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Abstract

Integral geometry of lines in space has been a key tool in deriving new algorithms for solving
integral equations in diverse fields of applied mathematics and computer science such as
numerical electrostatics and computer graphics. Here we review those results highlighting
the role of integral-geometric transformations.

1 Introduction

The discrete and the continuous point of views in mathematics are both sources of beau-
tiful results, and often it is convenient to alternate between them to gain insight on the
problems at hand.

Combinatorial properties of finite sets of lines in 3-space have been a focus of at-
tention in computational geometry since the early 90’s (see (Edelsbrunner, 1991) and
(Pellegrini, 1997b)) and combinatorics of hyperplane arrangements in the appropriate
space (notably 5-dimensional Pliicker space) play a dominant role. Conversely, the study
of measure-related properties of infinite sets of lines require tools and concepts from In-
tegral Geometry. Lines in 3-space are not the most natural primitive object one would
think of: points and planes in 3D are rather more natural objects. However, in several
applications ranging from Computer Graphics to Electrostatics and Tomography there
is much to be gained when lines and their integral geometric properties are placed in
the forefront. To give substance to this point of view we will survey some recent results
obtained by reasoning according to those schemes. More specifically we will refer to the
papers (Pellegrini, 1997a), (Pellegrini, 1998), (Finocchiaro, Pellegrini, and Bientinesi,
1998), (Pellegrini, 1999a) and (Pellegrini, 1999b).

The final applications come from the rather diverse areas of numerical electrostatics
and computer graphics, however a common general pattern emerges. There is an initial
phase in which a well known mathematical formulation of a problem (an integral equa-
tion to be solved) is recast in terms of integrals over sets of lines. In the second phase a
Galerkin-type of discretization is applied, resulting in the formulation of a linear system
of algebraic equalities. The entries of the corresponding matrix are high dimensional
multiple integrals. At this point exploiting several expressions of the differential measure
of lines in space we separate the integral expression into an integral on the unit sphere
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(2-dimensional) and a kernel that is computed exactly. We apply a Gaussian adaptive
strategy for numerical integration on the sphere which gives probably close approxima-
tions to the entries of the matrix.

2 Electrostatics

2.1 An Integral Geometric Theory of Electrostatic Fields

In this section we present a geometric interpretation of electrostatic force fields using
tools from integral geometry. We adopt an axiomatic approach. We give an integral
geometric definition of a field é, which we will call the geometric field. We will show
that the geometric field satisfies Gauss’s Law of flux through a closed (convex) surface.
Well known arguments of electrostatics can then be invoked to base the classical theory
of electrostatic fields on Gauss law (Jackson, 1975) (Landau and Lifshitz, 1980). The
theory is developed for fully dimensional convex bodies in 3-space.

Let us denote with L an oriented line in 3 space, with L the unit vector along L and
dL the differential measure of lines in 3-space. Let us consider a density function p;(p)
defined over the points p of a compact convex body By, and let p; be the maximum of
the absolute value of p;(p) in B;. Let us define for a line L the quantity mq(L):

m(L)= [ m()dp

Notice that |my(L)| < pip(L N By), where p measures the length of a segment, and
equality holds for a constant density of charge. Let (); be the total charge of Bj:

Q1= /p€B1 p1(p)dp.

The Geometric field at a point p € By is defined as

G.(p) = /L . mi(L)LdL. (1)

The lines are considered oriented from B; to p, and the integral is an integral of
vectors. Since we consider convex bodies, although the lines are oriented, we use in many
cases the underlying set of unoriented lines when it is convenient to do so. Sometimes it
is more convenient to work with the component of G is some direction w, which is given
by

—

Gl-w:/ mi(L)(L - @)dL.
Lnp#0

We will compare our results with those obtained through the traditional definition of
the electrostatic field in the Gauss unit system (see (Jackson, 1975)).
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2.1.1 Gauss law

Gauss law states that the integral of the component of the electric field E(p) in
direction 7i(p) normal to a closed connected surface S = 0B is equal to 47 times the total
charge in the bounded connected region B enclosed by the surface S:

E -fidp = 47r/ p(p)dp.

peS pEB

Let us take a convex surface S and let us parameterize the (directed) lines as a point
on the surface and an (outer) direction u in the set of directions U/2. In these coordinates
the differential element of lines is dL = cos Odpdu, where dp is the differential element of
surface area, du is the differential element of directions, and 6 in the angle between the
(outer) normal to 7i(p) and the direction u. We have that

/ mq(L)dL = / / m;(L) cos Odudp = / G(p) - A(p)dp,
LNS#) peS uEU/Q peS

where the last expression is the standard definition of the flux of a vector field through
the surface S. Now we start from the same integral but we identify any line by a pair
L = (u,q), where u is the direction of L, and ¢ is the point intercepted by L on a plane
P(u) of normal u and incident to the origin. Using these coordinates the differential
measure of lines is dL = du A dg (Santal6, 1976). Consider B; C B. We obtain

/ mi(L)dL = ma(L)dL :/ [/ ma (u, ¢)dg]du =
LNS#0 LNB1#£D uelU

/ // prp)dpldaldu = [ ([ pi(p)dpldu = 47Q;,
uelU pEL,L=L(u,q) uelU p€B1

where in the last integral the domain of ¢ is the projection of B onto P(u). To summarize,
starting from the same integral we have derived two different expressions which we may
therefore equate, obtaining

@1 <nidp = 4mQq,

peS

which is the statement of Gauss’s law for the field G.

2.1.2 Force acting between two convex bodies

From now on we will not distinguish any more between the geometric field G; and the
electrostatic field E, generated by a convex body B;. Let us denote with Fyy the force
acting between bodies By and B,. We can express this force by integrating over the points
of B; the value of the electrostatic field generated by B at each such point. Formally
we have

Fo=[  B@m(p)dp,
pEB;
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which we expand using (1) into

Fo= |
PeB;

Now we transpose the two integrals obtaining

ﬁ12:/
L

The function my(L) in the inner integral does not depend on p, thus we can take it out

[ L LAL] pr(p)ip.

/ ma(L)p(p)dp] LdL.
LNp#0,peBy

of the inner integral. The inner integral that is left is mq(L).

The total force acting between By and B, is thus reduced to a single integral over the
set of lines in 3-space:

Fip = /L ma(L)yms(L)LdL. 2)

Now we identify any line by a pair L = (u, q), where u is the direction of L, and ¢ is the
point intercepted by L on a plane P(u) of normal u and incident to the origin. Using
these coordinates the differential measure of lines is dL = du A dq (Santald, 1976). We
obtain the new formula

A@zﬁm@wm%@WWWWL

Thus we can split the computation into an integration over the set U/2 of unoriented
directions', and, for a fixed direction u € U/2, an integration over a planar set of points.
So, finally

Fy= / Vio(u)du, (3)
u€lU/2

where the kernel function Vi, is

Via(u) = [ ma(L{u,0))ms(L(u, ))da. (4)
q
Remark. The function Vis(u) does not diverge. This is a main advantage with respect
to more traditional formulations of the force acting between two bodies that are based
on integrating a kernel function, such as 1/7? or 1/r, which diverge when r goes to zero.

2.2 Robin’s equation

Robin’s integral equation (5) describes the equilibrium conditions for the surface charge
density o(p) on the surface S = 9D of a closed compact (but not necessarily connected)
3-dimensional domain D (Cade, 1995). In this section we show a possible discretization of
Robin’s integral equation resulting in a Boundary Element formulation. We are interested
in showing the typical form of the entries of the stiffness matrix. Then in Subsection 2.2.1

!The set of directions U is represented by the unit sphere in 3-space. We obtain the set of unoriented directions
by identifying antipodal points on the unit sphere.
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we turn such entries into geometric integrals without singularities. In the last section we
point at an algorithm for approximating such geometric integrals with probable error
bounds. Robin’s equation for the surface charge density function o(p) over a surface S is

27T0'(p) _ éles COS 9(n(p)7ppl) O'(pl)dpl, (5)

r2

where 6(n(p), pp') is the angle formed by the normal n(p) to S at p with the line p,p/,
and r is the distance between p and p’. We now consider the surface as partitioned in
polygons P; with index i € [1,..., k], and we compute the force acting on each polygonal
face P;. Since the electric field is normal at any point of the polygon, and the normal
direction to each polygon is constant, the resultant force is also normal to the polygon
P;. Let F; be the modulus of the (normal) force acting on polygon P;. We can compute
F; by using the well known relation E(p) = 2mo(p) between the module of the field and
the charge density at any point of the surface S. With o; we denote the restriction of
the function ¢ on P;. We obtain

F= [ E@oip)dp= [ 2moip)oi(p)dp (6)

peS peS

If we use the right side side of the equation (5) we obtain

F;, = E;(p)oi(p)dp = /

peES peS

2 a;(p')dp'| ai(p)dp (7)

zk:/ cos 0(n(p), pp')
j=Lizj TP €5

Now we expand each local density function o; in an orthonormal basis with unknown
scalar coeflicients A, j:

0i(p) = Ai000(p) + Airo1(p) + Aigo2(p) + ...

Denoting with H; the following integral

H;j = 27?/ on(p)on(p)dp,

PEP;

and exploiting orthonormality?, we obtain that formula (6) for F; becomes
Fy = HiplAio]? + Hig[Aia]? + HiplAip]? + HislAis]” + . ..

Expanding formula (7) for F; we obtain

cosO(n(p), pp’ , )
=YY /p D)0 o () (p) Asp Assipy
J

€5;,p'€S; 72

The above identities are satisfied by the solution of this system:

cosO(n(p), pp’ , ,
Hipdip =33 A [ WAPLPED o, ) i
J ok P

€5;,p'€S; r?

2The integral of product of functions with different index is null.
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The unknowns in the resulting linear system are the values of A; ;. The number of such
variables, sometimes referred to as the “dimension” of the system, is the product of the
number of polygons P; and the number of terms of the expansion of the density functions,
in case of a uniform expansion on all the patches (also known as h-Galerkin method).
Alternatively we might truncate the basis expansions differently on each polygon P; so the
total number of unknown is the sum of the terms in the truncated functional expansions
(also known as hp-Galerkin). The coefficients H, j, can be pre-computed easily with exact
analytic integration. The other coefficients on the right sides of the equations are of the

form ,
cos 0(n(p), pp')

pESiP'ES, r2

on(p)ok(p')dpdp', (8)

where the functions o}, and o, are known elements of the functional basis. Next we show

Cinjh =

how we can compute such coefficients using the general techniques developed in the first
part of the paper. Integrals of this form (8) fall within the class of integrals studied in
(Sauter and Schwab, 1997). They are obtained in that paper with a double-layer potential
formulation of the equilibrium of conductors.

2.2.1 Integral geometric transformation

In this section we apply integral geometric transformations to the integral in (8). To
simplify the notation we drop subscripts inherited from the discretization process and we
consider two triangles 77 and 75 and known densities oy and o,. Thus the integral we
are considering is

= cos 0(n(p), pp') o
Cra = /peT1 pETy r2 o1(p)oa(p')dpdp'. 9)

Let us call ¢(n(p'), pp’) the angle formed by the line pp’ with the normal to T3 at p'.
Let us assume for the moment being that the cosine of such angle is not null. Multiplying
and dividing in (8) by the cosine of this angle we obtain

/ 1 cos 0(n(p), pp') cos ¢(n(p'), pp')
peT1p'eTs cos ¢(n(p'), pp') r’

o1(p)oa(p)dpdp'.

Now we can turn to a geometric integral since we have isolated an expression of dL:

1 /
dL. 10
/L,LﬂTgé(Z),LﬂTg;é@ cosp(n(p'),p,p') 1(p)o>(p) (10)

Next we express a line L in the (u, ¢) coordinates:

/ueU l/q Wﬁ (p)02(p')dq] du.

For flat polygonal faces and a fixed direction u, the value cos ¢(g, u) does not depend on
q and can be taken out of the inner integral sign:

Ciy = /UGU lcoslw/qal(p)az(p')dq] du. (11)
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Let us call K’(u) the kernel integral

1
K(u)=—— / "dg. 12
(u) = — o (p)o2(p')dq (12)
In (Pellegrini, 1998) it is shown that the value of K'(u) does not diverge when cos ¢(q, u)
tends to zero, and the value of the limit function can be computed with a formula obtained

by a limiting process applied to formula (3).

Remark. Alternatively, we can also obtain formula (10) by considering the formula (3)
in the first part of the paper applied to two prisms with basis T} and 75, and by letting
the height of the prisms go to zero while maintaining a consistency condition on the local
charge density.

3 Computer graphics: Rendering equation revisited

The rendering equation describes the exchanges of radiant energy in a given 3D scene.
One of the main obstacle to an efficient numerical solution is attributed to the non-local
effects due to occlusions.

3.1 Standard continuous forms of the rendering equation

We denote with 3 be the collection of surfaces in the scene and with €2 the unit sphere
of direction. Let L be the radiance function, E the emitted radiance function (which is
non-zero for light sources), and p the Bi-directional reflectance density function BRDF
modelling the local behaviour of light on the surfaces. Two standard forms of the render-
ing equations are reported in (Sillion and Puech, 1994; Cohen and Wallace, 1993). The
first form is

Ly.w) = Eg.o)+ [ pwn)Lialy.n.)-n-n)d. (13
N1y

where y and x are points on the surface X; w and 7 are directions (points on the unit

sphere Q); z(y,w,X) is the first point of ¥ hit by a ray from y in direction w; and n, is

outer unit vector at y normal to . The second form is

L(y.2) = E(y.2) + [ __plav.2) L. 5)Glr.y)da. (14

where x, ¥y, z are points on ¥, and

cos 6, cosd

G(z,y) = 2V (z,y,2), (15)

|z —yl?
where 6, (resp. 6,) is the angle formed by the outer normal n, (resp. n,) and the line
joining x and y, while the function V' (z,y, ) has value 1 if the open segment xy does
not intersect X, and zero otherwise.
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3.2 Simulating occlusions by superimposition

In this section we show how to modify the BRDF function describing the local behaviour
of light on the surface in order simulate occlusions by superimposition. The main idea
is that energy arriving onto a surface from a direction 7 produces a negative energy flux
in direction —7 so that behind the surface their sum is null. Naturally this annihilation
persists when multiple surfaces are considered on the same ray.

From a mathematical point of view this modified BRDF makes radiosity calculations
much more similar to BEM for conductors in electrostatics where the superimposition
principle is used. We will show that the occlusion effect is achieved on any single line,
thus the cancellation effect carries over on integrals of lines.

We start from a standard form of the rendering equation (13). Let us call U, the
halfsphere, where 7 - n, > 0. We integrate contribution of incoming light from U, since
the assumption is that light outside the objects cannot go inside and vice versa. So, to
describe the balance of light outside the objects, we assume no sources inside them. So p
is defined and used for 7 € U, but also w is considered and used in U, because by default
it is assumed that all the light received from outside is re-sent outside. So, w € U,. We
are thus free to decide the value to associate with directions in the complementary domain
U_, and we use this freedom to simulate occlusions by means of a special BRDF defined
on U_. So, we define, for w € U_ and n € Uy,

0w — (—n
ply,w,n) = e = (=m)

|ny - 7]
where 0 is the delta Dirac function. Thus carrying out easy calculation from (13) we
obtain L(y, —n) = —L(x, —n), which shows the negative flux. Note that L is preserved in
absolute value through the surface but changes sign. For n € U_, we have p(y,w,n) = 0.

Intuitively for rays coming from inside an object all contributions cancel off anyway.
So, we do not need to count them. We have to modify the rendering equation and collect
contributions from all the intersection points along a ray, not just the visible one. The
new form of the rendering equation is

P (y,w,n) lZ L(xm(y,n), —n)| In - nyldn,  (16)

m=1

L(y.w) = E(y.«) + |

71y >0

where x...x,, is the collection of points of intersection between the ray from y in
direction 7 on the surfaces in ¥. With p' we denote the BRDF modified as above.

An alternative way of viewing the superimposition is to use formulae of inclu-
sion/exclusion along each line instead of describing explicitly the combinatorial structure
of the visible surfaces.
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3.3 Derivation of the new rendering equation

We start our manipulations from formula (16). Let (y,w) define the oriented line [,
and let (y,n) define the oriented line h, then easily (z,—n) defines the oriented line
—h. This notation will be important later to distinguish between the lines and their
representation using a coordinate system. We assume now an expansion of the function
L into a functional basis. Specifically we consider a covering of the domain

X x Q= U?:l(zz X Qz)

Let fi;(-, ) be a basis function with compact support in 3; x €; (i.e., it is identically
zero in (X x Q) \ (X; x €;)). We express the approximate solution L with L = > G fij
for unknown reals a; ;. We now formally multiply equation (16) by the weight function f; ;
and we compute the weighted residual which is then set to zero. Practically we multiply
by fi; and integrate on the differential surface element dy around y, for y € ¥;; and by
the differential element dw of the angle w € €);.

fij(y,w)L(y, w)dydw =
fij(y, w) By, w)dydw + [/
n

Next we integrate over the domain ¥ x 2. However due to the choice of support for the

AR > L(@n, —)]|n - n(y)|dn| fi;(y, w)dydw.

n(y)>

functions f; ; this is equivalent to integrate over X; x €2;:

|| it w)dyde= [ [ figlyw)B(y,0)dyde +
yeL; Jwe); yeY; Jwe;

oo Lo ]P0 L =)l nly)ldndito, )y

Up to now the derivation has been quite standard. Since |n-n(y)|dndy is the differential
measure of lines around h, dh, for h meeting ¥; (Santalé, 1976). Thus we can rewrite
more compactly

/ / fiyj(yaw)L(y,W)dydw =
yeD; Jwe,;

4,J\I> Ea dd+/ / 1,7\ Iaa L_hmdhd7
Lo, Lo, o) Bl )yt [ [ (0 ([ L Jh
where by h,, we denote the pair (z,,,n). Since L(—h,,) does not depend on w we can
exchange the order of integration and take L(—h,,) out of the integration in dw:

/m#@[;u_hm)] [/%Q p’(y,w,n)fi,j(y,w)dw} dh.

7

We assume that we have chosen the functions p' and f; ; in a class for which we are able
to integrate analytically in dw. More precisely we assume the following function to be
computable analytically:

Qi;(h) = Qij(y,m) = /MEQ. fii(y, w)p'(y, w, n)dw. (17)

Polynomials naturally satisfy this property.
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3.3.1 General functional basis

We assume that for each domain ¥; x €2; we have either one function f; or several or-
thonormal functions f; ;. In either case we discuss the terms of equation (17):

/ / fi,j(ya w)L(y, w)dydw = a; Jj / fij (v, w)2dydw
ye; Jwe; weQ,

yeY;

For short we denote with H; ; the coefficient of a, ;:

H,] = / / fi(y:w)2dydw7
yey; JweQ;

which we suppose to be able to integrate analytically. The emitted energy is weighted
by the function f; ;:

[ ] ey By.w)dydo = B,
ye; Jwe;

and we are able to compute E; ; analytically when it is a polynomial. Summarizing,

aijHij = Eij+ 2012 > L(=hm)] Qs (h)dh

Using the expansion of L(—h) we get
iHig =B+ [ Srs(=h)| Qi (h)dh
@i, j i, gt f— L;sak, Jrs( )] Qi (h)

Rearranging,

a;jH; j = F; ; + Z Qs /hmz.#@ fk,s(—h)Qi,j(h)dh] .
k#i,p g

Now we restrict the integration domain to lines for which fj 5 is not zero. In this mmaner,

we obtain the following expression for the coefficient Kj; ;s of ay s

Kiggn = [ Jua=h)Qus(h)dh = s (=1)Qis(R)dh

/hnzi;éw,hnzkyéw,mr(h)eﬂk
where Dir(-) denotes the direction of a line. Note that here the function @);; carries
contribution from the BDRF and from the basis function f; ;. We express h = (¢, u) and
we obtain the following expression for K; xs:

Kiyga= [ [ is(=0.0)Qu (0. 0)dadu, (18)

To apply the technique in (Pellegrini, 1999a) we make the assumption that, for any fixed
u, frs(—u,q) is polynomial in local Cartesian coordinates for ¢. This assumption is easy
to satisfy by using a product polynomial basis. Also Q;;(u, ¢) needs to satisfy the same
condition.
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Finally the domain of the external integration is restricted to direction such that
—u € Q. If we restrict the possible shapes for ), to convex spherical polygons (therefore
a shape bounded by arcs of great circles on ) we can accommodate the range reduc-
tion within the spherical domains considered in (Pellegrini, 1999a). Somewhat simpler
formulae are derived for a piecewise-constant functional basis often used in applications.

4 Numerical evaluation

We give here the relevant concepts for the numerical evaluation of the integrals obtained
as a result of the geometric transformations. Proofs and algorithms are in (Pellegrini,
1998) and (Pellegrini, 1999a). The following definition from (Pellegrini, 1998) capture
the notion of a locally analytic function on the sphere for which we can use powerful
Gaussian integration techniques.

Definition 1 Integral: [,c; f(u)du is well-behaved if it can be represented as:
Z/ fj (u)du’
i UGDj

where for each j, D; C U, and the collection of the domains D; is a partition of U.
Moreover, for each j, we can find a local system of reference LSR; of parameters o and
B such that:

1. [77, LSR]',
Dj = I;a x Ijg = [0, 1] X [Bj0, Bjal

That is, D; is mapped to a bounded rectangular domain in LSR;.

2. By substitution f;(u) is mapped to f;(a;, 5;) and we have the invariant differential
element of directions du = g;(«;, B;)da;dp;.

3. For every & € I, the restriction f;(a,B;)g(a, f;) : I;5 = R admits an analytic
extension in an open rectangle Rect(a) of the complex plane which contains strictly
Is.

4. Fore every B € I; 5, the restriction f;(a, 8;)gi(c, B) : Ijo — R admits an analytic
extension in an open rectangle Rect(B) of the complex plane which contains strictly
1,.

By set A strictly containing B we mean that A contains B and the boundary of A is
disjoint from the boundary of B. The following result is established in (Pellegrini, 1998)
and (Pellegrini, 1999a):

Theorem 1 Integrals (2), (11) and (18) are well-behaved.



110 M. Pellegrini

For the computation we use the following Theorem whose proof (and corresponding
algorithm) is in (Pellegrini, 1998):

Theorem 2 A well-behaved integral can be approzimated using O(n) Gaussian points
while achieving absolute error O(c™V™), for some ¢ > 1.

Acknowledgements

My thanks go to my co-authors P. Bientinesi and D. Finocchiaro, and to M. Sbert for
his invitation to contribute to the volume in honor of Professor Luis Santalo.

References

Cade, R. (1995). On discontinuous solutions of the integral equations of electrostatics.
IMA Journal of Applied Mathematics 55, 205—-220.

Cohen, M. F., and J. R. Wallace (1993). Radiosity and Realistic Image Synthesis. San
Diego, CA: Academic Press Professional.

Edelsbrunner, H. (1991). Lines in space - a collection of results. In R. Pollack and
W. Steiger (Eds.), Discrete and Computational Geometry, Volume 6 of DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, pp. 77-93.

Finocchiaro, D., M. Pellegrini, and P. Bientinesi (1998). On Numerical Approximation
of Electrostatic Energy in 3D. Journal of Computational Physics 146(2), 707-725.

Jackson, J. (1975). Classical FElectrodynamics. New York: Wiley.

Landau, L. and E. M. Lifshitz (1980). The classical theory of fields. Oxford: Pergamon
Press.

Pellegrini, M. (1997a). Monte Carlo approximation of form factors with error bounded
a priori. Discrete €& Computational Geometry 17, 319-337.

Pellegrini, M. (1997b). Ray shooting and lines in space. In J. E. Goodman and
J. O'Rourke (Eds.), CRC Handbook of Discrete and Computational Geometry, pp.
599-614. CRC Press.

Pellegrini, M. (1998, November). Electrostatic Fields without Singularities: Theory,
Algorithms and Error Analysis. Journal of the ACM 45(6), 924-964.

Pellegrini, M. (1999a, June). A geometric approach to computing higher order form
factors. In Proceedings of the 15th ACM Symposium on Computational Geometry,
pp. 69-78.

Pellegrini, M. (1999b, January). Rendering Equations Revisited: how to Avoid Explicit
Visibility Computations. In Proceedings of the 10th ACM-SIAM Symposium on
Discrete Algorithms, pp. 725-733.



Measuring lines in space - A collection of results 111

Santald, L. (1976). Integral Geometry and Geometric Probability. Reading, Mass: Addi-
son- Welsey.

Sauter, S., and C. Schwab (1997). Quadrature for hp-Galerkin BEM in 3-d. Numerishe
Mathematik 78, 211-258.

Sillion, F., and C. Puech (1994). Radiosity and Global Illumination. San Francisco:
Morgan Kaufmann.



