
Synthesis of local controller programs for enforcing global security properties ∗

Fabio Martinelli
Istituto di Informatica e Telematica-C.N.R., Pisa, Italy

Fabio.Martinelli@iit.cnr.it

Ilaria Matteucci
Istituto di Informatica e Telematica-C.N.R., Pisa, Italy

Dipartimento di Scienze Matematiche ed Informatiche,R. Magari-Università degli Studi di Siena
Ilaria.Matteucci@iit.cnr.it

Abstract

In this paper we present a framework based on contexts
theory and logic to study how, given a partially specified
system, i.e., a system in which there are some unspecified/
unknown components, i.e., potential attackers, it is possible
to enforce a global security property by controlling all the
unspecified parts of the given system. We propose two meth-
ods to control them: A centralized method, in which there is
a unique controller program that controls all the unspeci-
fied components, and a decentralized one in which each un-
specified component is monitored by a controller program
that forces it to behave correctly, i.e., according to a local
requirement found by a reduction of the global one. In both
cases we show how to synthesize controller programs that
solve the problem.

1. Overview

In this paper we study how to guarantee that a partially
specified distributed system, i.e., a system in which there are
some components whose behavior is unknown, is secure,
i.e., behaves as prescribed by a security property that spec-
ifies acceptable executions of a program. In particular we
deal with a specific kind of security properties, the so called
safety properties that states that “nothing bad happens”.

In order to model a given partially unspecified system
we recall the approach based on context proposed in [9]. As
a matter of fact a partially specified system is modeled as
a context C(X1, . . . , Xn) where X1, . . . , Xn are variables
that denote unspecified components of the system.

∗Work partially supported by EU-funded project “Software Engi-
neering for Service-Oriented Overlay Computers”(SENSORIA) and by
EU-funded project “Secure Software and Services for Mobile Systems
”(S3MS).

In order to express safety properties we use a modal
specification language (see [9]) that is a version of the
Hennessy-Milner logic (see [8]) extended with the ability
to define properties recursively.

There are a lot of significant safety properties that can
be expressed by using modal specification language. For
instance, access-control policies are safety properties since
once a restricted resource has been accessed, the policy is
broken. There is no way to “unaccess” the resource and fix
the situation afterward. Another example of safety prop-
erty that can be expressed in this logic is the Chinese Wall
policy. It is an example of a global security properties in a
distributed system.

Referring to [6, 10], our goal is describing a method to
guarantee that a given distributed system with unspecified
parts Xi is secure. Each unspecified component Xi is stud-
ied as a potential malicious agent. We would like to guar-
antee that, regardless the behavior of possible intruders, the
whole system still works properly, i.e., it respects the re-
quired safety property. As a matter of fact we would like to
guarantee the following property:

∀X1, . . . , Xn C(X1, . . . , Xn) |= φ

Since it is not possible to check all possible Xi behavior,
in order to guarantee the previous property holds we define
controller contexts, denoted by �, that allow to monitor the
behavior of the unspecified part of the system by controller
programs. In particular, we present two different strategies
(centralized and decentralized approach) to use controller
contexts and in both cases we show how to synthesize con-
troller programs for satisfying the security requirements.

In the centralized approach, we wonder if there exists a
controller program Y , i.e., an implementation that acts as a
controller, s.t.:

∀X1, . . . , Xn C(�(Y,X1 × . . .×Xn)) |= φ (1)

where × denotes the product of contexts. So we synthe-
size an unique controller program Y that manages all the
unspecified components of the system by considering the
product of all Xi, i = 1, . . . , n, as the unique unspecified
component of the system.

In order to obtain the controller program Y , we firstly
evaluate the behavior of the context into the formula φ by
the property transformer (see [9]). In this way we obtain
a new formula φ′ that has to be satisfied only from the un-
known part of the system. As a matter of fact, the property
transformer permits us to isolate which are the necessary
and sufficient conditions the unknown components have to
satisfy in order to make the system secure. Yet, we synthe-
size the appropriate controller program Y by exploiting a
satisfiability procedure for temporal logic.

In the decentralized method, the given global security
property is decomposed in an equivalent product of simpler
formulas. We require that each unspecified component sat-
isfies one formula of the product in order to guarantee that
the whole system satisfies the global security property. For
that reason we synthesize several controller programs, one
for each unknown component. As a matter of fact we won-
der if there exist n controller programs Y1, . . . , Yn s.t.:

∀X1, . . . , Xn C(�(Y1,X1), . . . , �(Yn,Xn)) |= φ (2)

Also in this case we firstly evaluate the behavior of the con-
text in the formula φ by the property transformer and we
obtain a new formula φ′. According to [9], we can decom-
pose the formula φ′ as a product formula, φ1 × . . . × φn.
If each component Xi satisfies a formula φi of the product
then we can conclude that globally the system is secure.

Hence our goal is to synthesize for each component Xi a
controller program Yi s.t. Yi �Xi |= φi for all i = 1, . . . , n.
Also in this case we exploit a satisfiability procedure for
temporal logic to obtain each Yi.

It is important to note that an advantage of our frame-
work is that in both our approaches, even if we are able
to enforce a global property, we control only the possible
untrusted components and not the global system. Note that
this is a crucial distinction that makes our approach more ef-
fective since usually it is not practically possible to control
the whole distributed system, but only some of its critical
components.

This paper is organized as follows. Section 2 presents
some related works on distributed control. Section 3 recalls
the theory developed by Larsen and XinXin in [9] on com-
positionality through an operational semantics on contexts
by showing a modal language and the property transformer
function. Section 4 shows how it is possible to synthesize
both centralized and decentralized controller programs in
order to guarantee that a system satisfies a global safety
property. Section 5 presents a simple example and Section
6 concludes the paper.

2. Related Works

In this paper we propose a framework based on con-
texts and logic to deal with the problem of the synthesis
of controllers for secure systems by exploiting centralized/
decentralized controller programs. In [11, 12, 13] we pre-
sented a framework based on process algebra, partial model
checking and logic in order to synthesize a controller pro-
gram for a system with only one possible malicious com-
ponent. Also in [1] the authors have presented a method
based on satisfiability procedure and game theory to syn-
thesize controller for discrete events systems. They gener-
ate a controller for the whole system. On the contrary, in
[11, 12, 13], we synthesize controllers that work by moni-
toring only the possible untrusted component of the system.
Moreover they do not addressed any security analysis, i.e.,
they synthesize controller for a given process that must be
controlled. On the contrary we synthesize controllers that
make the system secure for whatever behavior of unknown
components. Our controller are synthesized without any in-
formation about the process they are going to control. In
this work we deal with systems in which there are several
unspecified components by applying the theory of composi-
tionality by contexts proposed in [9]. In particular we show
different control approaches.

Other works deal with partially specified system using
context. In [7] is presented a framework inspired by [9]
for the validation of reactive system embedded in a test en-
vironment, or isolated from their operational environment,
thereby inducing a natural classification of validation strate-
gies in different scenario. However they do not deal with
security property and do not make security analysis. More-
over the authors consider context with only one unknown
component, instead in our work we present results on con-
texts in which more than one component of the system is
unspecified.

In [15], contexts are used to build upgrade specification
from components and their interface languages. No security
problem is addressed.

A lot of works deal with the problem of decentralized
discrete-event control problems, as [2, 3, 4, 17, 18] the
authors have studied the decentralized supervisory control
problem of discrete event systems under partial observa-
tion. They do not treat this problem from a security point
of view. As a matter of fact they do not do security analysis
by considering generating controller for whatever possible
behavior of the unspecified part, i.e., they do not consider
the unspecified part of the system as a potential attacker. In
[4, 17, 18] the authors have investigated on the necessary
and sufficient conditions for the existence of decentralized
supervisors for ensuring that the controlled behavior of the
system lies in a given range. The problem of the synthesis
is not addressed.

2

On the other hand, in [2] the problem of the synthesis of
controllers is studied. They start from their previous work,
[3], in which they deal with the decentralized control prob-
lem of several communicating supervisory controllers, each
with different information, that work in concert to exactly
achieve a given legal sublanguage of the uncontrolled sys-
tem’s language model. In [2] the author presents a proce-
dure for finding an optimal communication policy, if one ex-
ists, for a class of finite controllers. In our work, in addition
to explicit untrusted components, we deal with the prob-
lem of the distributed control but we consider independent
controllers, i.e., we present a method to synthesize decen-
tralized controllers that work independently one each other
on different unspecified components of the system in such
a way the whole system is secure.

It is worth also to mention approaches that directly try
to build correct systems (rather than controlling potentially
incorrect ones as we do). For instance in [5] the authors
present an automatic synthesis procedure for distributed
system having a flexible specification language and a rea-
sonable computational complexity. They use asynchronous
automata.

3. Composition through context

We recall here an operational theory of context in terms
of action transducers as defined in [9].

First of all we give the definition of context as follows.

Definition 3.1 A context system C is a structure

C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m)

where Cm
n is a set of n-to-m contexts; Act is a set of

actions; Act0 = Act ∪ {0} where 0 �∈ Act is a dis-
tinguished no-action symbol, Actk0 is a tuple of k actions
∈ Act0, and →n,m⊆ Cm

n × (Actn0 × Actm0) × Cm
n is

the transduction-relation for the n-to-m contexts satisfying
(C, ā, 0̄,D) ∈→n,m iff C = D and ā = 0̄ for all contexts
C,D ∈ Cm

n .

For (C, ā, b̄, C ′) ∈→n,m we usually write C
b̄−→̄
a C ′, leaving

the indices of → to be determine by the context, and we
interpret this as “by consuming the action ā, the context C
can produce the actions b̄ and change in C ′”.

The operational semantics of contexts is consistent with
the existing operational semantics of processes (see [16]).
For instance, let C be a context ∈ Cm

n . If there are n com-
ponents Pi, i = 1, . . . , n, and Pi

ai−→ P ′
i , is a transition of

the component Pi, i.e., the component Pi performs the ac-
tion labeled by ai in order to transit in P ′

i , then C can con-
sume the actions a1 . . . an while producing action b1 . . . bm
and changing into C ′. Thus, the context C(P1, . . . , Pn) has

the transition C(P1, . . . , Pn)
b1...bm−−−−−→a1 . . . an C ′(P ′

1, . . . , P
′
n). Du-

ally, any transition of C(P1, . . . , Pn) ought to be derivable
in this way.

In particular the set of 0-to-1 contexts C1
0 are just pro-

cesses and C1
n are normal n-hole contexts.

Example 3.1 CCS process algebra (see [14]) can be seen
as a context system with the following contexts: prefix
a∗ ∈ C1

1 for a ∈ Act, restriction \L ∈ C1
1 where L ⊆ Act.

Choice and parallel context +, ‖ ∈ C1
2 ; inactive Om

n ∈ Cm
n

for any n and m, with Nil that denotes the context O1
0 .

There are also the identity context In ∈ Cn
n and the projec-

tion Πi
n ∈ C1

n. The semantics definition of CCS context is
in Table 1.

Inaction: C
0̄−→̄
0 C for all C Prefix: a∗

a−→̄
0 I1

Restriction: \L

a−→a \L a �∈ L

Choice: (1) +
a−−−→

(a, 0) Π1
1 (2) +

a−−−→
(0, a) Π1

2 for a ∈ Act

Projection: Πi
n

a−−→
i(a) Πi

n Identity: In
ā−→̄
a In

Parallel: (1) ‖
τ−−−→

(a, â) ‖ (2) ‖
a−−−→

(a, 0) ‖ (3) ‖
a−−−→

(0, a) ‖

where i(a) ∈ Actn0 with the ith component being a and all
the others being 0.

Table 1. Semantics of CCS context system.

3.1 Operations between contexts

Different operations between contexts can be defined.
First of all, we show how the behavior of two contexts can
be compared by recalling the following definition of simu-
lation and bisimulation equivalence (see [14]).

Definition 3.2 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a

context system. Then an n-to-m simulation R is a binary
relation on Cm

n s.t., whenever (C,D) ∈ R and ā ∈ Actn0 ,
b̄ ∈ Actm0 , then the following holds:

if C
b̄−→̄
a C ′, then D

b̄−→̄
a D′ for some D′ with (C ′,D′) ∈ R.

We write C ≺ D in case (C,D) ∈ R for some n-to-m
simulation R.

A bisimulation is a relation R s.t. both R and R−1 are
simulations. We represent with ∼ the union of all the bisim-
ulations.

Composition. Contexts can be composed.
C(P1, . . . , Pn) is a composed context. In order to fa-
cilitate composition, it is allowed that contexts produce a

3

number m of actions, w.r.t. the consumption of n actions,
with, possibly, n �= m. Moreover, in order to cater
for asynchronous contexts, it is not required that all the
components P1, . . . , Pn contribute in a transition of the
combined process C(P1, . . . , Pn).

Definition 3.3 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a

context system. A composition on C is a dyadic operation ◦
on contexts such that whenever C ∈ Cm

n and D ∈ Cr
m then

D ◦ C ∈ Cr
n. furthermore, the transductions for a context

D ◦ C with C ∈ Cm
n and D ∈ Cr

m are fully characterized
by the following rule:

C
b̄−→̄
a C ′ D

c̄−→̄
b D′

D ◦ C
c̄−→̄
a D′ ◦ C ′

where ā = (a1, . . . , an) is a vector of actions.

Products. In order to represent a partial specification of a
system, i.e., a system with n holes, we use an n-to-1 context
C ∈ C1

n. To allow the expansion of the n holes to be carried
out independently, it is defined an independent combination
of n contexts as D1 × . . .×Dn.

Definition 3.4 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a

context system. A product on C is a dyadic operation ×
on contexts, s.t. whenever C ∈ Cm

n and D ∈ Cs
r then

C×D ∈ Cm+s
n+r . Furthermore the transduction for a context

C ×D are fully characterized by the following rule:

C
b̄−→̄
a C ′ D

d̄−→̄
c D′

C ×D
b̄d̄−→̄
ac̄ C ′ ×D′

where juxtaposition of vectors ā = (a1, . . . , an) and c̄ =
(c1, . . . , cr) is the vector āc̄ = (a1, . . . , an, c1, . . . , cr).

Feed-back. In order to deal with recursion, a construction
of feed-back on contexts is defined, s.t. whenever C ∈ Cn

n

then C† ∈ Cn
0 with the behavioral equation C† ∼ C ◦ C†

being satisfied. Formally, we have the following definition.

Definition 3.5 Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m) be a

context system. A feed-back on C is a unary operation †,
on contexts of C s.t., whenever C ∈ Cn,n then C ′ ∈ Cn

0 .
Furthermore, the transduction for a context C† with C ∈
Cn

n is fully characterized by the rule:

C
b̄−→̄
a C ′ C† ā−→ D

C† b̄−→ C ′ ◦D
For this operations on contexts the following result holds.

Theorem 3.1 ([9]) ∼ is preserved by composition, product
and feed-back of context.

By following a reasoning similar to the one are made in [9]
to prove the previous theorem, it is possible to note that the
same result holds also for ≺.

3.2. Modal language and property trans-
former for contexts

In order to express properties of contexts we consider the
modal specification language introduced in [9].

Definition 3.6 Let L be a set of labels (or actions) and let
V be a set of variables. The formulas and declarations over
V relative to L, FV,L and DV,L are built up according to
the following abstract syntax

φ ::= T|F|X|φ1 ∧ φ2|φ1 ∨ φ2|〈a〉φ|[a]φ|
LET MAX D IN φ| LET MIN D IN φ
D ::= X1 = φ1 . . . Xn = φn

The above logic is a propositional modal logic with 〈a〉φ
and [a]φ providing the two relativized modalities. The dec-
laration in the LET-constructs, introduces simultaneous re-
cursively specified properties. The concepts of free and
bound variables are defined as usual; in particular we call
a formula closed if it contains no free variables. We shall
use standard notation φ[ψ/X] to describe the substitution
of ψ for all free occurrences of the variable X in φ.

�T�ρ = Γ �F�ρ = ∅ �X�ρ = ρ(X)
�φ1 ∨ φ2�ρ = �φ1�ρ ∪ �φ2�ρ �φ1 ∧ φ2�ρ = �φ1�ρ ∩ �φ2�ρ

�〈a〉φ�ρ = {γ ∈ Γ|∃γ′ : γ a−→ γ′ ∧ γ′ ∈ �φ�ρ}
�[a]φ�ρ = {γ ∈ Γ|∀γ′ : γ a−→ γ′ ⇒ γ′ ∈ �φ�ρ}
�LET MAXD ∈ φ�ρ = �φ�(Dν�D�ρ)
�LET MIND ∈ φ�ρ = �φ�(Dµ�D�ρ)

and
Dν�X1 = φ1 . . . Xn = φn�ρ = νρ′

ρ{�φ1�ρ′\X1, . . . , �φn�ρ′\Xn}
Dµ�X1 = φ1 . . . Xn = φn�ρ = µρ′

ρ{�φ1�ρ′\X1, . . . , �φn�ρ′\Xn}

Table 2. Semantics clauses.

The interpretation of the introduced logic is given rel-
ative to Labeled Transition System that is a structure
(Γ, L,→), where Γ is a set of states and L is a set of ac-
tions and →⊆ Γ × L× Γ is the transition relation. The in-
terpretation of a closed formula is given as the set of states
satisfying the formula. The semantics of formulas is given
w.r.t. an environment ρ : V → P(Γ). The semantics defi-
nition is given inductively on the structure of formulas and
declaration as in Table 2, with ν and µ being the maximum
respectively minimum fixed point operator.

For this logic the following theorem holds.

4

Theorem 3.2 ([19]) Given a formula φ it is possible find a
model of φ in exponential time in the length of φ.

Example 3.2 By using this logic it is possible to define sev-
eral security properties, e.g., the Chinese Wall policy. This
policy says that, let A and B two sets of elements. Once
one accesses to an element in A, he cannot access to B and
viceversa. Here we consider that A and B are sets of files
and we consider the action open. This can be expressed by
the formula φ = φ1 ∨φ2 where φ1 and φ2 are the following
two formulas respectively:

φ1 = LET MAX W = [openA]W ∧ [openB]FINW
φ2 = LET MAX V = [openB]V ∧ [openA]FINV

As a matter of fact φ is a disjunction between two different
formulas φ1 and φ2 that cannot be both true at the same
time. Indeed φ1 permits to open only file in A, on the other
hand φ2 allows the access to elements in B.

Property transformer function. According to the defini-
tion in [9] it is possible to define the property transformer
function W for contexts as in Table 3. The property trans-
former is introduced in order to isolate which is the neces-
sary and sufficient conditions that the unspecified part of the
system has to satisfy.

W(C,T) = T W(C,F) = F W(C,X) = XC

W(C, φ1 ∧ φ2) = W(C, φ1) ∧W(C, φ2)
W(C, φ1 ∨ φ2) = W(C, φ1) ∨W(C, φ2)
W(C, 〈b̄〉φ) =

∨
C

b̄−→̄
a D

〈ā〉W(D,φ)

W(C, [b̄]φ) =
∧

C
b̄−→̄
a D

[ā]W(D,φ)

W(C, LET MAX D IN φ) = LET MAX DT IN W(C, φ)
W(C, LET MIN D IN φ) = LET MIN DT IN W(C, φ)

where
DT = {XC = W(C, φ)|C ∈ Cm

n ,X = φ ∈ D}

Table 3. Definition of property transformer.

The following theorem holds.

Theorem 3.3 ([9]) Let C = (〈Cm
n 〉n,m, Act, 〈→n,m〉n,m)

be a context system. Let φ be a closed formula and let C ∈
Cm

n . Then for anyQ ∈ Cn
0 the following equivalence holds:

C(Q) |= φ⇔ Q |= W(C, φ)

Here we recall an example in order to explain how the prop-
erty transformer works.

Example 3.3 We consider again the formula that expresses
the Chinese Wall policy given in the Example 3.2. We con-
sider a distributed system S = ‖(X1,X2). Hence we cal-

culate φ′ = W(‖, φ). Let us consider the following abbre-
viation:

W ‖ = W(‖,W) V ‖ = W(‖, V)
φ′1 = W(‖, φ1) φ′2 = W(‖, φ2)

Then we obtain φ′ = φ′1 ∨ φ′2 where φ′1 and φ′2 are the
following:

φ′1 = LET MAXW ′ = [(0, openA)]W ′ ∧ [(openA, 0)]W ′

∧[(0, openB)]F ∧ [(openB , 0)]F)INW ′

φ′2 = LET MAXV ′ = [(0, openB)]V ′ ∧ [(openB , 0)]V ′

∧[(0, openA)]F ∧ [(openB , 0)]FINV ′

3.3. Decomposition of property

According to [9], in order to deal with the problem of
decomposition of a joint property into properties that can
be satisfied by the components P1, . . . , Pn of a context, the
set of formulas Fn is extended with product formulas of the
form φ1 × . . .×φn where φ1, . . . , φn are closed, unary for-
mulas, i.e., they belong to F i. This extended set is denoted
by Fn

×. The semantics of Fn
× is obtained by adding to the

clauses of Table 2 the following rule:
Q ∈ �φ1 × . . .× φn�ρ ⇔ ∃P1 ∈ �φ1� . . . ∃Pn ∈ �φn�

Q ∼ P1 × . . .× Pn

For a product formula φ ∈ Fn
×, we write |= φ if φ is sat-

isfied by all n-ary context system. In this case φ is valid.
Moreover |=× φ if φ is satisfied by all n- product process
P1×. . .×Pn of any context system. In this case φ is weakly
valid.

We wonder if there exists a single product formula φ1 ×
. . .×φn s.t. |=× φ1 × . . .×φn ⇔ W(C, φ). However usu-
ally there is not a unique possible decomposition. When-
ever φ is a finite formula, i.e., it is neither LET MAX nor
LET MIN, there exists a finite decomposition, i.e., a finite
collection of product formulas 〈φi

1 × . . .× φi
n〉i∈I , where I

is and index set, s.t.

|=×
∨

i∈I

φi
1 × . . .× φi

n ⇔ W(C, φ)

The following theorem holds. 1

Theorem 3.4 ([9]) Let φ be a finite formula. Then there
exists a weakly equivalent disjunctive product formula∨

i∈I ψ
i × ϕi s.t.

|=× φ⇔
∨

i∈I

ψi × ϕi

1The interested reader can find all the theory in [9].

5

4. Synthesis of controllers

We study how and when it is possible to enforce
safety properties in a distributed system by centralized/
decentralized monitors. As a matter of fact we consider a
partially specified system in which more than one compo-
nent behavior is unknown. We represent systems like this
as context in C1

n where n is the number of unspecified com-
ponents of the system.

Our problem is to guarantee that a given partially speci-
fied system satisfies a safety property expressed as a modal
logic formula φ whatever the behavior of the unspecified
components is, i.e.,

∀X1, . . . , Xn C(X1, . . . , Xn) |= φ (3)

To do this, we introduce controller context, denoted by
� ∈ Cn

2n, that forces the system to behave correctly, i.e.,
as prescribed by φ. It acts on two components, in particular
it combines a controller program Y ∈ Cn

0 and an unknown
component X ∈ Cn

0 in such a way Y forces X to behave
correctly.

It is possible to give several semantics definitions for �. It
depends on which kind of properties we are going to enforce
or in which way we want to enforce them (e.g., [11, 12, 13]).

A possible semantics definition of the controller context
�(Y,X) is the following:

Y
b̄−→ Y ′ X

b̄−→ X ′

�(Y,X)
b̄−−→

(b̄, b̄) �(Y ′,X ′)

(4)

This means that � works with specified context in such a
way if Y and X do not perform the same actions than the
execution halts.

4.1. Two approaches for enforcing safety
properties in a distributed system

A controller context can be applied in different ways in
order to solve the problem in Formula (3).

Centralized method. We synthesize a unique controller
program Y that enforces φ by monitoring the product of all
components as a unique context. The Formula (3) becomes:

∃Y ∀X1, . . . , Xn C(�(Y,X1 × . . .×Xn)) |= φ (5)

where, being each Xi is in C1
0 , X1 × . . . × Xn is in Cn

0 .
First of all, by applying the property transformer function,
we find the weakest condition the unknown component has
to satisfy in order to guarantee the whole system satisfies φ.
Hence the problem of Formula (5) becomes as follows:

∃Y ∀X1, . . . , Xn � (Y,X1 × . . .×Xn) |= φ′ (6)

where φ′ = W(C, φ). Now we want to synthesize Y . Look-
ing at the semantics definition of �, it is possible to prove
that the following simulation relation holds:

�(Y,X) ≺ Y

Let Frµ be a sublanguage of the modal language in Sec-
tion 3.2 in which there are not the diamond formulas. This
class of formulas expresses safety properties. It is easy to
prove that Frµ formulas is closed under the property trans-
former function. Moreover, following a reasoning similar
to the one made in [12] for processes it is possible to give
the following result.

Proposition 4.1 Let E and F be two contexts and φ ∈
Frµ. If F ≺ E then E |= φ⇒ F |= φ.

At this point in order to satisfy the Formula (6) it is suffi-
cient to find a controller program Y s.t.:

Y |= φ′

Since Y ∈ Cn
0 it performs a vector of actions. Without

lost of generality, we consider that each transition is labeled
by a vector as ā = (a1, . . . , an) and we synthesize Y by
Theorem 3.2. So we are able to prove the following result.

Theorem 4.1 The problem described in Formula (5) is de-
cidable.

Decentralized method. We synthesize several controller
contexts Yi, one for each unspecified components Xi of the
system. Hence our main problem can be formalized as fol-
lows:

∃Y1, . . . , Yn ∀X1, . . . , Xn

C(�(Y1,X1), . . . , �(Yn,Xn)) |= φ
(7)

In this case all Yi are processes. By exploiting the property
transformer on context, we can reduce the previous problem
as follows:

∃Y1, . . . , Yn ∀X1, . . . , Xn

�(Y1,X1) × . . .× �(Yn,Xn) |= W(C, φ) (8)

For the class of finite formulas, by applying the Theorem
3.4, the problem in (8) becomes

∃Y1, . . . , Yn ∀X1, . . . , Xn

�(Y1,X1) × . . .× �(Yn,Xn) |=×
∨

i∈I ψ
i
1 × . . .× ψi

n

(9)
We have to choose which formula of the disjunction we are
going to enforce, i.e., we reduce the problem in Formula (9)
as follows:

∃Y1, . . . , Yn ∀X1, . . . , Xn

�(Y1,X1) × . . .× �(Yn,Xn) |=× ψk
1 × . . .× ψk

n
(10)

6

We can solve the problem above by solving n problems that
have the following form:

∃Yj ∀Xj � (Yj ,Xj) |= ψk
j

We are able to synthesize n controller programs able to en-
force safety properties, i.e., properties described as formu-
las of Frµ, by exploiting the Theorem 3.2. As a matter of
fact we are in a case similar to the previous one. Instead to
generate a controller program Y ∈ Cn

0 that control the prod-
uct of n components, we generate n controller programs in
C1

0 each of them controls only one component Xi. So we
are able to prove the following result.

Theorem 4.2 The problem described in Formula (7) is de-
cidable.

5. An Example: The Chinese Wall policy

Now we present how we enforce the Chinese Wall policy,
that is a very common security property, in a distributed
system. We consider as distributed system S = ‖(X1,X2).

As in the Example 3.2 the Chinese Wall policy is ex-
pressed by the formula φ = φ1 ∨ φ2 where

φ1 = LET MAX W = [openA]W ∧ [openB]FINW
φ2 = LET MAX V = [openB]V ∧ [openA]FINV

Hence, as in the Example 3.3, we calculate φ′ = W(‖, φ) =
φ′1 ∨ φ′2 as follows:

φ′1 = LET MAXW ′ = [(0, openA)]W ′ ∧ [(openA, 0)]W ′

∧[(0, openB)]F ∧ [(openB , 0)]F)INW ′

φ′2 = LET MAXV ′ = [(0, openB)]V ′ ∧ [(openB , 0)]V ′

∧[(0, openA)]F ∧ [(openB , 0)]FINV ′

Now we synthesize a controller program for enforcing φ in
both cases.

Centralized control. In this case we generate a controller
program Y ∈ C2

0 s.t. it is a model for the formula φ′ and a
controller program for �(Y,X1 ×X2). We take

Y = + (Y1, Y2)
Y1 = + ((0, openA)∗, (openA, 0)∗)†

Y2 = + ((0, openB), (openB , 0)∗)†

It is possible to note that such Y , at the beginning, per-
mits whatever possible behavior of unspecified compo-
nents. Indeed both X1 and X2 are allowed to perform
openA or openB action. However, after the first step, only
one behavior is allowed. Let us consider, for instance,
X1 = (openA)∗ ◦ X2 and X2 = (openB)∗ ◦ X1. In this
case Y1 becomes ((openA, 0)∗)† and Y2 = ((0, openB)∗)†

since the other choice case never happens. Hence Y =

+(((openA, 0)∗)†, ((0, openB)∗)†). Let us consider that
the first step is performed byX2 then we have the following
derivation tree:

�
(0,openB)−−−−−−−−−−−−−−→

(0, openB , 0, openB) � ‖
openB−−−−−−−→

(0, openB) ‖
‖ ◦ � openB−→ ‖ ◦ �

Hence:

‖(�(Y,X1 ×X2))
openB−→ ‖(�(Y2,X1 ×X1))

Looking at the transition rule of � we can note that, at the
beginning, both the possibility, executing the action openA

as well as executing the action openB , are allowed. Since
the first step is performed by X2, the action openB is done.
Hence the controller program chooses the component Y2

that allows only openB actions. However, after the tran-
sition, the target system can perform only action openA so
the system halts.

Decentralized control. It is easy to note that the formula
φ′ is not finite. Hence a finite decomposition for it may not
exists. In this case it may be difficult to find a formula to
enforce.

Moreover is that the formula φ′ requires a strict interac-
tion between processes. As a matter of fact, the behavior
of the second context is conditioned by the behavior of the
first one and viceversa. Indeed if the first context performs
an action openA (openB) the second cannot performs an ac-
tion openB (openA) and viceversa. For this reason it is not
possible to find two independent controller operators that
enforce the Chinese Wall policy in a distributed way at run-
time.

On the other hand, we could enforce the Chinese Wall
policy in a distributed way by establishing a priori that one
of the two context must not perform any action. For instance
we can consider the following two controller programs:

Y1 = Nil
Y2 = + (Y ′

2 , Y
′′
2)

Y ′
2 = (open∗A)†

Y ′′
2 = (open∗B)†

In this way, the first unknown component cannot perform
any action and the second has to respect the Chinese wall
policy. For instance, let X1 = (openA)∗ ◦ X2 and X2 =
(openB)∗ ◦ X1 the we have that �(Nil,X1) is equivalent
to the context Nil because does not perform any action.
Hence the system is ‖(Nil, (�(Y2,X2))). Thus we have the
following transition:

‖(Nil, (�(Y2,X2)))
(openB)−−−−−−−→

(0, openB) ‖(Nil, (�(Y ′′
2 ,X1)))

since, according to the semantic definition of �, the trans-
duction of �(Y2,X2) is the following:

�(Y2,X2)
(openB)−−−−−−−−−−−→

(openB , openB) �(Y ′′
2 ,X1)

7

The execution halts because the second contexts, by call-
ing the first one, tries to performs an action openA that is
forbidden.

6. Conclusion

In this paper we have studied how it is possible to
guarantee that a distributed system with more than one
unspecified component is secure by using controllers. We
describe two different methods to do this, a centralized one
and a decentralized one, for enforcing safety property. In
the first one all component are combined and considered
as a unique component and we synthesize a controller
program that forces such combination to behave correctly.
In the second approach we have studied when it is possible
to synthesize local controller context that, by monitoring
the behavior of the local component, enforces a given
formula that has to be satisfied locally in order to guarantee
that a global security property is satisfied by the whole
system.

Acknowledgement. We thank the anonymous referees of
APE08 for valuable comments that helped us to improve
this paper.

References

[1] A. Arnold, A. Vincent, and I. Walukiewicz. Games for syn-
thesis of controllers with partial observation. Theoretical
Computer Science, 303(1):7–34, 2003.

[2] G. Barrett and S. Lafortune. On the synthesis of commu-
nicating controllers with decentralized information struc-
tures for discrete-event systems. In Proceedings of the 37th
IEEE international conference on Decision and Control,
volume 3, pages 3281–3286, December 1998.

[3] G. Barrett and S. Lafortune. Decentralized supervisory con-
trol with communicating controllers. IEEE Trans. Automatic
Control, 45(9):1620–1638, 2000.

[4] R. Cieslak, C. Desclaux, A. Fawaz, and P. Varaiya. Super-
visory control of discrete event processes with partial obser-
vations. IEEE, Trans. Automat. Contr., 33:249–260, 1988.

[5] A. Ştefǎnescu. Automatic synthesis of distributed systems.
In ASE ’02: Proceedings of the 17th IEEE international
conference on Automated software engineering, page 315,
Washington, DC, USA, 2002. IEEE Computer Society.

[6] R. Focardi, R. Gorrieri, and F. Martinelli. Classification of
security properties - part ii: Network security. In R. Focardi
and R. Gorrieri, editors, FOSAD, volume 2946 of Lecture
Notes in Computer Science, pages 139–185. Springer, 2002.

[7] L. Heerink and E. Brinksma. Validation in context. In PSTV,
pages 221–236, 1995.

[8] M. Hennessy and R. Milner. Algebraic laws for nondeter-
minism and concurrency. J. ACM, 32(1):137–161, 1985.

[9] K. G. Larsen and L. Xinxin. Compositionality through an
operational semantics of contexts. Journal of Logic and
Computation, 1(6):761–795, Dec. 1991.

[10] F. Martinelli. Analysis of security protocols as open sys-
tems. Theoretical Computer Science, 290(1):1057–1106,
2003.

[11] F. Martinelli and I. Matteucci. An approach for the specifi-
cation, verification and synthesis of secure systems. Electr.
Notes Theor. Comput. Sci., 168:29–43, 2007.

[12] F. Martinelli and I. Matteucci. Through modeling to synthe-
sis of security automata. Electr. Notes Theor. Comput. Sci.,
179:31–46, 2007.

[13] I. Matteucci. Automated synthesis of enforcing mechanisms
for security properties in a timed setting. Electr. Notes Theor.
Comput. Sci., 186:101–120, 2007.

[14] R. Milner. Communicating and mobile systems: the π-
calculus. Cambridge University Press, 1999.

[15] M. Müller-Olm, B. Steffen, and R. Cleaveland. On the
evolution of reactive components: A process-algebraic ap-
proach. In FASE ’99: Proceedings of the Second Interna-
tionsl Conference on Fundamental Approaches to Software
Engineering, pages 161–175, London, UK, 1999. Springer-
Verlag.

[16] G. Plotkin. A Structural Approach to Operational Seman-
tics. Technical Report DAIMI-FN-19, Aarhus University,
1981.

[17] P. Ramadge and W. Whoman. Supervision of discrete event
processes. In Proceedings of 21th IEEE conference Decision
Contr., volume 3, pages 1228–1229, December 1982.

[18] K. Rudie and W. Wonham. Think globally, act locally: De-
centralized supervisory control. IEEE transactions on auto-
matic control, 37(11):1692–1708, Nov. 1992.

[19] R. S. Street and E. A. Emerson. An automata theoretic pro-
cedure for the propositional µ-calculus. Information and
Computation, 81(3):249–264, 1989.

8

