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Abstract. Controlling the differential expression of many thousands
genes at any given time is a fundamental task of metazoan organisms
and this complex orchestration is controlled by the so-called regulatory

genome encoding complex regulatory networks. Cis-Regulatory Modules

are fundamental units of such networks. To detect Cis-Regulatory Mod-
ules “in-silico” a key step is the discovery of recurrent clusters of DNA
binding sites for sets of cooperating Transcription Factors. Composite

motif is the term often adopted to refer to these clusters of sites. In
this paper we describe CMF, a new efficient combinatorial method for
the problem of detecting composite motifs, given in input a description
of the binding affinities for a set of transcription factors. Testing with
known benchmark data, we attain statistically significant better perfor-
mance against nine state-of-the-art competing methods.

1 Introduction

Transcription Factors (or simply factor) are particular proteins that bind
to short specific stretches of DNA (called TFBS - Transcription Factor
Binding Sites) in the proximity of genes and participate in regulating
the expression of those genes [1]. The “language” of gene regulation is
a complex one since a single factor regulates multiple genes, and a gene
is usually regulated over time by a cohort of cooperating factors. This
network of interactions is still far from being completely uncovered and
understood even for well studied model species. Groups of factors that
concur in regulating the expression of groups of genes form functional
elements of such complex network and are likely to have TFBS in the
proximity of the regulated genes. TFBSs are often described by means of
Position Weight Matrices (PWMs) (see Section 2 for a quick recap).



Over the last two decades more than a hundred computational meth-
ods have been proposed for the de-novo prediction “in silico” of single
functional TFBSs (often called single motifs, or simply motifs) [2–5].
Moreover, several hundreds of validated PWMs for identifying TFBS are
available in databases such as TRANSFAC [6] and JASPAR [7]. Observe
that, although these PWM have been subject to validation in some form,
the highly degenerate nature of the TFBS implies that, when scanning
sequences for PWM matches, false positive non-functional matches are
quite likely.

In this paper we address the problem of discovering groups of TFBSs
that are functional for a set of cooperating factors, given in input a set
of PWMs that describe the binding affinities of the single factors. This
is known as the Composite Motif Discovery problem in the literature [8].
For us, a composite motif will be simply a set of TFBSs that are close
by in a stretch of DNA, i.e., we do not pose any constraints on the order
or the spacing between the participating TFBSs (but see [9] for other
possible models).

The composite motif discovery problem has been the subject of a
number of studies, and we refer to [10] for a survey. In addition we observe
that the phenomenon of clustering of TFBS is used also by tools that try
to predict the location and composition of Cis-Regulatory Modules (see,
e.g., [11]), which then address composite motif discovery problems of some
sort.

In this paper we present a new tool (CMF ) for composite motifs
discovery that adopts a two stage approach: first it looks for candidate
single TFBSs in the given sequences, and then uses them to devise the
prospective composite motifs by using mainly combinatoric techniques.
CMF borrows the idea of the two stage approach from a previous tool
we developed for the related problem of structured motif detection [12].
Using the data set and the published results in [8, 13] we can readily
compare CMF’s performance against the eight state of the art methods
listed in [8] and other three more recent methods [13–15], showing that
our tool is highly competitive with the others.

The detection of TFBS and composite motifs is a complex challeng-
ing problem (witness the wide spectrum of approaches) which is far from
having a satisfactory solution [16], thus there is ample scope for improve-
ments from both the modeling and the algorithmic one points of view.
CMF introduces several new key ideas within a combinatorial approach,
which, on one hand, have been shown empirically to be valid on challeng-



ing benchmarks, and on the other hand may prove useful in developing
future more advanced solutions.

The rest of the paper is organized as follows: Section 2 introduces
preliminary notions and definitions, Section 3 describes the algorithm
adopted by CMF and, finally, Section 4 reports experimental results.

2 Preliminary notions

In this Section we introduce the fundamental notions used in the descrip-
tion of the algorithm that forms the computational core of CMF.

Given the DNA alphabet D = {A,C,G, T}, a short word w ∈ D∗ is
called an oligonucleotide, or simply oligo (typically |w| ≤ 20), and we say
that w occurs in S ∈ D∗ if and only if w is a substring of S.

From a computational point of view, a DNA motif (or simply motif )
is a representation of a set of oligos, that are meant to describe possible
factor binding loci. The representation can be made according to one
of a number of models presented in the literature. Here we adopt the
well-known Position Weight Matrices (PWMs). A PWM M = (mb,j),
b ∈ D, j = 1, . . . , k, is a 4 × k real matrix. The element mb,j gives a
score for nucleotide b being found at position j in the subset of length-
k oligos that M is intended to represent. Scores are typically computed
from frequency values.

Among the different ways in which oligos can be associated to PWMs
(e.g., [17–19]), here we adopt perhaps the simplest one. Consider a word
w = w1w2 . . . wk over Dk, and define the score of w, according to M ,
simply as the sum of the scores of all nucleotides: SM(w) =

∑k
j=1mwj ,j.

The maximum possible score given by M to any word in Dk is clearly
SM =

∑k
j=1maxb∈D mb,j. Then we say the M represents word w iff

SM (w)
SM

≥ τ , for some threshold value τ ∈ (0, 1]. In the following, we
will identify motifs with their matrix representation.

Let S ⊆ D∗ denote the set of N input sequences. A motif M has a
match in S ∈ S if and only if there is a substring of S that is represented
by M . As in [13], we call discretization the process of determining the
matches of a motif in a set of DNA sequences.

A motif class is a set of motifs. Ideally, in CMF all the motifs in a class
describe potential binding sites for the same factor. For this reason, we
often freely speak of factors to refer to motif classes. A factor match in a
DNA sequence is thus a match of any of the motifs in the class associated
to that factor. Note that motif classes have the ability to represent oligos
of different lengths, since different matrices usually exist for the same



factor that have a different number of columns. Let F be the set of factors
having matches in S. We consider a one-to-one mapping between F and
an arbitrary alphabet R of |F| symbols, which we refer to R as the
mapping alphabet.

A combinatorial group (or just group) is a collection of not necessarily
distinct factors that have close-by matches in a sufficiently large fraction
of the input sequences4. The minimum fraction allowed for a collection
of factors to be considered a combinatorial group is termed quorum. The
width or span of a collection of factor matches in a sequence S is the
“distance” (measured in bps) between the first bps of first and last factor
match of the group in S.

Finally, a Composite Motif is simply a collection of close-by factor
matches in some input sequence, representing CMF’s best guess for func-
tional factor binding regions. Note that no quorum constraint is imposed
to composite motifs. Indeed, as collection of factor matches, composite
motifs are clearly unique objects. As we shall see in Section 3, CMF
builds composite motifs by extending the matchings of some combinato-
rial group.

In set-theoretic terms, groups are multisets. In CMF they are repre-
sented as character sorted strings over the mapping alphabet R. In the
algorithm of Section 3.3 we will make use of some operations than involve
multisets. We first recall, using two simple examples, the customary def-
initions of intersection and symmetric difference:

xxyyyz ∩ xyyw = xyy

xxyyyz \ xyyw = xyz

Note that we have adopted the string representation for multisets. We
next consider pairs 〈M,n〉, where M is a multiset and n is a positive
integer, and sets P of such pairs which only include maximal pairs. That
is, if 〈M,n〉 ∈ P then there is no other pair 〈M̄, n̄〉 in P such that M̄ ⊇ M

and n̄ ≥ n, where inclusion takes multiplicity into account.
We define special union and intersection operations, denoted by ∨ and

∧, over sets of maximal pairs. The definition of ∨ is easy:

P ∨Q = {p : p is maximal in P ∪Q}

We first define ∧ for singleton sets:

4 Assuming the number N of sequences is clearly understood, we silently equate the
fraction q ∈ (0, 1] and the absolute number of sequences ⌈q ·N⌉.



{〈M1, n1〉} ∧ {〈M2, n2〉} = {〈M1 ∩M2, n1 + n2〉}if M1∩M2 6=∅ ∪

{〈M1, n1〉}if M1\M2 6=∅ ∪ {〈M2, n2〉}if M2\M1 6=∅

Then, for arbitrary sets P1 = {p
(1)
i }i=1,...,h and P2 = {p

(2)
j }j=1,...,k:

P1 ∧ P2 =∨i,j

({

p
(1)
i

}

∧
{

p
(2)
j

})

.

3 Algorithm

CMF main operation mode is composite motifs discovery in a set S =
{S1, . . . , SN} of DNA sequences, using a collection of PWMs.5

PWMs can be passed to CMF in either a single or multiple files. In the
latter case, CMF assumes that each file contains PWMs for only one given
factor. Actually, when the input set is prepared using matrices taken from
an annotated repository (e.g., the TRANSFAC database [20]), assuming
the knowledge of the corresponding factors is not an artificial scenario.
However, here we describe the main steps implementing CMF’s operation
mode on input a single PWM file, namely:

1. (Optional) PWM clustering, to organize the matrices in classes be-
lieved to belong to different factors;

2. Discretization, to detect PWM matches in the input sequences;
3. Group and composite motif finding.

3.1 PWM clustering

By default, CMF assumes that the PWMs in the input file correspond to
different factors, and hence it does not perform any clustering. However, in
many cases the number of matrices available, which describe the binding
affinities of the factors involved in the upstream experimental protocol,
is much larger than the number of such factors. If the latter information
is available to the user, then clustering may be highly useful both to
improve the accuracy and to reduce the group finding complexity. Another
circumstance in which clustering is advisable (not discussed here) is when
the input matrices are produced by third-party motif discovery tools.

To perform the clustering, CMF first builds a weighted adjacency
graph whose nodes are the matrices and edges the pairs (M1,M2) such

5 Even if not taken into consideration in this paper, CMF is also able to run a number
of third-party motif discovery tools to “synthesize” PWMs.



that the similarity6 between M1 and M2 is above a given threshold. Then,
CMF executes a single-linkage partitioning step of the graph vertices;
finally, it identifies the dense cores in each set of the partition, via pseudo-
cliques enumeration [22], returning them as the computed clusters.

The experiments described in Section 4 suggest that, when the PWM
file mainly includes good matrices corresponding to possibly different fac-
tors, then even a simple clustering algorithm like the one mentioned above
is able to correctly separate them into the “right” groups (factors). In gen-
eral, however, performing a good partitioning of the input matrices when
the fraction of “noisy” PWM increases (as is the case when CMF is used
downstream de-novo motif discovery software tools) is one of the major
issues left open for further work.

3.2 Discretization

Even with the most accurate PWM description of a motif, the problem of
determining the “true” motif matches in the input sequences is all but a
trivial task. Whatever the algorithm adopted, there is always the problem
of setting some thresholds τ to distinguish matches from non-matches, a
choice that may have a dramatic impact on the tool’s performance.

In general, low thresholds improve sensitivity while high thresholds
may improve the rate of positive predicted values (PPVs). A reasonable
strategy is to moderately privilege sensitivity during discretization, with
the hope to increase the positive predicted rate thanks to the combinato-
rial effect of close-by matches. Indeed, keeping initial low thresholds may
give the benefit of not filtering out low-score matches7. On the other hand,
complexity issues demand that the number of possible combinations of
motif matches, which the composite motifs should emerge from, will not
explode. Now, for factors with many matrices, low thresholds may incur
in a very high number of matches and these in turn affect the number of
potential composite motifs.

In light of the above arguments, we formulate the following gen-
eral and simple qualitative criterion: assign factors (motif classes) with
many/few matrices a high/low threshold. All the experiments of Section 4
were performed with fixed threshold values. Although these can be varied
(in the configuration file, hence in a completely transparent way to the
typical user), the overall good results suggests that the above criterion
may have some merits, to be further investigated.

6 Currently, CMF invokes RSAT’s utility compare-matrices for this purpose [21],
which uses pairwise normalized correlation

7 Sometimes referred to as weak signals in the literature.



3.3 Composite Motif finding

The previous two steps result in a set of factors (motif classes) and a set
of factors matches, which are the “input” to the Composite Motif Finding
step. This is in turn divided into two main sub-processes:

(a) Finding combinatorial groups. CMF uses a simple search strategy,
with the aim of trading computation time for accuracy. Let {W1, . . . ,Wr}
be a set of (internal) window sizes and let {q1, . . . , qs} be a set of (internal)
quorum values, with W1 < W2 < . . . < Wr and 1 ≥ q1 > q2 > . . . > qs >

0. For a given window size valueW and sequence Si, we say that a multiset
m over R is feasible iff each letter/factor of m corresponds to a match in
Si and the span of all the matches in Si is bounded by W .

The algorithm that computes the combinatorial groups can be de-
scribed as follows.

1. Set W = W1 and q = q1.

2. For i = 1, . . . , N , compute the maximal multisets M
(i)
1 , . . . ,M

(i)
ni that

are feasible for W and Si, and form the set of pairs

Pi = {〈M
(i)
1 , 1〉, . . . , 〈M (i)

ni
, 1〉}

3. Set G1 = P1

4. For i = 2, . . . , N compute

Gi = Gi−1 ∧ Pi

5. Discard from GN all the pairs 〈M,n〉 such that n < ⌈q ·N⌉.
6. If the (remaining) multisets in GN include all the letters of R or

W = Wr and q = qs, then set G = {M : 〈M,n〉 ∈ GN} and return G.
7. In alternate order (whenever possible) advance W or q to the next

value and jump to step 2.

The above general description has only explanatory purposes, since
a direct implementation would be highly inefficient. For instance, when

relaxing the quorum value, step 2 can be avoided, since the multisets M
(i)
j

have already been computed. On the other hand, the pairwise intersec-
tions of step 4 can be performed quite efficiently thanks to the character
sorted string representation of multisets of factors.

By the properties of the ∨ and ∧ operators, the pairs 〈M,n〉 included
in GN are maximal, with n satisfying the last fixed quorum value. Note,
however, that even with the weakest parameter values (i.e., widest window
and smallest quorum), some factors may not be represented in G. This is
not necessarily a problem, since the user may have provided PWMs for
irrelevant factors.



(b) Computing the composite motifs. For any combinatorial group g in
G, CMF first retrieves its actual matches from the input sequences; then
tries to extend each group of matches by possibly including other strong
factors matches that do not make the extended group unfeasible with
respect to the window constraint. This is done independently for each
sequence. All these extended group matches form the composite motifs
that CMF gives in output under the ANR (Any NumbeR) model. Under
the ZOOPS (Zero Or One Per Sequence) model, groups and composite
motifs are further filtered basing on the most recurrent span width (details
not reported here for lack of space).

3.4 Computational cost

The cost of the bare CMF algorithm is dominated by the Composite
Motif finding step or, more precisely, by the combinatorial group finding
subprocess. This is easily seen to be exponential in the length of the
longest group g (regarded as a string over R) in any of the initial sets
Mi’s, simply because g may have an exponential number of maximal
subgroups that satisfy also the quorum constraint. In turn, the length of
g may be of the order of composite motif width and hence of sequence
length. At the other extreme, there is the situation where we only have
two (of few) factors and look for sites where both factors bind (as for
the TRANSCompel datasets of Section 4). In this case the cost of the
subprocess is linear in the number of sequences.

When combinatorial group finding is fast (as in all the experiments we
have performed) the computational bottlenecks move to other parts of the
code, i.e., outside of the software module that implements the core CMF
algorithm. In particular, the computation of PWM pairwise similarities
takes quadratic time in the number of PWMs, which can be pretty high
in a number of scenarios.

4 Experiments

In this section we present the results obtained from a number of experi-
ments performed on the twelve benchmark datasets presented in [8]8.

We compare CMF against the eight tools considered in the assessment
paper (CisModule [23], Cister [24], Cluster-Buster (CB) [25], Composite
Module Analyst (CMA) [26], MCAST [27], ModuleSearcher (MS) [28],
MSCAN [29] and Stubb [30]). We also consider two other (more recent)

8 In the following, we refer to [8] as to the assessment paper.



tools, named COMPO, developed by the same research group that per-
formed the assessment [13], and MOPAT [14]. We based our choice on
tools whose code was available or for which we could find reported results
for all datasets taken into consideration in this paper. We also compare
CMF against CORECLUST [15] on just one dataset, the only one for
which data are available.

4.1 Datasets

We use the TRANSCompel as well as the liver and muscle datasets pre-
sented in [8]. The TRANSCompel benchmark includes ten datasets cor-
responding to as many composite motifs, each consisting of two binding
sites for different factors.

In [8], all the matrices corresponding to a same factor were grouped to
form an “equivalence set”, and treated as they were one. These matrices
form what is called, in the assessment paper, the noise 0 benchmark. To
simulate conditions in which input data are fuzzier, we also consider the
so-called noise 50 benchmark presented in [8], in which each dataset is
composed of an equal number of good and random (i.e., taken at random
from TRANSFAC) matrices.

Two additional benchmarks are discussed in [8], namely liver andmus-
cle, having very different characteristics from the previous ones. Liver in-
cludes sequences with up to nine binding sites from four different factors,
while muscle includes sequences with up to eight sites from five factors.

Statistics for tools evaluated in [8] were downloaded from the site
http://tare.medisin.ntnu.no/composite/composite.php. Regarding
COMPO, we computed the statistics for liver and muscle datasets start-
ing from the prediction files made available by the authors at the ad-
dress http://tare.medisin.ntnu.no/compo/. For the TRANSCompel
datasets (noise 0 and noise 50), we directly used the statistic results pro-
vided at the same address.

4.2 Scoring predictions

We compare CMF against all the other eleven tools using the correlation
coefficient (CC ). We also compare CMF and COMPO (the best per-
forming tool among CMF’s competitors) using other popular statistics,
namely: Sensitivity (Sn), Positive Predicted Values (PPV ), Performance
Coefficient (PC ), and Average Site Performance (ASP) (see [31] for defi-
nitions). All the mentioned statistics are computed at the nucleotide-level.
CMF and COMPO are also compared using motif level statistics.



Dataset/Tool CMF COMPO CB Cister MSCAN MS MCAST Stubb CMA CM MOPAT C

AP1-Ets 0.52 0.19 0.24 0.00 0.11 0.30 0.20 0.15 0.22 -0.0 0.37

AP1-NFAT 0.11 0.06 0.04 0.00 0.00 0.05 0.14 -0.01 0.15 -0.02 0.14

AP1-NFkB 0.76 0.59 0.49 0.19 0.36 0.29 0.26 0.35 0.55 0.05 0.18

CEBP-NFkB 0.74 0.70 0.72 0.45 0.56 0.56 0.60 0.36 0.60 -0.03 0.38

Ebox-Ets 0.59 0.55 0.16 0.26 0.44 0.20 0.23 0.14 0.18 0.05 0.15

Ets-AML 0.49 0.42 0.30 0.07 0.31 0.38 0.26 0.23 0.33 0.03 0.27

IRF-NFkB 0.92 0.73 0.77 0.62 0.91 0.85 0.41 0.41 0.69 0.04 0.57

NFkB-HMGIY 0.26 0.31 0.35 0.10 0.30 0.40 0.23 0.07 0.15 -0.03 0.13

PU1-IRF 0.92 0.28 0.16 0.27 0.00 0.43 0.16 0.17 0.24 -0.01 0.21

Sp1-Ets 0.20 0.05 0.09 0.20 0.00 0.00 0.13 0.19 0.15 0.02 0.09

Liver 0.49 0.57 0.59 0.31 0.51 0.42 0.50 0.48 0.36 -0.01 0.33

Muscle 0.56 0.52 0.41 0.36 0.50 0.46 0.30 0.24 0.46 0.29 0.37 0.56

Table 1. CC results for noise 0, liver, and muscle data, with best figures in bold-face.
CB = Cluster-Buster, MS = ModuleSearcher, CMA = Composite Module Analyst,
CM = CisModule, C = CORECLUST.

4.3 Results

In all the experiments, CMF was run with fixed configuration file, with
W = {50, 75, 100, 125, 150}, q = {0.9, 0.8, 0.7, 0.6., 0.5., 0.4, 0.3, 0.2, 0.1}
(see Section 3.3).

Nucleotide level analysis. Table 1 shows the results obtained by CMF
compared to eleven competitor algorithms on the whole collection of
twelve datasets (noise 0, liver, and muscle). The results suggest that CMF
is indeed competitive with other state of the art tools. In the attempt to
assess the significance of the results of Table 1, we first performed a Fried-
man non-parametric test (see, e.g., [32]) that involved eleven tools (all but
CORECLUST, because of the limited availability of homogeneous data
with which to perform the comparisons). As it can be easily argued, here
the null hypothesis (i.e., that all the considered algorithms behave simi-
larly, and hence that the average ranks over the all datasets are essentially
the same), can be safely rejected, with a P-value around 2.2 · 10−9.

We then performed the post hoc tests associated to the Friedman
statistics, by considering CMF as the new proposed methods to be com-
pared against the other ten tools. Table 2 shows the P-values of the ten
comparisons, adjusted (according to the Hochberg step-up procedure [32])
to take into account possible type-I errors in the whole set of comparisons.



COMPO ClusterBuster MS CMA MSCAN MCAST MOPAT Cister Stubb CM

0.1961 0.0455 0.0455 0.0455 0.0308 0.0102 0.0012 3.4e−4 1.9e−5 6.9e−10

Table 2. Adjusted P-values for post hoc comparisons of CFM against other 10 tools:
MS = ModuleSearcher, CMA = Composite Module Analyst, CM = CisModule

For nine competing algorithms we obtained figures below the critical 0.05
threshold; only in case of COMPO we cannot reject with high confidence
the null hypothesis, namely that the observed average ranks of the two
algorithms (CMF and COMPO) are different by chance only.

We next concentrate on the comparison between CMF and COMPO,
which is the best performing tool among the CMF competitors considered
here. Table 3 compare CMF and COMPO on a wider sets of statistics.
For the noise 0 benchmark, the results shown combine the results of the
corresponding ten datasets (i.e., counting the total numbers of positive,
positive predicted, negative, and negative predicted nucleotides). For the
noise 50 benchmark, the combined results are the average of the figures
obtained on ten runs on each datasets. In each run, the “good” matrices
were mixed with different sets of decoy PWMs (see [8]).

Statistics Noise 0 Noise 50 Liver Muscle Tool

PPV
0.67 0.45 0.67 0.60 CMF
0.40 0.37 0.85 0.52 COMPO

Sn
0.54 0.49 0.429 0.65 CMF
0.47 0.48 0.425 0.69 COMPO

PC
0.42 0.31 0.35 0.45 CMF
0.28 0.26 0.40 0.42 COMPO

ASP
0.60 0.47 0.55 0.62 CMF
0.44 0.42 0.64 0.60 COMPO

CC
0.58 0.45 0.49 0.56 CMF
0.41 0.39 0.57 0.52 COMPO

Table 3. Further nucleotide level comparisons between CMF and COMPO. We report
here the results most favorable to COMPO, as the authors provide three different files
with predictions for each datasets.

Motif level analysis. We compared CMF and COMPO to understand
their ability to correctly tell the matrices (possibly within an equivalence
set) whose matches belong to a predicted composite motif. In contrast



to [8], we do not consider here true negative predictions, as we regard
the concept of true negative not well defined at the motif level9. Hence
we only computed Sensitivity, Positive Predicted Value, and Performance
Coefficient as motif level statistics.

Table 4 reports the performances at motif level obtained using our
computed CMF predictions and the predictions made by COMPO on
the TRANSCompel datasets. The results are essentially similar, with a
slightly better Performance Coefficient (the sole comprehensive measure
computed at motif level) exhibited by CMF. The results suggest once
more that our software is competitive with current state of the art tools.

Statistics AP1-Ets AP1-NFAT AP1-NFkB CEBP-NFkB Ebox-Ets Ets-AML Tool

Sn
0.647 0.045 0.75 0.625 0.417 0.9 CMF

0.47 0.364 0.625 0.75 0.5 0.8 COMPO

PPV
0.733 0.5 1 1 0.833 0.9 CMF

1 1 1 1 1 1 COMPO

PC
0.524 0.043 0.75 0.625 0.385 0.818 CMF

0.47 0.364 0.625 0.75 0.5 0.8 COMPO

Statistics IRF-NFkB NFkB-HMGIY PU1-IRF Sp1-Ets Combined Tool

Sn
1 0.357 1 0.438 0.574 CMF

0.833 0.429 0.6 0 0.506 COMPO

PPV
1 0.625 1 0.875 0.861 CMF

1 1 1 0 0.932 COMPO

PC
1 0.294 1 0.412 0.525 CMF

0.833 0.429 0.6 0 0.488 COMPO

Table 4. Motif level results for CMF and COMPO on the noise 0 dataset

Finally, Table 5 reports CMF statistics on the muscle and liver datasets.
We do not include a comparison against COMPO here since the way
to correctly and fairly interpret COMPO’s prediction is not completely
clearly to us. First of all, the authors present three different prediction
sets, obtained under different configuration runs. Secondly, all the pre-
diction files contain multiple identical predictions, which negatively influ-
ences the PPV counts.

9 Note that in the already cited paper by Tompa et al. [31], true negative predictions
at the motif level are not considered.



Liver Dataset Muscle Dataset

Sn PVV PC Sn PVV PC

0.5 0.728 0.42 0.74 0.66 0.54
Table 5. CMF motif level statistics for the muscle and liver datasets

5 Conclusions

In this paper we have presented CMF, a novel tool for Composite Motif
detection, a computational problem which is well-known to be very diffi-
cult. Indeed, to date, no available software for (simple or composite) motif
discovery can be clearly identified as the “best one” under all application
settings. Knowing this, we are also aware that more comparisons are re-
quired, in different experimental frameworks, for general conclusions to
be drawn about the competitiveness of CMF.

However, we think that some interesting findings have emerged from
this work, all related to the power of simple motif combinations. First
of all, that the good results exhibited by CMF have been obtained with-
out using any sophisticated statistic filtering criteria; the combination of
“right” simple sites were often strong enough to emerge from a huge set
of potentially active motif clusters. Secondly, that the conceptually sim-
ple CMF architecture, based on a two-stage approach to composite motif
finding (i.e., first detect simple motifs, then combine them to form clus-
ters of prospective functional motifs) proved to be competitive against
other, more sophisticated approaches (see also [12]). In the third place,
that lowering the thresholds that “define” (in silico) the DNA occupancy
by a transcription factor, can be appropriate a strategy that can be kept
hidden to the user.

On the other hand, the same issues outlined in the preceding para-
graph suggest possible directions to improve CMF performance. For in-
stance, incorporating a statistical filtering may enhance the PPV rate
of the prospective composite motifs devised by simple site combinations.
However, we think that the most delicate aspect has to do with thresh-
olding and discretization. It is a growing popular belief among biologists
that the DNA occupancy is determined mostly by chromatin accessibil-
ity (rather than DNA-factor affinities), with the occupancy scale being
a continuum of thermodynamics levels. Turning this knowledge into a
computable property of the potential binding site seems indeed a hard
challenge.
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