Act be LULU{7}, wherer is a special action that denotes
an internal computation step (or communication) &hbe a set of constant symbols that
can be used to define processes with recursion. To give a formulat{o@'Sfdealing with
GSOSwe define the signatutéccs = (Fees, ar) as follows.

Foes = {0,+, ||} U {ala € Act} U\LIL € LU LY U{[f]|f : Act — Act} UIL

The functionar is defined as followsar(0) = 0 and for everyr € 1T we havear(r) = 0,
| and+ are binary operators and the other ones are unary operators.

The operational semantics 61C'S closed terms is given by means of B80Ssystem
in table1 and it is described by afd7'S. We denote byDer(E) the set of derivatives
of a (closed) termF, i.e. the set of process that can be reached through the transition
relation. Informally, a (closed) term. £ represents a process that performs an aation
and then behaves @ The termE + F represents the non-deterministic choice between
the processe&’ and F'. Choosing the action of one of the two components, the other is
dropped. The ternk||F' represents the parallel composition of the two processasd
F. It can perform an action if one of the two processes can perform an action, and this
does not prevent the capabilities of the other process. The third rule of parallel composition
is characteristic of this calculus, it expresses that the communication between processes
happens whenever both can perform complementary actions. The resulting process is given
by the parallel compaosition of the successors of each component, respectively. The process
E\L behaves likeE but the actions inL U L are forbidden. To force a synchronization
on an action between parallel processes, we have to set restriction operator in conjunction
with parallel one. The proceds] f| behaves like thé” but the actions are renamett f.
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2.1.3 Behavioral relation: Simulation
It is often necessary to compare processes that are expressed using different terms in order
to understand if there exists some behavioral relation between two processes and which one
(see [L3)).

We present the notion abservational relatioras follows.
ES E (orE = E)if EZ" E (whereZ is the reflexive and transitive closure of the
L relation);E = E'if E 255 F'. 4

Now we are able to give the following definition.

Definition 2.1 Let(&,7) be an LTS of concurrent processes, anddéte a binary relation
over a set of procesS. ThenR is said to be asimulation(denoted by<) if, whenever
(E,F)cR,if E% FE'then3F' c £st.F 2 Fand(E', F') € R.

2.2 Equationalu-calculus and partial model checking

Equationalu-calculus is a process logic well suited for specification and verification of
systems whose behavior is naturally described using state changes by means of actions. It
permits to express a lot of interesting properties fkéetyandlivenessroperties, as well

as allowing to express equivalence conditions over LTS. In order to define recursively the
properties of a given system, this calculus uses fixpoint equations. thein Act and X

be a variable ranging over a finite set of variablesAs we have already said, equational
p-calculus is based on fixpoint equations that substitute recursion opertess. A is a

minimal fixpoint equation, whergl is an assertion (i.e. a simple modal formula without
recursion operator), ani =, A is a maximal fixpoint equation. The syntax of the asser-
tions(A) and of the lists of equation(d) is given by the following grammar:

A:::X|T\F|A1/\A2|A1\/A2|<a)A\[a]A

D:=X=,AD|X =,AD |¢

where the symbdIl' meangrue andF meandalse A is the symbol of the standard con-
junction of formulae, i.e.A; A A holds iff both of the formulaed; and A5 hold, andv

is the disjunction of formulae, sd; v As holds when at least one of; and A, holds.
Moreover(a) A is the possibility operato). It means that “exists a transition labeleddy
after thatA holds”. On the other handgy] A is the fecessity operatprand means “for all
transitions labeled by, A holds”. Roughly, the semantid®] of the list of equationd

is the solution of the system of equations corresponding toAccording to this notation,
[D](X) is the set of values of the variablé, andE = D | X can be used as a short
notation forE € [D](X). The formal semantics is in Tab® The following standard
result of u-calculus will be useful in the reminder of the paper.

Theorem 2.2 ([L8]) Given a formulag it is possible to decide in exponential time in the
length of¢ if there exists a model af and it is also possible to give an example of such
model.

Partial model checkingpmg is a technique that was originally developed for composi-
tional analysis of concurrent systems (processes) (§eelf order to explain how partial
model checking works, we give the intuitive idea underlying it descrilpmgw.r.t. the
parallel operator as follows: proving that| F' satisfies a formula (E|| F' = ¢) is equiv-
alent to proving that” satisfies a modified specificatian,,, (F' = ¢,/g), where//g is

4 Note that it is a short notation fdt = E, % E. = E’ whereE, andE’. denote intermediate states (not relevant in
our framework).
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[T, =5 [F[, =0 [X],=p(X) [AiA A} = [Ail, N [A:],
[A1 V Ao]l, = [A1], U [A2], [(@)A], ={s|3s': 5> ¢’ ands’ € [A]}}
Mla]A], = {s|Vs":s 2 s impliess’ € [AD,}

We use i to represent union of disjoint environments. pdte the environment ( a function
from variables to values) andbe in{u, v}, thencU. f(U) represents the fixpoint of the
function f in one variabld/.

[y =1 [X =o AD'], = [D']pujr/x)) U [U"/X]

wherelU’ = UU'[[A]]/(pu[U/X]up/(U)) andp’(U) = [[D/H(pu[U/X})'

It informally says thathe solution to(X =, A)D is theo fixpoint solutionU’ of [A]
where the solution to the rest of the lists of equatiéhis used as environment

Table 2
Equationalu-calculus

X/ =X {a)AJ/[F1 = Vi p)=a ) (A//[F])
[a]A//If] = Noipy=alOI(A//[f]) - Ar A Agf/[f] = (Ar//1f]) A (A2// (1)
Avv A/ = (A//UD) v (A//Lf]) T//LfI =T F//If]=F

) ) Table 3 )
Partial evaluation function for relabeling operator.

the partial model checking function w.r.t. the parallel composition operator {$é&& the
formal definition). The formula is specified by the use of theguationalyu-calculus A
useful result on partial model checking is the following.

Lemma 2.3 ([I]) Given a proces€ || F and a formulag we have: E||F = ¢ iff F =
?//E

The reduced formula,, depends only on the formutaand on the procesk. No
information is required on the procegswhich can represent a possible enemy. Thus,
given a certain systen, it is possible to find the property that the enemy must satisfy
to successfully attack the system. It is worth noticing that partial model checking function
may be automatically derived from the semantics rules used to define a language semantics.
Thus, the proposed technique is very flexible.

A lemma similar to Lemma&.3 holds for a great range of process algebra operators
modeled byG'SOS (see [L,8]). The partial model checking functions for relabeling opera-
tor is given in Tables.

2.2.1 Characteristic formulae
A characteristic formulas an equationglk-calculus formula that completely characterizes

the behavior of a (state in an) LTS modulo a chosen notion of behavioral relation. Following
the reasoning used i®,[L4], we characterize a process w.r.t. simulation as follows.

Definition 2.4 Given a finite state process, its characteristic formula (w.rt. simula-
tion) Dp | Xg is defined by the following equations: for eveB) € Der(E), Xg =,
/\aeAct([a](VE//:El_%E// XE”))'

The following proposition holds.



Lemma 2.5 Let E be a finite-state process and gt < be its characteristic formula w.r.t.
simulation, thenf’ < E < F = ¢p <.

2.3 Enforcement mechanisms and Security automata

In this paper we choose to follow the approach given by Ligatti and al3]ito[describe
the behavior of four different kinds of security automata.

A security automatomat least consists of a (countable) set of states,@ag set of
actions Act and a transition (partial) functiof. Each kind of automata has a slightly
different sort of transition functiod, and these differences account for the variations in
their expressive power. The exact specification @ part of the definition of each kind of
automaton. We use to denote a sequence of actionfyr the empty sequence and to
represent an internal action.

The execution of each different kind of security autonités specified by a labeled
operational semantics. The basic single-step judgment has thedorn ——k (o, ¢')
wheres’ andq’ denote, respectively, the action sequence and the state after that the au-
tomaton takes a single step, amdienotes the action produced by the automaton. The
single-step judgment can be generalized to a multi-step judgtaeqt Lk 6 (o, q),
wherey is a sequence of actions, as follows.

mﬁa)(“@‘LKWTf)(Hﬂﬂéﬁdaﬂq

(0,9) =x (0,9) (0, 0) e (0 4) (Trans)

The operational semantics for each security automaton is given below.
Truncation automaton. The operational semantics of truncation automata is:
if 0 = a;0" andd(a,q) = ¢
(0,9) =1 (o, q) (T-Step)
otherwise
(0,9) —r (- q) (T-Stop)
Suppression automaton.lt is defined ag Q, qo, d,w) wWherew : Act x Q — {—,+}

indicates whether or not the action in question should be suppressed (-) or emitted (+).
if 0 = a;0’ andd(a, q) = ¢ andw(a, q) = +

(0,9) s (o'.q) (S-StepA)
if o = a;0’ andd(a,q) = ¢’ andw(a, q) = —
(0,9) —s (o'.q) (S-StepS)

otherwise
(07 Q) LS ('7 Q) (S'Stop)
Insertion automaton. It is defined agQ, qo, d,y) wherey : Act x Q — Act x Q that
specifies the insertion of an action into the sequence of actions of the program. It is
necessary to note that i,p] the automaton inserts a finite sequence of actions instead

5In [31 internal actions are denoted by According to the standard notation of process algebras, we tiselenote an
internal action.

6 Consider a finite sequence of visible actions= a1, . .., a,. Here we use= to denote automata computations. Before
we use the same notation for process algebra computations. The meaning of the symbol will be clear from the context.
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of only one action, i.e., using the functien it controls if a wrong action is performed.

If it holds, the automaton inserts a finite sequence of actions, hence a finite number of
intermediate states. Without loss of generality, we consider that it performs only one
action. In this way we openly consider all intermediate states. Note that the domain of

is disjoint from the domain of in order to have a deterministic automata.

if 0 =a;0’ andd(a,q) = ¢

(0,9) =1 (0',q) (I-Step)
if o = a;0" andvy(a,q) = (b,¢)

(07 Q) i)f (07 q,> (l'lnS)
otherwise

(0,9) —1 (-.q) (I-Stop)

Edit automaton. It is defined ag Q, qo, d,y,w) wherey : Act x Q@ — Act x Q that
specifies the insertion of a finite sequence of actions into the program’s actions sequence
andw : Act x Q@ — {—,+} indicates whether or not the action in question should be
suppressed (-) or emitted (+). Also hereandé have the same domain while the domain
of ~v is disjoint from the domain aof in order to have a deterministic automata.
if 0 = a;0" andd(a,q) = ¢ andw(a, q) = +

(0,9) =5 (d'.q) (E-StepA)

if o = a;0’ andd(a,q) = ¢’ andw(a, q) = —

(0,9) SN (', q) (E-StepS)
if o = a0’ andy(a,q) = (b,¢)

(0,q) —=r (0.q) (E-Ins)
otherwise

(0-7 Q) L)E ('a Q) (E'Stop)

3 Modeling security automata with process algebra

In this section we give the semantics of some process algebra operators, denbteg by
X whereK € {T,S,I,E}", that act aontroller operators These permit to control
the behavior of the (possibly untrusted) compon&ntgiven the behavior of the control
programy’.

3.1 Our controller operators in process algebra

Here we define our controller operators by showing their behavior trought semantics rules.
We denote with the program controller and with the target. We work, without loss of
generality, under the additional assumption thaind F' never perform the internal action

T.

7 We choose these symbols to denote four operators that have the same behavior of truncation, suppression, insertion and
edit automata, respectively.
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3.1.1 Truncation automatasr

ESEFSF
Evr F % Evp F
This operator models the truncation automaton that is similar to Schneider’s automaton
(when considering only deterministic automata, e.g., 8@})[ Its semantics rule states
that if F' performs the actiom and the same action is performed By(so it is allowed in
the current state of the automaton), thién, £ performs the action, otherwise it halts.

a.E7 iff 6(a,q) = ¢

0 othw

be the control process and |&t be the target. Each sequence of actions that is an output
of atruncation automato(Q, qo, d) is also derivable fronE? > F' and vice-versa.

Proposition 3.1 Let EY =} 1o (7}

3.1.2 Suppression automatag

EFE4EFLF ESE FLF
EvsF % EvsF' EvgF 5 E'vgF
where—a is a control action not iMct (so it does not admit a complementary action). As
for the truncation automaton, i performs the same action performed ByalsoE g F'
performs it. On the contrary, ¥ performs an action that £ does not perform and’ can
perform the control actior-a thenE'>g F' performs the action thatsuppressethe action
a, i.e.,a becomes not visible from external observation. Otherwiseg F' halts.

a.E7 iff w(a,q) = + andé(a,q) = ¢
Proposition 3.2 LetE® = 37 oy (7} | —a-E7* iff w(a, q) = — andé(a, q) = ¢

0 othw

be the control process and |&t be the target. Each sequence of actions that is an output
of asuppression automatd®, qo, J, w) is also derivable front?¢“ g F' and vice-versa.

3.1.3 Insertion automatas;

ELXFE FAF ELE E™E FSF,

E>i F 5 E' vy FY Es; FO B F
where+a is an action not inAct. If F' performs an actiom that alsoF can perform, the
whole system makes this action.HAfperforms an action that £/ does not perform anél
detects it by performing a control actiagru followed by an actid, then the whole system
performb. It is possible to note that in the description of insertion automata]inhie
domains ofy andé are disjoint. In our case, this is guarantee by the premise of the second

rule in which we have thab /-~ FE', E Tab B In fact for the insertion automata, if a
pair (a, q) is not in the domain ob and it is in the domain of; it means that the action

a and the statg are not compatible so in order to change state an action differentdrom
must be performed. It is important to note that it is able to insert new actions but it is not
able to suppress any action performedHy

8 This means? 1% E, . E’. However we considet-a.b as a single action, i.e. the statg, is hide and we do not
consider itinDer(E).
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a.E7iff §(a, q)
Proposition 3.3 Let E®Y =3 4o\ (-} | +a.b.ET7Viff y(a,q) = (b,q')

0 othw

be the control process and Iét be the target. Each sequence of actions that is an output
of aninsertion automatofQ, qo, d, ) is also derivable fronE?” >; F' and vice-versa.

3.1.4 Edit automatasg
In order to do insertion and suppression together we define the following controller opera-
tor. Its rules are the union of the rules of theandr;.

ESE FY%F E%F F%F EBELE ESE FYF
EvpF % EvpF  FEopF D EvopF EvpF S Elop F

This operator combines the power of the previous two ones.

a. BT iff §(a,q) = ¢ andw(a, q) = +
—a.B1 iff d(a,q) = ¢ andw(a, q) = —
+a.b. BT iff y(a, q) = (b, q)

0 othw

be the control process and Iét be the target. Each sequence of actions that is an output
of anedit automator{Q, qo, 6, v, w) is also derivable fronk%7« > F and vice-versa.

Proposition 3.4 LetE?Y = 37 1.1 (1)

It is important to note that we introduced the control actienin the semantics afg
and+a in the semantics af; in order to find operators that were as similar as possible
to suppression and insertion automata, respectively. Other definitions could be possible,
although some attempts we made failed on defining a tractable semantics.

4 Synthesis of controller programs

Exploiting our framework we can build a program controllémhich allows to enforce a
desired security property for any target syst&mWe present an extension df{]. Here
we have four different operators and in particular we have to deal with control actions.

Let .S be a system, and Iéf be one component that may be dynamically changed (e.g.,

a downloaded mobile agent) that we consider a possibly untrusted one. We would like that
for any actual behavior ok, the systemS|| X enjoys a security property expressed by a
logical formulag, i.e.,VX (S| X) = ¢.

In order to protect the system we might simply check the correctness of each pkocess
before it is executed or, if this is not possible (or not desirable), we may define a controller
that, in any case, forces each process to behave correctly. Here, we study here how to build
a program controller in order to force the unknown component to behave correctly. Thus,
we want to find a control program such that:

vX (SYrek X) =9 ()

By using the partial model checking approach proposed@jin/e can focus on the
properties of bk X, i.e.:
VX (Yo X)E ¢ 3
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where¢’ = ¢,/g.
In order to manage the universal quantification3)y (ve prove the following proposi-
tion.

Proposition 4.1 For everyK € {T,S,I,E} Y bk X =< Y|fk] holds, wherefk is a
relabeling function depending ds. In particular, f7 is the identity function orict ® and

Tifa=—a Tifa=+a Tifa a,—a
fotay =4 7 filay={ T g = T e

a othw a othw a othw

Now we restrict ourselves to a subclass of equatigneslculus formulae that is de-
noted byF'r,,. This class consists of equationatalculus formulae without.). It is easy
to prove that this set of formulae is closed under the partial model checking function and
the following result holds.

Proposition 4.2 Let E and F’ be two finite state processes apd= F'r,. If F < E then
Ef¢=Fo.

At this point in order to satisfy the formul&it is sufficient to have:

¥ Yfkl ¢
To further reduce the previous formula, we can use the partial model checking function for
relabeling operator. Hence, for eva§y € {T', S, I, E'} we calculatepy, = ’//[f . Thus
K
we obtain:
Y Y ek 4

In this way, we obtain a satisfiability problem incalculus that can be solved by Theorem
2.2

5 Synthesis of Maximal Model

In the previous section we have shown a method to synthesize a program controller for each
of controller operators defined in secti8ri. As matter of fact, we find a deterministic
process that does not perfornactions and that is a model for a givercalculus formula.

In this section we define the notion ofaximal modelv.r.t. the simulation relation
and show how it is possible to synthesizenaximal program controllel” for the operator
Y > X.

We define the notion of maximal model w.r.t. the relation of simulation as follows.
A processF is a maximal model for a given formula iff £ &= ¢andvVE's.t. B/ |=
¢, E' < E (see [L5,16]). Informally, the maximal program controlléf is the process that
restricts as little as possible the activity of the target

In order to find the maximal model we exploit the theory developed by Walukiewicz in
[19].

Usually the discovered model is a non-deterministic process. In order to find a deter-
ministic model we consider a subset of formulag-af, without V. This set of formulae is

9 Here the sefAct must be consider enriched by control actions.

10Even if the proces¥” performs some actionsit is possible to obtain frony” another procesg”’ with only visible actions
that is a deterministic model af.
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called theuniversal conjunctive:-calculus formulagv, . C'. It is easy to prove that,uC
is closed under the partial model checking function (& [

Proposition 5.1 Given a formulap € V,uC, a maximal deterministic modé! of this
formula exists.

In order to generate the maximal mode| we find a model fow A ) wherey = X,
X =v Naeacn\ i3 ([JF V ((@) X A [a] X)). The formulay permits us to check all the
actions inAct. Exploiting the theory of Walukievicz, we find a deterministic moélefor
¢ A 9 that does not perform actions. It is obviously a model @f. The following lemma
holds.

Lemmab5.2 LetE' = ¢ with ¢ € V,uC'. Then the model af A E, is such thatt’ < E.

HenceF is the maximal model fop.

6 A simple example

Consider the procesS = a.b.0 and consider the following equational definitigpn= Z
whereZ =, [t]Z A [a]lW andW =, [t]W A [c]F. It asserts that after every actiapan
actionc cannot be performed. Letct = {a,b, ¢, 7, a,b, ¢} be the set of actions. Applying

the partial evaluation for the parallel operator we obtain, after some simplifications, the
following system of equation, that we denoted wi2h

Zy)s =v (11215 NalZyyg NaW)yys AWy, 2y =T

W//S, =y [T]W//S, AN [b]W//O A [C]F W//o =T

Z)1g =v [112)15 NO1Z) 10 Na]W ),
W//s =, [T]W//S A [C_L]W//S, VAN [C]F
whereS - S’ s05" is b.0.

The information obtained through partial model checking can be used to enforce a
security policy. In particular, choosing one of the four operators and using its definition we
simply need to find a proced$| fk], whereK depend on the chosen controller, that is a
model for the previous formula.

In this simple example we choose the controller operatoHence we apply the partial
model checking for relabeling functiofy to the previous formula, that we have simplified
replacingW,,, and Z,,, by T (and assumed that can only suppress actions). We
obtainD//fS as follows.

Z))sg =v 112115 5o N=A 2y s o NAZy g, NAW) g AWy,

W//S’,fs =, [T}W//S’,fs A [_C]W//S’,fs A [b]T A [C]F

Z//S’,fs =, [T]Z//S’,fs A [_C]Z//S’,fs A [B]T A [a]W//S’,fS
W//S,fs v [T]W//S,fs A [_C]W//S,fs A [d]W//s/ny AlcF
We can note the proce3s = a. — ¢.0 is a model ofD//fS. Then, for any component,

we haveS||(Y >g X) satisfiesp. For instance, consideX = a.c.0. Looking at the first
rule of >g, we have:

(S||(Y >g X)) = (a.b.0||(a. — c.0>g a.c.0)) % (a.b.0||(—c.0>5 c.0))

Using the second rule we eventually get:

(a.b.0||(=c.0>g ¢.0)) — (a.b.0]|0>5 0)

12



and so the system still preserves its security since the actions performed by the component
X have been prevented from being visible outside.

7 Conclusion and Future work

We illustrated some results towards a uniform theory for enforcing security properties.
With this work, we extended a framework based on process calculi and logical techniques,
that have been shown to be very suitable to model and verify several security properties, to
tackle also synthesis problems of secure systems.

As future work we plan to implement the theory here showed in order to generate the
program controllers and to extend it in other application scenarios as the time-based ones.
AcknowledgementWe thank the anonymous referees of STMO06 for valuable comments
that helped us to improve this paper.
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