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ABSTRACT

Motivation: Genomes in higher eucaryotic organisms contain a
substantial amount of repeated sequences. Tandem Repeats (TRs)
constitute a large class of repetitive sequences that are originated
via phenomena such as replication slippage and are characterized by
close spatial contiguity. They play an important role in several mole-
cular regulatory mechanisms, and also in several diseases (e.g. in the
group of trinucleotide repeat disorders). While for tandem repeats with
a low or medium level of divergence the current methods are rather
effective, the problem of detecting TRs with higher divergence (fuzzy
TRs) is still open. The detection of fuzzy TRs is propaedeutic to enri-
ching our view of their role in regulatory mechanisms and diseases.
Fuzzy TRs are also important as tools to shed light on the evolutio-
nary history of the genome, where higher divergence correlates with
more remote duplication events.

Results: We have developed an algorithm (christened TRStalker)
with the aim of detecting efficiently Tandem Repeats that are hard to
detect because of their inherent fuzziness, due to high levels of base
substitutions, insertions and deletions. To attain this goal we develo-
ped heuristics to solve a Steiner version of the problem for which the
fuzziness is measured with respect to a motif string not necessarily
present in the input string. This problem is akin to the “generalized
median string” that is know to be an NP-hard problem. Experiments
with both synthetic and biological sequences demonstrate that our
method performs better than current state of the art for fuzzy TRs
and that the fuzzy TRs of the type we detect are indeed present in
important biological sequences.

Availability: TRStalker will be integrated in the Web-based Tandem
Repeats Discovery Service (TReaDS) at bioalgo.iit.cnr.it.

Contact: marco.pellegrini@iit.cnr.it

1 INTRODUCTION
Tandem Repeats (TRs) are multiple (two or more) duplicatioh

substrings in the DNA that occur contiguously, and may ineol

some base mutations (such as substitutions, insertiodsdelati-
ons). Tandem Repeats of several forms (satellites, mitiisas,
minisatellites, and others) have been studied extensbhadgpuse of
their role in several biological processes. In fact, TRsmiéleged
targets in activities such as fingerprinting or tracing thielation
of populations (Kelkaret al., 2008; Vogleret al., 2006). Several
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diseases, disorders and addictive behaviors are linkgzetfe TR
loci (Woosteret al., 1994). The role of TRs has been studied also
within coding regions (O’Dushlainet al., 2005) and in relation to
gene functions (Legendet al., 2007). Large scale comparative stu-
dies on TRs of the human genome are described in (Aehek,
2008; Warburtoret al., 2008). Data Bases of repetitive elements
such as RepBase (Jurlehal., 2005) and TRDB (Gelfandt al.,
2007) are now available; and the detection of repetitivenelgs
via library-based similarity matching, for example by gsthe tool
Repeatmasker (Smét al., 2004), is a popular practice. However,
tools forab initio detection of repetitive elements that are not based
on prior knowledge accumulated in data bases, are still itapd

in order to extend our comprehension of the role of TRs indgol
cal mechanisms. Existirap initio tools are successful when the TR
exhibits a moderate amount of divergence and when the TRilyea
validated. However, there is an emerging need for new tbelsare
able to cope with higher levels of sequence divergence afdto
computationally more difficult to validate. For example,eBa et
al. (Boevaet al., 2006) study so calleBuzzy Tandem Repeats and
their role in gene expression. The technique in (Baghal., 2006)
works well for the Hamming metric (only substitutions andmser-
tions/deletions allowed) and for short repeat units (frota 24 bp)
that are common in micro- and mini-satellite families.

Some of the most successfabh initio tools, such as TRF (Ben-
son, 1999) and ATRHunter (Wexlet al., 2005), are based on a
multi-stage filtering approach (see also (Peterlogig., 2009)). In
the first stage the input sequence is analyzed to detectatistial
criteria, likely position and length of candidate subsemas. The
final stage is the validation one in which a more expensiveises
applied to candidate substrings passing the first stages, deter-
mine an output that matches the implicit definition of TR ahd t
user-defined filtering parameters.

1.1 Our Contribution

Our contribution is a novel multi-stage filtering algorithrralled
TRSalker, for finding long fuzzy tandem repeats under the edit
distance, that introduces new techniques (w.r.t. previgrdinding
algorithms) in all stages. For the first stage, where overesented
distances between probes are sought, we emgapped g-grams
(Burkhardt and Karkkainen, 2003) in place of the standanghp-

ped g-gramsin order to collect evidence on the candidate substrings.
Gapped g-grams have been used before in the context of tex-
tual and biological database searching, but less so in e aff
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tandem repeats detection (with the exception of the systéin T
RESIAS (Stolovitzky et al., 1999)). Because of errors due to
insertion/deletions thperiod of a TR is subject to fluctuations, thus
we employ a weighting scheme with exponential decay so te rei
force the signal even in presence of this smearing effenallyiwe
useranking instead ofthresholds when deciding the substrings to
pass to the next phases, in order to concentrate the corigmatiat
effort on the zones with candidates with higher weight. Rerftnal
validation stage we employ an NP-complete definition of TRIn
ving the concept ofjeneralized median string under edit distance
(de la Higuera and Casacuberta, 2000; Sim and Park, 200@}hter
with an efficient heuristic for computing an approximatidnsach
median string (Jiangt al., 2003) previously not used in a biological
context.

By extensive experimental comparisonsT®Salker with two
state-of-the-art tools, namely TRF and ATRHunter, we didl fin
out that TRStalker has consistently better performance flarge
range of error and length parameters for the class of fuzagdia
Repeats under edit distance, with a recall ranging from 180%
60%. Thus TRStalker improves the capability of TR detecfiam
classes of TRs for which existing methods do not perform .well
Tests performed on standard evolutionary TRs definitioesif{a-
ble in polynomial time) also show recall performance clas&G0%.
Incidentally, this result confirms of the power of the newhteiques
developed for the initial filtering phase.

1.2 State of the Art

We will briefly survey the state of the art in finding tandemeeats.
First we will describe methods that for a given definition & @&re
able to find all maximal substrings in the input that matchdégni-
tion (exhaustive algorithms). Often exhaustive algorithms may not
be available, or when available they may be too slow in peacti
Thus, severaheuristic algorithm have been developed which are
shown experimentally to be able to detect a large fractiomR$
efficiently. Note that the time/precision trade-off is sk influ-
enced by the allowed error thresholds. Performance oftgrades
quickly with increasing error levels.

Exhaustive algorithms. When we allow no error, it is possible to
find all maximal exact TRs in a string of lengthin time O(n)
(Kolpakov and Kucherov, 1999; Gusfield and Stoye, 2004). wVhe
we allow two consecutive repeats to differ by an amount attrhos
(either in Hamming or in edit distance) Landau, Schmidt aokiob
(Landauet al., 2001) give exhaustive algorithms running in time
O(nklog(n/k)) for Hamming distance, an@(nk log k log(n/k))

for edit distance. A simpler algorithm with the same asyrtipto
complexity for the edit distance is proposed by Sokol, Baread
Tojeira (Sokolet al., 2007). Kolpakov and Kucherov (Kolpakov and

The tool TRF (Tandem Repeat Finder) developed by Benson
(Benson, 1998, 1999), based on statistical filtering of s@mi®®NA
likely to contain TRs, is currently one of the standard h&tigi
methods. ATRHunter (Wexlest al., 2004) by Wexler et al. is also
based on a statistical filtering approach, placing greatghasis
in techniques for designing thresholds for the quantitiesnte-
rest. Other proposed heuristics for finding TRs are REP et
and Schleiermacher, 1999; Kuré&t al., 2001), STRING (Parisi
etal., 2003), TEIRESIAS (Stolovitzket al., 1999), TandemSWAN
(Boevaget al., 2006). A class of papers (see e.g. (Shaenal.,
2004), (Brodzik, 2007), (Buchner and Janjarasjitt, 20q&upta
et al., 2007)) tackle the problem of finding tandem repeats as a pro-
blem in signal processing theory and usually map the inputgst
into a time-signal in a suitable numerical domain for whieliezal
spectral techniques can be used, such a$¢hedicity Transform
or the Fourier Transform. Other methods use data compression
techniques to detect repetitive elements (Rieak., 1997).

The methods cited above are rather general since they aigsat t
ting efficiently TRs in a wide range of length values. Theralo a
large class of methods that are aimed at handling particulape-
cial classes of TRs such as: microsatellites (e.g. IMEXx (ivfuali
and Nagarajaram, 2007)), palindromic repeats (e.g. CRI%RF
(Grissaet al., 2007)), Variable Length Tandem Repeats (VLTR) and
Multi-period Tandem Repeats (MPTR) (Hauth and Joseph, 2002
Variable Number Tandem Repeats (VNTR) (Sammeth and Stoye,
2006). Since the focus of our research on TRs at present iseon t
more classical forms of TRs we do not dwell longer on them. etow
ver, we just note that often methods for MPTR, VNTR, VLTR use
standard TR finding as a subroutine, thus our proposed #igori
can increase also the ability to detect such higher ordectstres.

Systematic comparison among TR finding tools and algorithms
operating “ab initio”, that is without support of specificobigical
data bases has been tackled in recent years (Lecterag 2007;
Sahaet al., 2008). A survey of problems on Tandem Repeats in
the context of evolutionary mechanisms, such as the cartiirnu
of TR Evolutionary Trees, is proposed in (Rivals, 2004) (ak®
(Elemento and Gascuel, 2002)).

1.3 Organization of the paper

The paper is organized as follows: in Section 2 we describénath
level the principles guiding the different phases of the TdR&r
algorithm. Section 3 give a more technical description gfikgre-
dients of TRStalker and discusses the formal definition pfyurR
employed. Section 4 describes the experiments devisedniortde
strate the capacity of TRStalker in detecting fuzzy TRs, arielw
interesting fuzzy TRs found in sequences of biological ificance.

Kucherov, 2003) improved the bound for the Hamming distance?2 APPROACH

to O(nklog k + s) wheres is the number of TRs found. For the
Hamming distance, Krishnan and Tang (Krishnan and Tang4)200
give an exhaustive method running sequentially in ti{@?), that
can be easily implemented onto a parallel architectureesavery
possible pattern length is searched independently.

Heuristic algorithms. The algorithmic techniques in (Kolpakov
and Kucherov, 1999, 2003) have been extended in thentoeps

An example. To focus on the main ideas, let us consider the very
simple case of Exact TR. Consider an alphabet {A,C, G, T}

of four symbols, and a string = zix2..x; formed by the con-
catenation of stringsz;, embedded in a random string, where

x; = x1 for all ¢ and|z1| = k, thus all replicas ofc; are of the
same length. Amungapped g-gramis a string ofg symbols from
that appears as a consecutive sequengesgimbols inY. We aim at

(Kolpakov et al., 2003) so to be able to handle approximate TRsdiscoveringk just by looking at the distances between occurrences

under edit distance, with some additional heuristic filtgrsteps.

of homologous (i.e. identical)-grams inY". For g-grams inX, the




TRStalker

periodk will appear at leastk — ¢+ 1) (¢ — 1) times as the distance above observation we devise a weighting scheme that incitsme
between homologous probes. More generally the distaicean the total weight of period: if another period of valué: is disco-
integer multiple ofk, will appear at leastk — ¢ + 1)(¢t — h) times  vered in a near-by position, with weights that decay exptaliy

for each valuér = 1, .., ¢t — 1. A gapped g-gramis a sequence aof with |k — k|. The final weightwo (k) for a given period: is the sum
characters fronX with additional “don’t care” symbols, also called of the individual anti-smear weights computed above fobpgoat
“gaps”, that appears as a consecutive sequendé. iror gapped  distancek.

g-grams similar formulae hold. For values/ofindt large enough,  Multiplicity weighting. Letwo (k) be the weight of the periokl as
the periodk and its integer multiples will occur more frequently than assigned by the anti-smear weighting procedure. As obdée®re
the expected number of occurrences of any distance of hgooto  for a TR with a large number of copies we will find also integer
g-grams in a random string, thus the empirical number of eccur multiples ofk with a relatively high frequency. We take advantage
rences of the valué and its multiples will tend to be in the higher of this fact and compute new weights:

part of a ranking by frequency. This observation holds tuiéag

as the length of the super-stringis sufficiently limited so that the wi(k) =Y wo(hk).

frequencies generated by the random portioY’aflo not overrun h>1

the frequencies generated By. An exact characterization of such
a distribution in terms of the parametdrst, ¢ and|Y'| is complex
since it can be characterized as the sumanfindependent random
variables each with a negative binomial distribution. Hegrewe
avoid the issue of characterizing exactly such a distrisubiy: (1)
splitting the input string into blocks of predefined lengtiddimi-
ting the analysis to each block separately, providing meishas to
deal with TRs stranded across the block boundaries; (2)ngrike of a TR.

periods byweighted frequency and exploring only the tofh positi- Validation. In the third phase we take each candidate fair)

ons (forL » S0 inour experimeqts). Note that in most cases the ©Pand we test explicitly whether there is a tandem repeat abger

:jar:jklng Fl)jr'Odhs notr]corregpond;ndg to _tan_dem rgzeatzwﬂmar- starting in position; according to the definition (see section 3). In
ed quickly W _ent € p.osmor)a er_13|ty 'S considered, tasan particular when using the definition ofSeiner-STR (see subsection

be very slack in choosind, without incurring in a computational 3.2) we use a double filtering. The fist filter usesraparound dyna-

burden. The choice of block length could be critical too, &xpe- mic programming technique (WDP) (Fischettit al., 1993). The

rimental results showed that blocks of length within a factbup second filter computes an approximation to gaaeer’alized media

to 40 of the length of the TR do work well. For long input string string (inspired by an algorithm proposed in (Jiaetg., 2003)). In

occurrences of the sangegram that are too distant are unlikely to this phase, besides validating the TRs, we discove; theticraal)

be related to a_TR, thus we limit th? number of pairs of h(_)rmtlm;] repetition rl1umber of the TRs eventuaII;/ extracted.

g-grams considered. While scanning each block of the inpute Postprocessing As a post processing we check for inclusion the

:ﬁgoéd frcércngnh Ogﬁgriﬁgcg fc:)flIivsi?]ppsgn?é?éag:&oggﬁgﬁég TRs found and we filter out those TRs completely enclosed @ an
p 9 9 9 ( ther one. For TRs in the same position and length but differen

in total). The high level pseudocode of TRStalker is showthin period we report the TR with shorter period. Finally we alige

Suppl. Materials while we expose next the key algorithmigicbs. : . ; . . . )
L . ) . roxim neral m n strin hthe TR un
Gapped g-grams.The presence ofsubstltutlonsllnsertlons/deletlonsapp oximate generalized median string with the unitosge

in X has the effect that many instances of g-grams will be aftecte a graphical compact output of the TR.
by error and a match will be missed, thus reducing the frecen

counts for the period:. To cope with this effect we usgapped

g-grams (Burkhardt and Karkkainen, 2003, 2002) that are more3 METHODS

resilient to the presence of substitutions/insertioristd®s. As 3.1 Basic Definitions

suggested by experiments in (Burkhardt and Karkkain@@2pjust
few gaps are suff|C|en'.[ to be effective, thus we will use tineiffaof tiguous exact or approximate copies of a substring (calledrbtif) of the

all gapped g-grams with 3 alphabet symbols and at most 2 gaps.  angem repeat.

Anti-smear weighting. If ¢1 and g2 are occurrences of homolo-  Exact TR. Formally, given an alphabét, and a set of strings; € ¥,
gousg-grams inX at distancek, before the implant of mutations, consider the concatenatiosi = x1x..z¢. The stringX is anexact tandem

the effect of insertion and deletions on the positions of dtiang repeat (ETR) of period k andrepeat number ¢, when|z;| = k andz; = z1,

X betweeng; and g- is to alter their distance so that a different for eachi € [1,..t]. In general we may suppose there is a longer sfringf
period k' is detected. The differende — k' is equal to the alge- Which X is a substring. The string; that is repeated exactly is called the
braic sum of number of insertions and deletions in the pmsiti motif of the ETR. A TRX is called maximal if it cannot be extended ¥h
betweeng; and ¢». Assuming that any such position can be an While stil being aTR. _ _
insertion or a deletion independently with the same prdigtihe Approximate TR (ATR). Exact tandem repeats are sometimes found in

. L . biological sequences, but they tell us only part of the sttliys several
/
random variablés — k" is distributed as a sum of independent r.v. notions of arapproximate tandem repeat have been developed. Denote with

with values in{+1, —1, 0} with mean value 0, thus, by a Chernoff Dyz(a, b) the hamming distance of two strings with equal length. If the
bound argument, its tail distribution decays exponentidotwani  |ength ofa andb is different we consider the smallest possible mismatch in
and Raghavan, 1995; Mulmuley, 1993). Also near-by probe¥ in  an alignment of the two strings without gaps. Denote Vit (a, b) the edit
have small variations in the value of the shiift- &". Inspired by the  distance of the two strings andb.

The candidate periods are then sorted by the weight), and
processed in decreasing order.

Positional density We further exploit the property of TRs that the
same period is detected by probes in near-by positions. \fileede
a notion of positionak-density, that is the density of probes that
contribute to the counter for the candidate pertodVe search for
position inY” of high k-density as candidates for the starting point

A Tandem Repeat in a DNA sequence is the repetition of two aernon-




Pellegrini et al

3.2 Our definitions of TR
We used two different definitions of TRs:

e Neighboring TR (NTR): a stringX, so that for eachi € [1,..,¢t — 1],
Dg(xi,ziy1) < plx;|, for a user defined paramet@r< pp < 1
e Steiner-STR with sunt a stringX = zjx2..x+ for which two condi-
tions hold for a user defined error parameiex ;. < 1, and constant
cwithl <c<2:
(a)foreachi € [1,..,t — 1], Dg(xi, zi+1) < cplaq].
(b) there exists a Steiner stringe >* so that

S Dp(@ i) < ulX|.
i€ll,..,t]

Intuitively, in a Steiner-STR the TR consiststofluplications of a single

Steiner consensus stringwith pz mutations on average in each copy, such

that consecutive copies do not diverge too much w.r.t. tieeaae. Note that
condition (a) is vacuous fqi > 1/c. The choice for the constantdepends
also on the level of divergence. For low divergence= 2 is a sensible
choice since two copies at distanggz| from z are also at distance at most
2u|Z| from each other by the triangular inequality. Thus (a) is eessary
condition for (b). For higher level of divergence above 3@6, valuec = 2

is too loose and we use a lower valtie- 1.5, so to maintain a good filtering
ability of condition (a) and to avoid having as a possibleisoh a TR where
the consecutive pairs may have a very irregular divergence.

3.3 Output of TRStalker

The aim of TRStalker is to produce a ranked listabf maximal tandem
repeat sub-sequences present in the input string that satisfy the definition
above (Neighboring-TR or Steiner-STR), where maximalitgams that it
is not possible to extend the TR (as a substring of the inputhe left or

to the right without violating the definition within the gimeuser defined
parameters. We avoid producing meaningless TRs by impadsaga lower
bound on the TRs length.

3.4 Other definitions

In (Sokol et al., 2007) it is used the following definitionX is called ak-
edit Approximate Tandem Repeat when>-!Z1 D (z;, zi41) < k, where
the last repeat:; might be incomplete s® g (x:—1,x¢) is computed as
the minimum edit distance af; and the prefixes of+—1. This definition
is inspired by the evolutionary model of TRs in which it is @s®d TRs
are generated by duplicating the last copy of a previous BRsiply with
duplication errors that truncate it. A k-edit repeatriaximal if it cannot be
extended either to the left or to the right without violatitgdefinition.

In (Wexler et al., 2004) for a similarity functionp that measures the ali-
gnment score of two sequences, it is definge3mple Approximate Tandem
Repeat (n-SATR) a stringX = z;...xz; such that: there exists a motif
Z € X* so that for everyi € [1,..,t], ¢(Z,z;) > n. In other words the
TR consists of duplications of a single consensus stringvith mutations.
Such stringz is also called &einer motif if Z is not constrained to be equal
to some repeat ;. Often in practicez is chosen as the repeaj that mini-
mizes the error function, and is callegiaot motif. The distinction is critical
since, as mentioned before, Steiner motifs lead to NP-ocet@pécognition
problems, while pivot motifs do not.

Then-Neighboring Approximate Tandem Repeat (n-NATR) is a stringX, so
that for eachi € [1,..,t — 1], ¢(xi, xi+1) > n (Wexleret al., 2004). The
Pairwise Approximate Tandem Repeat (PATR) is a stringX, such that for
every pair of indices, j € [1,..t]% with i # j we havep(z;, z;) > nij,
wheren);; is set to be a monotonically decreasing functiorjiof j|, thus
allowing more slackness when comparing distant copieseobésic motif.
In (Krishnan and Tang, 2004) it is used a definition similarthat of
the Neighboring Approximate Tandem Repeat, except thatHdw@ming
distance is used and that the threshold is not absolute taiiveeto the

length. Ay-Hamming Approximate Tandem RepegtKIATR) is a string
X such that: foreach e [1,..,t — 1], Dy (z;, zit1) < |zi]y.

In (Stolovitzkyet al., 1999) a more complex definition is given that takes into
account the substring alignment score density functiorp&irs of random
substrings of a given length. Here the definition of a XRlepends on the
properties of the longer string into which X is embedded. In particular a
(1, p)-TR must comply to two conditions: J):f;é d(xi, zip1) > (t —
1)p, that imposes an average high similarity score for adjapeats, and
2) definea(p, k) as the value of similarity such that there is probability
that two random substrings of lengkhin Y have similarity abovex(p, k).
There must be an index € [1, .., t] such thaip(zq, ;) > a(p, k) for all
j € [1,..t]. Note that this condition limits the dispersion of the samiiy
with respect to one of the copies (called fheot).

TRF (Benson, 1999) uses as final validation algorithm theamaund dyna-
mic programming technique (WDP) that tests efficiently tignanents of a
given candidate motif with the surrounding portions of thput sequence,
so to determine the maximum number of adjacent repetitiattinia user-
defined score bound. This implies a notion of TR akin to thasiofple
approximate tandem repeats (SATR) with pivot motif. Cleaisiesults on
string alignments (Gusfield, 1997, page 351) ensures tbatthE metric
score given by the sum of motif-repeats distances, theisolfiund using
the optimal pivot motif has a score within a fact@ — 1/t) of the score
induced by the optimal Steiner motif. For low levels of esrone could use
a pivot-SATR definition doubling the error threshold to ecapta Steiner-
SATR, however for higher error levels (say, above 25%), tiogtihe error
threshold forces the existing systems to work in a rangelokeg(say, above
50%) where most methods do not perform well.

3.5 Gapped g-grams

Let I be a finite subset of non-negative integers. We Ealhindex set. The
spanof I is span(I) = max{i—j|i,j € I}, the position off is pos(I) =
mins € I, and theshape of I is shape(I) = {i — pos(I)|i € I}. When
set] has|I| = g andspan(I) = s, its shape belongs to the class(gf s)-
shapes. Any set of non-negative integérsontaining 0 is a shape. For an
alphabetS = {A,C, G, T}, astringS € ¥* of lengthn can be seen as
a function defined ovejo, .., n — 1] with values inX, and for any subset
I C [0,..,n — 1] the restriction ofS to I, denoted byS|[I] is a substring of
S.

Given any shap€) in the class of g, s)-shapes, all seté C [0,..n — 1]
such thatshape(I) = @, form the set ofIndezes(Q,n). We can use
elements from thdndezes(Q, n) to generate restrictions for the striisg
Given two index setg1, I2 € Indexes(Q,n), we call themmatching (or
homologousin S, if S[I1] = S[I2]. The valugpos(I1) —pos(I2)| is called
the period of the match.

An index setl with |I| = g andspan(l) = q — 1 is called arungapped
g-gram since its shape ishape(I) = [0,..qg — 1]. If we have an index
setJ with |J| = ¢ andspan(J) = s > ¢ we have agapped g-gram
since its shape is formed of non consecutive integers. lerdolgenerate a
population of candidate periods we consider now all possifl s)-shapes
with ¢ = 3 ands = 4, 3, 2. Denoting with— the gaps and witg# symbols
from 3, (the first and last positions must be always #), we have 3hé)-
shapesi# — —#, # —# — #, and#t — —#£, the (3, 3)-shapes# — ##,
## — #; and the(3, 2)-shape###.

As noted in (Burkhardt and Karkkainen, 2003) and (Burkihaand
Karkkainen, 2002), if we fix an ungapped shape and an eswel lin
Hamming distance, there are error patterns for which eversesponding
ungapped g-gram is affected by error. In contrast, with #trmesHamming
error level, for some gapped shapes, there are always squpedyg-grams
unaffected by the injected error. Thus using a small coragienily of gap-
ped g-grams we can detect the correct period in situatioresevbingapped
g-grams cannot.

1 A precise characterization of the relative gain under diffe error models
would be theoretically interesting but is now beyond theugof this paper.
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3.6 Anti-smear weighting

Let P be ag-gram in the input stringd” at position:. Let j1, .., 75 be the
nexth occurrences of’ in Y following the occurrence at position Theh
corresponding detected distances age= j, — ¢, for g € [1,..h]. For the
periodz,, we increment its weight:

wo(zg) = wo(wg) + 1+ Z 271w =yl
YyeERQ

where(@ is a queue holding the lagf detected distances in the sequential
scan of the input striny”. After the weight update, we enqueue falalues
x4 in the queud), and we dequeue an equal numhef items. In line with
other constants fixed in TRStalker, we have chokes 5 and H = 20
since they do work well in our synthetic experiments for géarange of TR
error and length values. A fine tuning of these parametersfascéion of
the characteristics of the TR sought is possible, but beyloadocus of this
paper.

3.7 Positional Density

Let k be the period under investigation. Consider thefsgtof the positi-
ons of thosej-grams (i.e. substrings df) that contribute to the weighting
of k£ through the multiplicity weighting. In order to avoid doebtoun-
ting we always take the position of the first of the two matghprobes.
Note that, if a position is shared by several pairs of probesliibe coun-
ted only once. Letf : [1,..,]Y]|] — {0,1} the characteristic function
that for each position iY” denote the membership of that positionAg,.
Consider thek-window smoothing off: F(i) = > "T* £(j) that com-
putes thek-smoothed density of the functiofy for i € [1,..,|Y| — k.
Finally we define a threshold(k) proportional to the averagk-density
by a user-defined constant, and we consider as a candidateompaet
CP(Y,k) ={i € [1,..,|Y|—k]|F(i) > t(k)}. The output of this positio-
nal density computation is a sequence of péirsi) wherek is a candidate
period and a candidate position.

3.8 Validation

The definition of Steiner-STR is composed of two conditiohnat twill be
tested in cascade starting from the one less computatpodathanding.
Testing condition (a). The wraparound dynamic programming technique in
(Fischettiet al., 1993) solves the following problem. Given a strifgof
lengthm and a textI” of lengthn, with m < n, find the best alignment
of P™ (concatenation of copies ofP in T), in time and storag® (nm).
Note that a naive application of the standard dynamic prograng based
optimal alignment of two strings would requit@(n?m) time/storage. We
modify the WDP approach in order to (1) work with edit distarcstead of
similarity matrices (2) take as pattern the candidateahtandem copy in
positions[z, : + k£ — 1] and as text an adjacent portion of the input string of
sizeO(m). (3) we iteratively expand the the text length till the temation
condition is met. (4) we stop the matching as soon as the gaxtent copy
of the TR differ from the previous one by more thgmm in edit distance.
Testing condition (b). Let z1,..z+ be the candidate TR to test for pro-
perty (b) that passed the test for property (a). We increallgncompute
an approximate generalized mediay usingz; and the previously compu-
ted approximate generalized median string ;. Initially z; = x1. Letk
andh be two positive integers anll = {j/k|j € [0, k]} be the set formed
by k + 1 equally spaced real values between 0 and 1. For each aaduids
we determine up té median strings betweenz; andz;_; with weighta.
This set of at moskk candidates is then searched for the strirtgat mini-
mizes the functiorE;:1 Dg(a, ;). So we sett; = a and start the next
iteration.

Selecting larger values gfands, as a function of the period to be detected
and the error level, may increase the filtering ability of thethod at the
cost of slower computations. Exploring these connectisnigft for future
research.

A median string of weighta € [0, .., 1] of two stringsa andb is obtai-
ned as follows. Compute the edit distance= Dpg(a,b) and record the
set A(a,b) of edit operations that transform into b. Pick any subset of
size|ae] in A(a, b). The median weighted stringis obtained by applying
those operations to the string It is not difficult to show that it holds that
Dg(a,c¢) = aDg(a,b) and Dg(b,¢) = (1 — a)Dg(a,b). Note that
depending on the value efwe have(;e) different subsets ofi(a, b) we
can choose. In our algorithm we randomly setedh{h, ()} of them.

3.9 Evaluation of recall in synthetic sequences

In order to measure the quality of the TRs reported by TREFadkd by
other benchmark algorithms in our synthetic experimentsees to give a
score to a pair of TRs. The higher the similarity of the two T&Re higher
should be the score. Since perfect equality is rare we needra fiexible
score function. A TR can be characterized by the triflep, r), whereb is
the initial position,p the period;- the repetition number. Also, the same TR
covers the positions i from indexb to b + rp — 1. We identify the TR
with the set of positionsSeg(T'R) = [b,b + rp — 1]. Given two tandem
repeats!'R1 andT' Ry represented as sets of positions, the classical Jaccard
coefficient measure of set similarityC' is:
_ |Seg(TR1) N Seg(TR2)|
|Seg(TR1) U Seg(TR2)|’
Modified Jaccard Coefficient. Let tp be a TR embedded iF. Even iftg
is a TR according to the definition, when we embgdin a stringY’, it
is well possible thatg is not maximal inY’, thus if an algorithm reports
correctlyt’ O to there will be a slight penalization in the JC measure. This
phenomenon arose a number of times, thus we decided to uselifietho
version of the Jaccard Coefficient, called JC2, where themeérator is
changed. The resulting measure is thus more robust wis pémalization:
|Seg(T'R1) N Seg(TR2)|
max{|Seg(TR1)|,|Seg(TR2)|}”
Given a TRt and a set of TRsI” = {t1, ..., ts } we define the best-match
BM((to, T):

JC(TRy, TRy)

JC2(TRy,TRy) =

BM(to,T) = JC2(to, t
(to, T) arg max (to, 1),

and the best-match-score BMS:
BMS(to, T) = max JC2(to, t).
teT

In our controlled experiments the evaluation module kndvesémbedded
TR tp and receives the output of an algorithiiy giving back the best match
score. For a series of experiments we will report the avecdidee BMS.
Note that BMS has values in the ranfig .., 1], and higher values corre-
spond to better quality. At first sight one might consides thietric as overly
generous. However, since we cannot rule out the existenothef TRs in
Y besides the embedded ones, we do not want to penalize trenpeas’
of valid TRs different fromg. Also, the sefl” will not contain nested TRs.

3.10 Evaluation of recall on biological sequences

The evaluation has been carried out according to the fatigvgrocedure.
Let Trrs, TTrr, TaTr be the set of TRs found by TRStalker, TRF,
and ATRHunter respectively. First, we removed from evetyadlethe TRs
that have a Jaccard coefficient greater than a thresholden compared
with another TR in the same set. In other words, we removed Opifiah-
tes from every set of results, where two TRs are consideretlpkcates
when they cover the same region with an approximatiorsince TRF and
ATRHunter have been executed with options that discard RS faving a
score lower than a given threshold, we filterEgr s by removing all the
TRs with a score under such value (this has been done to nalizeRF
and ATRHunter with respect to TRStalker). More in detail, FTRas been
executed with match, mismatch, and indel score equal to@ah@®3 respec-
tively, maximum motif length equal to 2000bpand threshold equal to 30.

2 Maximum possible value for TRF.
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ATRHunter has been executed with match, mismatch, gap amin@ gap  input data. TRStalker is run with the error parametes 0.3 and
score equal to 1 0 -1 0, maximum motif length equal to 56Gby threshold  the constant = 1.5.

equal to 30. For the TRs found by TRStalker the score is coatply using
the same weights used by TRF and ATRHunter then we filteredethdts
using the same threshold. After the filtering phase, we caetpthe union
of the TRs found by all algorithmd/ = J(Trrs,TrrF,Tarr). The
removal of duplicates with threshold is also applied td/. Naturally the

4.1.2 Discussion of the comparative experiments. For the expe-
riments on Neighboring-TR (Figure 1), we tested TRs withifaot
of length from 60 to 300, and a number of repeats from 2 to 8.

higher the value off and less filtering will be performed. TRStalker has recall always above 95%. TRF (binary) hasyeiwa
a recall above 80% except for TR with repeat number 2 for which
4 DISCUSSION the recall drops to 60%. ATRHunter has recall of about 60%&s€h

. . . . experiments confirm the effectiveness of the new technitprete
We have performed comparative experiments both with syicthe initial filtering steps.

and with biological sequences. Here we describe the expetah Results on Steiner-STR with motifs of length from 60 to 300,
set up, how the synthetic sequences are generated and dueneut ;4 5 number of repeats from 2 to 8 are shown in Figure 2. Here
of the comparison. For biological data we briefly indicatetéason . 1\ siice that all methods have degraded performance fgefon
why that sequence has been selected, and the new TRs fouhe by tyvits (above 200 bases) while TRStalker still manages i ha

application of TRStalker. recall above 60%. For shorter motifs (of less than 100 baBRS)
. (binary) is able to match TRStalker only when the repeat rems
4.1 Synthetic Data above 6. Thus for a large range of values TRStalker attambelst

4.1.1 Generation of synthetic data. We carried out a first set of performance in recall, or a matching one, always above 80%.
experiments by using synthetic data. This allows a fine gchin  The time performance of TRStalker has not been yet optimi-
control on the amount of mutations introduced within theiorg  zed. At the moment it is within an order of magnitude of TRF
covered by the TRs. The sequences we gave as input to thepregr and ATRHunter. More details on the running time are in thepbup
have been built according to the following steps: Materials.

1. the background sequence is generated by selecting the fo

bases A,C,G, and T with equal probability; 4.2 Biological sequences

Testing of TRStalker on biological sequences has confirnhed t
potential of our method for finding very fuzzy TRs not detelcbsy

TRF and ATRHunter, and, to the best of our knowledge, notitedo
3. the region covered by the TR is mutated according to substiin literature. We tested the following sequences:

tution, insertion and deletion probabilitiegs( p:, andpa);

the number of substitutions, insertions and deletion fergv 1. U43748 Homo sapiens frataxin gene, promoter region amil ex
repetition of the motif is exactly equal {p., ip;, andlpg; - 2,465 bp long (FRDA).

4. if the TR is a Steiner-STR, mutations are introduced imeve 2, | 3609 Homo sapiens germline T-cell receptor beta chain,
repeat with respect to the consensus motif; if the TR is a  complete gene - 684,973 bp long (HSBT).

Neighboring-TR, mutations are introduced with respecht® t
previous repeat.

2. aperfect TR is embedded within the previous sequencdRhe
is generated asrepetitions of a motif with length

3. NC.001133.8 Saccharomyces cerevisiae Chromosome | -
230,208 bp long (YCh1).

The experiments have been carried out running ATRHuntér wit 421 Experimental settings. The three algorithms have been run

these parameters: match, mlsrna_tch, 9ap and termlnal_ 938 SCOjith the setting used in the synthetic experim&itsus with a very
equal to 1 0 -1 0 (the most permissive setting on the websita)j-

) ) permissive acceptance policy). In general, none of thesthigo-
:nulm Inr: Ot'rl;lintgth (Tqutatlhto d5?‘?1btp Shi 1r:nRa X'mr#n;] altlgwec:,;)é the rithms generates all TRs found by the two others, and in Table
bOOA)'-I'RHO te 0 se ecf € de ni IOI' 0 s at cf) g those i we show the percentage of the TRs found by each algorithm with
difinitionutr;ztr ’g(\e/set;]grlr)neest ?eZL(Ttlsm\I/\r/];sfyts: tﬂirzxgﬁgnz&n?m respect to the union of the TRs found. In Table 2 we report some
X . ery long TRs that were detected by TRStalker but missed &y th
alignment score). In this case, ATRHunter reports only tis T very fong W y Ut mi y

. . other two methods. We check the motif/repeat alignmentsguisie
that have a score higher than a given threshold. The valukeof t toolj al i gner 8 using the BLOSUM62 score matrix, that confirms
threshold has been set to 30.

For the web-based version of TRF all the experiments have beethe good quality of the motifs found (see Table 3).

carried out with these parameters: match, mismatch, arad fedre
equal to 2, 3, and 5 respectively; maximum period equal tg 50
minimum score equal to 30. For the binary version we useddhe f
lowing ones: match, mismatch, and indel score equal to 2n8, a
3 respectively; match and indel probability equal to 0.78 ar0;
maximum period equal to 500; minimum score equal to 30. The?
parameters of the experiments have been set so to make sitire th
the minimum allowed score for all the tools tested is atthioe the

0422 Frederich’'s ataxia. Frederich’'s ataxia is an autosomal
recessive degenerative disease involving the central aripheral
nervous system and the heart, that roughly affects 1 pensa® 000
(Wells, 2008). In 1996 it was shown (Campuzahal., 1996) that in

8% of the cases this disease was caused by an abnormal iexpans

4 For TRF the maximum motif length has been raised to 2000 bp.
3 Maximum possible value for ATRHunter. 5 http://jaligner.sourceforge.net/
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Fig. 1. Best Match Score (BMS) as a function of copy number for Neaging-TR (NTR). The total length of the input sequence isQ@ip; the amount
of substitutions, insertions, and deletions are equal # d0the motif length each (thus with total error allowed of/30 Every point is the average of 30
measurements and the 95% confidence intervals are shown.
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(a) Motif length: 60 (b) Motif length: 100 (c) Motif length: 200 (d) Motif length: 300

Fig. 2. Best Match Score (BMS) as a function of copy number for SteBIER. The total length of the input sequence is 10000bpaitheunt of substitutions,
insertions, and deletions are equal to 10% of the motif leegich (thus with total error allowed of 30%). Every pointis iverage of 30 measurements and
the 95% confidence intervals are shown.

in the copy number of a triplet TR in the first intron of the Frat  organism whose genome was completely sequenced (Dujo6),199
xin coding sequence. It belongs to the familytiofucl eotide repeat and serves as a model organism in basic genomic investigatio
disorders. Very recently (Visserst al., 2009) it has been shown that Chromosome | (Bussest al., 1995) is the smallest of the 16 chro-
the local repetitive structure of DNA may play a rolevariable mosomes present in yeast. It has been noticed that the yerasng
copy number genomic disorders. Applying TRStalker to the frata- is remarkably poor in repeated elements (Dujon, 1996), fihdsg
xin sequence we detected a divergent TR in positions [2@382  new TRs in such organism is a challenging task for any algariin
of period 188 and copy number 2, to the best of our knowledgeTable 2 we report a TR in position [186168,188347] of copy ham
not previously reported, that includes the breakpointaegif the 2 and motif length 1089. This TR is not reported in the TRDBadat
repeat disorder (See Table 2). Experimental data repantéBrod- base, while ATRHunter in the same region finds 15 shorter TR of
zik, 2007) on the Frataxin sequence did find a number of stiRst T length ranging from 50 to 180. This region, according to ti&B\
(of period up to 10/13) that are completely covered by thegéon record, is rich in genes of the DUP240 gene family (encodiegm
fuzzy TR reported by TRStalker. brane proteins). The presence of a fuzzy repeat in this methios
suggests a possible remote gene duplication event.

4.2.3 Human Beta T cell receptor locus. The cellular immune
system detects the presence of pathogens largely throagittiva-
tion of T cell receptor proteins (TCR) (Glusmaet al., 2001), which
come in four different familiesy, 3, v andé. The complete DNA
sequence of the humahT cell receptor locus has been determined

(Rowenet al., 1996) and it has been found that a large fraction ofmethods on biological sequences. Thus, we compared TREtalk

the locus sequence (abput 47%) is formed by locus-speciieats TRF, and ATRHunter by estimating their recall on the threxduji-
(Rowenet al., 1996). This sequence was selected as a test case f%r

ker b fits rich ; ) | hetai al sequences with the methodology described in sub-se8ti).
TRS_ta Ker because ol _|ts richness in re_per_:ltln_g eleme “B_t t‘_”“m Table 1 reports i) the number of unique TRs found by the dffier
of highlighting the ability of TRStalker in finding repeatstivhigh

. h . Igorithms and ii) the percentage of the union reported biveng
divergence among adjacent copies. Here (see Table 2) we cou Igorithm, with two filtering thresholds at — 90% and.J — 70%.

find a few such repeats apparently not recorded in the GenBanl&or all the three sequences, TRStalker is able to find a large n

L.36092.2 record, nor found by TRF and ATRHunter (still Sewi o o TRs that are not discovered by using the other methads.
very loose parameters).

4.2.5 Performance on biological sequences. Reporting intere-
sting single new tandem repeats, as in Table 2 is useful todem
strate that biological relevant TRs are still unknown. Weegi
also an evaluation of the overall behavior of the three dhffie

practice a better overall coverage can be attained by udlitiyee
methods and merging their results. Although lowevalues imply
4.24 Yeast Chromosome |I.  Saccharomyces cerevisiae (baker’'s a more aggressive filtering, the percentage of the uniomattedy
yeast) has been the focus of intensive study as the firstyoti@r TRStalker is almost constant.
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N. | Sequence| Seq. Length| TR Start | TR End | TR Length | Consensus| Repetitions | Score | Norm. Score
1 HSBT 684973| 411000| 413127 2127 1061 2.00| 2868 1.384
2 HSBT 684973| 448001| 449687 1686 842 2.00| 2310 1.370
3 HSBT 684973| 636116| 638622 2506 1253 2.00| 3323 1.326
4 YChl 230208| 186168| 188347 2179 1089 2.00| 3053 1.401
5 FRDA 2465 2029 2407 378 188 2.011| 501 1.325

Table 2. Examples of TRs found by TRStalker and missed by TRF and ATiRéiuWe report the original sequence name and length, thstdng and
ending positions, the TR length and the TR repeating ungtfeand copy number. The score is computed by assigning +2itches and -1 to mismatches
and gaps w.r.t the consensus string. The normalized sctre &ore divided the TR length.

Seq. | N. | Repeat| Length Identity Gaps| Score
HSBT | 1 1 1107 805/1107 (72.72%) 91/1107 (8.22%) 3657.00
- 1 2 1093 895/1093 (81.88%) 70/1093 (6.40%) 4291.00
HSBT | 2 1 878 638/878 (72.67%) 85/878 (9.68%) 3045.50
- 2 2 866 716/866 (82.68%) 52/866 (6.00%) 3568.00
HSBT | 3 1 1300 | 1000/1300 (76.92%) 94/1300 (7.23%) 5206.00
- 3 2 1313 | 1004/1313 (76.47%) 120/1313 (9.14%) 5176.50
YChl | 4 1 1130 895/1130 (79.20%) 83/1130 (7.35%) 4280.50
- 4 2 1123 901/1123 (80.23%) 77/1123 (6.86%) 4345.50
FRDA | 5 1 193 149/193 (77.20% 10/193 (5.18%) 723.50
- 5 2 191 146/191 (76.44% 5/191 (2.62%)| 765.00

Table 3. Motif/repeats alignment scores computedjisl i gner using the BLOSUM62 score matrix with gap open penalty set®t® hnd gap extend

penalty set to 0.5 for the TRs reported in Table 2.

5 CONCLUSION

TRStalker is a novel efficient heuristic algorithm for fingiRuzzy
Tandem Repeats in biological sequences. TRStalker aimspabt
ving the capability of TR detection for a class of fuzzy TRs fo
which existing methods do not perform well. Initial testiog

biological data show that fuzzy TRs not previously reporéed
present in biologically relevant sequences. In the caséeftra-
taxin sequence, the fuzzy TR reported is associated withrtben
variable copy number breakpoint of Frederich’s ataxiauFautvork
will involve testing TRStalker on relevant families of reijiee ele-
ments such as centromeriesatellites. An extension of TRStalker
to handle amino acid sequences is under development.
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