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ABSTRACT
Motivation: Genomes in higher eucaryotic organisms contain a
substantial amount of repeated sequences. Tandem Repeats (TRs)
constitute a large class of repetitive sequences that are originated
via phenomena such as replication slippage and are characterized by
close spatial contiguity. They play an important role in several mole-
cular regulatory mechanisms, and also in several diseases (e.g. in the
group of trinucleotide repeat disorders). While for tandem repeats with
a low or medium level of divergence the current methods are rather
effective, the problem of detecting TRs with higher divergence (fuzzy
TRs) is still open. The detection of fuzzy TRs is propaedeutic to enri-
ching our view of their role in regulatory mechanisms and diseases.
Fuzzy TRs are also important as tools to shed light on the evolutio-
nary history of the genome, where higher divergence correlates with
more remote duplication events.
Results: We have developed an algorithm (christened TRStalker)
with the aim of detecting efficiently Tandem Repeats that are hard to
detect because of their inherent fuzziness, due to high levels of base
substitutions, insertions and deletions. To attain this goal we develo-
ped heuristics to solve a Steiner version of the problem for which the
fuzziness is measured with respect to a motif string not necessarily
present in the input string. This problem is akin to the “generalized
median string” that is know to be an NP-hard problem. Experiments
with both synthetic and biological sequences demonstrate that our
method performs better than current state of the art for fuzzy TRs
and that the fuzzy TRs of the type we detect are indeed present in
important biological sequences.
Availability: TRStalker will be integrated in the Web-based Tandem
Repeats Discovery Service (TReaDS) at bioalgo.iit.cnr.it.
Contact: marco.pellegrini@iit.cnr.it

1 INTRODUCTION
Tandem Repeats (TRs) are multiple (two or more) duplications of
substrings in the DNA that occur contiguously, and may involve
some base mutations (such as substitutions, insertions, and deleti-
ons). Tandem Repeats of several forms (satellites, microsatellites,
minisatellites, and others) have been studied extensivelybecause of
their role in several biological processes. In fact, TRs areprivileged
targets in activities such as fingerprinting or tracing the evolution
of populations (Kelkaret al., 2008; Vogleret al., 2006). Several
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diseases, disorders and addictive behaviors are linked to specific TR
loci (Woosteret al., 1994). The role of TRs has been studied also
within coding regions (O’Dushlaineet al., 2005) and in relation to
gene functions (Legendreet al., 2007). Large scale comparative stu-
dies on TRs of the human genome are described in (Ameset al.,
2008; Warburtonet al., 2008). Data Bases of repetitive elements
such as RepBase (Jurkaet al., 2005) and TRDB (Gelfandet al.,
2007) are now available; and the detection of repetitive elements
via library-based similarity matching, for example by using the tool
Repeatmasker (Smitet al., 2004), is a popular practice. However,
tools forab initio detection of repetitive elements that are not based
on prior knowledge accumulated in data bases, are still important
in order to extend our comprehension of the role of TRs in biologi-
cal mechanisms. Existingab initio tools are successful when the TR
exhibits a moderate amount of divergence and when the TR is easily
validated. However, there is an emerging need for new tools that are
able to cope with higher levels of sequence divergence and/or TR
computationally more difficult to validate. For example, Boeva et
al. (Boevaet al., 2006) study so calledFuzzy Tandem Repeats and
their role in gene expression. The technique in (Boevaet al., 2006)
works well for the Hamming metric (only substitutions and noinser-
tions/deletions allowed) and for short repeat units (from 3to 24 bp)
that are common in micro- and mini-satellite families.

Some of the most successfulab initio tools, such as TRF (Ben-
son, 1999) and ATRHunter (Wexleret al., 2005), are based on a
multi-stage filtering approach (see also (Peterlongoet al., 2009)). In
the first stage the input sequence is analyzed to detect, via statistical
criteria, likely position and length of candidate subsequences. The
final stage is the validation one in which a more expensive test is
applied to candidate substrings passing the first stages, soto deter-
mine an output that matches the implicit definition of TR and the
user-defined filtering parameters.

1.1 Our Contribution
Our contribution is a novel multi-stage filtering algorithm, called
TRStalker, for finding long fuzzy tandem repeats under the edit
distance, that introduces new techniques (w.r.t. previousTR finding
algorithms) in all stages. For the first stage, where over-represented
distances between probes are sought, we employgapped q-grams
(Burkhardt and Kärkkäinen, 2003) in place of the standardungap-
ped q-grams in order to collect evidence on the candidate substrings.
Gapped q-grams have been used before in the context of tex-
tual and biological database searching, but less so in the area of
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tandem repeats detection (with the exception of the system TEI-
RESIAS (Stolovitzky et al., 1999)). Because of errors due to
insertion/deletions theperiod of a TR is subject to fluctuations, thus
we employ a weighting scheme with exponential decay so to rein-
force the signal even in presence of this smearing effect. Finally we
useranking instead ofthresholds when deciding the substrings to
pass to the next phases, in order to concentrate the computational
effort on the zones with candidates with higher weight. For the final
validation stage we employ an NP-complete definition of TR invol-
ving the concept ofgeneralized median string under edit distance
(de la Higuera and Casacuberta, 2000; Sim and Park, 2003), together
with an efficient heuristic for computing an approximation of such
median string (Jianget al., 2003) previously not used in a biological
context.

By extensive experimental comparisons ofTRStalker with two
state-of-the-art tools, namely TRF and ATRHunter, we did find
out that TRStalker has consistently better performance fora large
range of error and length parameters for the class of fuzzy Tandem
Repeats under edit distance, with a recall ranging from 100%to
60%. Thus TRStalker improves the capability of TR detectionfor
classes of TRs for which existing methods do not perform well.
Tests performed on standard evolutionary TRs definitions (verifia-
ble in polynomial time) also show recall performance close to 100%.
Incidentally, this result confirms of the power of the new techniques
developed for the initial filtering phase.

1.2 State of the Art
We will briefly survey the state of the art in finding tandem repeats.
First we will describe methods that for a given definition of TR are
able to find all maximal substrings in the input that match thedefini-
tion (exhaustive algorithms). Often exhaustive algorithms may not
be available, or when available they may be too slow in practice.
Thus, severalheuristic algorithm have been developed which are
shown experimentally to be able to detect a large fraction ofTRs
efficiently. Note that the time/precision trade-off is severely influ-
enced by the allowed error thresholds. Performance often degrades
quickly with increasing error levels.
Exhaustive algorithms. When we allow no error, it is possible to
find all maximal exact TRs in a string of lengthn in time O(n)
(Kolpakov and Kucherov, 1999; Gusfield and Stoye, 2004). When
we allow two consecutive repeats to differ by an amount at most k
(either in Hamming or in edit distance) Landau, Schmidt and Sokol
(Landauet al., 2001) give exhaustive algorithms running in time
O(nk log(n/k)) for Hamming distance, andO(nk log k log(n/k))
for edit distance. A simpler algorithm with the same asymptotic
complexity for the edit distance is proposed by Sokol, Benson and
Tojeira (Sokolet al., 2007). Kolpakov and Kucherov (Kolpakov and
Kucherov, 2003) improved the bound for the Hamming distance
to O(nk log k + s) wheres is the number of TRs found. For the
Hamming distance, Krishnan and Tang (Krishnan and Tang, 2004)
give an exhaustive method running sequentially in timeO(n3), that
can be easily implemented onto a parallel architecture, since every
possible pattern length is searched independently.
Heuristic algorithms. The algorithmic techniques in (Kolpakov
and Kucherov, 1999, 2003) have been extended in the toolmreps
(Kolpakov et al., 2003) so to be able to handle approximate TRs
under edit distance, with some additional heuristic filtering steps.

The tool TRF (Tandem Repeat Finder) developed by Benson
(Benson, 1998, 1999), based on statistical filtering of zones of DNA
likely to contain TRs, is currently one of the standard heuristic
methods. ATRHunter (Wexleret al., 2004) by Wexler et al. is also
based on a statistical filtering approach, placing greater emphasis
in techniques for designing thresholds for the quantities of inte-
rest. Other proposed heuristics for finding TRs are REPuter (Kurtz
and Schleiermacher, 1999; Kurtzet al., 2001), STRING (Parisi
et al., 2003), TEIRESIAS (Stolovitzkyet al., 1999), TandemSWAN
(Boeva et al., 2006). A class of papers (see e.g. (Sharmaet al.,
2004), (Brodzik, 2007), (Buchner and Janjarasjitt, 2003),(Gupta
et al., 2007)) tackle the problem of finding tandem repeats as a pro-
blem in signal processing theory and usually map the input string
into a time-signal in a suitable numerical domain for which several
spectral techniques can be used, such as thePeriodicity Transform
or the Fourier Transform. Other methods use data compression
techniques to detect repetitive elements (Rivalset al., 1997).

The methods cited above are rather general since they aim at trea-
ting efficiently TRs in a wide range of length values. There isalso a
large class of methods that are aimed at handling particularor spe-
cial classes of TRs such as: microsatellites (e.g. IMEx (Mudunuri
and Nagarajaram, 2007)), palindromic repeats (e.g. CRISPFinder
(Grissaet al., 2007)), Variable Length Tandem Repeats (VLTR) and
Multi-period Tandem Repeats (MPTR) (Hauth and Joseph, 2002),
Variable Number Tandem Repeats (VNTR) (Sammeth and Stoye,
2006). Since the focus of our research on TRs at present is on the
more classical forms of TRs we do not dwell longer on them. Howe-
ver, we just note that often methods for MPTR, VNTR, VLTR use
standard TR finding as a subroutine, thus our proposed algorithm
can increase also the ability to detect such higher order structures.

Systematic comparison among TR finding tools and algorithms
operating “ab initio”, that is without support of specific biological
data bases has been tackled in recent years (Leclercqet al., 2007;
Sahaet al., 2008). A survey of problems on Tandem Repeats in
the context of evolutionary mechanisms, such as the construction
of TR Evolutionary Trees, is proposed in (Rivals, 2004) (seealso
(Elemento and Gascuel, 2002)).

1.3 Organization of the paper
The paper is organized as follows: in Section 2 we describe ata high
level the principles guiding the different phases of the TRStalker
algorithm. Section 3 give a more technical description of key ingre-
dients of TRStalker and discusses the formal definition of fuzzy TR
employed. Section 4 describes the experiments devised to demon-
strate the capacity of TRStalker in detecting fuzzy TRs, anda few
interesting fuzzy TRs found in sequences of biological significance.

2 APPROACH
An example. To focus on the main ideas, let us consider the very
simple case of Exact TR. Consider an alphabetΣ = {A, C, G, T}
of four symbols, and a stringX = x1x2..xt formed by the con-
catenation oft stringsxi, embedded in a random stringY , where
xi = x1 for all i and |x1| = k, thus all replicas ofx1 are of the
same length. Anungapped q-gram is a string ofq symbols fromΣ
that appears as a consecutive sequence ofq symbols inY . We aim at
discoveringk just by looking at the distances between occurrences
of homologous (i.e. identical)q-grams inY . For q-grams inX, the
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periodk will appear at least(k− q +1)(t−1) times as the distance
between homologous probes. More generally the distancehk, an
integer multiple ofk, will appear at least(k − q + 1)(t − h) times
for each valueh = 1, .., t − 1. A gapped q-gram is a sequence ofq
characters fromΣ with additional “don’t care” symbols, also called
“gaps”, that appears as a consecutive sequence inY . For gapped
q-grams similar formulae hold. For values ofk andt large enough,
the periodk and its integer multiples will occur more frequently than
the expected number of occurrences of any distance of homologous
q-grams in a random string, thus the empirical number of occur-
rences of the valuek and its multiples will tend to be in the higher
part of a ranking by frequency. This observation holds true as long
as the length of the super-stringY is sufficiently limited so that the
frequencies generated by the random portion ofY do not overrun
the frequencies generated byX. An exact characterization of such
a distribution in terms of the parametersk, t, q and|Y | is complex
since it can be characterized as the sum ofnon-independent random
variables each with a negative binomial distribution. However we
avoid the issue of characterizing exactly such a distribution by: (1)
splitting the input string into blocks of predefined length and limi-
ting the analysis to each block separately, providing mechanisms to
deal with TRs stranded across the block boundaries; (2) ranking the
periods byweighted frequency and exploring only the topL positi-
ons (forL = 50 in our experiments). Note that in most cases the top
ranking periods not corresponding to tandem repeats will bediscar-
ded quickly when the positional density is considered, thuswe can
be very slack in choosingL without incurring in a computational
burden. The choice of block length could be critical too, butexpe-
rimental results showed that blocks of length within a factor of up
to 40 of the length of the TR do work well. For long input string
occurrences of the sameq-gram that are too distant are unlikely to
be related to a TR, thus we limit the number of pairs of homologous
q-grams considered. While scanning each block of the inputY we
record for each occurrence of a gapped q-gram inY its distance to
the 5 preceding and the 5 following homologous occurrences (10
in total). The high level pseudocode of TRStalker is shown inthe
Suppl. Materials while we expose next the key algorithmic choices.
Gapped q-grams.The presence of substitutions/insertions/deletions
in X has the effect that many instances of q-grams will be affected
by error and a match will be missed, thus reducing the frequency
counts for the periodk. To cope with this effect we usegapped
q-grams (Burkhardt and Kärkkäinen, 2003, 2002) that are more
resilient to the presence of substitutions/insertions/deletions. As
suggested by experiments in (Burkhardt and Kärkkäinen, 2002) just
few gaps are sufficient to be effective, thus we will use the family of
all gapped q-grams with 3 alphabet symbols and at most 2 gaps.
Anti-smear weighting. If q1 and q2 are occurrences of homolo-
gousq-grams inX at distancek, before the implant of mutations,
the effect of insertion and deletions on the positions of thestring
X betweenq1 and q2 is to alter their distance so that a different
periodk′ is detected. The differencek − k′ is equal to the alge-
braic sum of number of insertions and deletions in the positions
betweenq1 and q2. Assuming that any such position can be an
insertion or a deletion independently with the same probability, the
random variablek − k′ is distributed as a sum of independent r.v.
with values in{+1,−1, 0} with mean value 0, thus, by a Chernoff
bound argument, its tail distribution decays exponentially (Motwani
and Raghavan, 1995; Mulmuley, 1993). Also near-by probes inX
have small variations in the value of the shiftk− k′. Inspired by the

above observation we devise a weighting scheme that increments
the total weight of periodk if another period of valuēk is disco-
vered in a near-by position, with weights that decay exponentially
with |k− k̄|. The final weightw0(k) for a given periodk is the sum
of the individual anti-smear weights computed above for probes at
distancek.
Multiplicity weighting. Let w0(k) be the weight of the periodk as
assigned by the anti-smear weighting procedure. As observed before
for a TR with a large number of copies we will find also integer
multiples ofk with a relatively high frequency. We take advantage
of this fact and compute new weights:

w1(k) =
X

h≥1

w0(hk).

The candidate periods are then sorted by the weightw1(.), and
processed in decreasing order.
Positional density. We further exploit the property of TRs that the
same period is detected by probes in near-by positions. We define
a notion of positionalk-density, that is the density of probes that
contribute to the counter for the candidate periodk. We search for
position inY of high k-density as candidates for the starting point
of a TR.
Validation . In the third phase we take each candidate pair(p, i)
and we test explicitly whether there is a tandem repeat of period p
starting in positioni according to the definition (see section 3). In
particular when using the definition of aSteiner-STR (see subsection
3.2) we use a double filtering. The fist filter uses awraparound dyna-
mic programming technique (WDP) (Fischettiet al., 1993). The
second filter computes an approximation to thegeneralized media
string (inspired by an algorithm proposed in (Jianget al., 2003)). In
this phase, besides validating the TRs, we discover the (fractional)
repetition number of the TRs eventually extracted.
Postprocessing. As a post processing we check for inclusion the
TRs found and we filter out those TRs completely enclosed in ano-
ther one. For TRs in the same position and length but different
period we report the TR with shorter period. Finally we alignthe
approximate generalized median string with the TR units so to give
a graphical compact output of the TR.

3 METHODS

3.1 Basic Definitions
A Tandem Repeat in a DNA sequence is the repetition of two or more con-
tiguous exact or approximate copies of a substring (called the motif) of the
tandem repeat.
Exact TR. Formally, given an alphabetΣ, and a set of stringsxi ∈ Σ∗,
consider the concatenationX = x1x2..xt. The stringX is anexact tandem
repeat (ETR) ofperiod k andrepeat number t, when|xi| = k andxi = x1,
for eachi ∈ [1, ..t]. In general we may suppose there is a longer stringY of
which X is a substring. The stringx1 that is repeated exactly is called the
motif of the ETR. A TRX is called maximal if it cannot be extended inY
while still being a TR.
Approximate TR (ATR). Exact tandem repeats are sometimes found in
biological sequences, but they tell us only part of the story, thus several
notions of anapproximate tandem repeat have been developed. Denote with
DH(a, b) the hamming distance of two strings with equal length. If the
length ofa andb is different we consider the smallest possible mismatch in
an alignment of the two strings without gaps. Denote withDE(a, b) the edit
distance of the two stringsa andb.

3



Pellegrini et al

3.2 Our definitions of TR
We used two different definitions of TRs:

• Neighboring TR (NTR): a stringX, so that for eachi ∈ [1, .., t− 1],
DE(xi, xi+1) ≤ µ|xi|, for a user defined parameter0 ≤ µ ≤ 1

• Steiner-STR with sum: a stringX = x1x2..xt for which two condi-
tions hold for a user defined error parameter0 ≤ µ ≤ 1, and constant
c with 1 ≤ c ≤ 2:

(a) for eachi ∈ [1, .., t − 1], DE(xi, xi+1) ≤ cµ|xi|.
(b) there exists a Steiner strinḡx ∈ Σ∗ so that

X

i∈[1,..,t]

DE(x̄, xi) ≤ µ|X|.

Intuitively, in a Steiner-STR the TR consists oft duplications of a single
Steiner consensus strinḡx with µx̄ mutations on average in each copy, such
that consecutive copies do not diverge too much w.r.t. the average. Note that
condition (a) is vacuous forµ ≥ 1/c. The choice for the constantc depends
also on the level of divergence. For low divergencec = 2 is a sensible
choice since two copies at distanceµ|x̄| from x̄ are also at distance at most
2µ|x̄| from each other by the triangular inequality. Thus (a) is a necessary
condition for (b). For higher level of divergence above 30%,the valuec = 2
is too loose and we use a lower valuec = 1.5, so to maintain a good filtering
ability of condition (a) and to avoid having as a possible solution a TR where
the consecutive pairs may have a very irregular divergence.

3.3 Output of TRStalker
The aim of TRStalker is to produce a ranked list ofall maximal tandem
repeat sub-sequences present in the input string that satisfy the definition
above (Neighboring-TR or Steiner-STR), where maximality means that it
is not possible to extend the TR (as a substring of the input) to the left or
to the right without violating the definition within the given user defined
parameters. We avoid producing meaningless TRs by imposingalso a lower
bound on the TRs length.

3.4 Other definitions
In (Sokol et al., 2007) it is used the following definition:X is called ak-
edit Approximate Tandem Repeat when

Pt−1
i=1 DE(xi, xi+1) ≤ k, where

the last repeatxt might be incomplete soDE(xt−1, xt) is computed as
the minimum edit distance ofxt and the prefixes ofxt−1. This definition
is inspired by the evolutionary model of TRs in which it is assumed TRs
are generated by duplicating the last copy of a previous TR, possibly with
duplication errors that truncate it. A k-edit repeat ismaximal if it cannot be
extended either to the left or to the right without violatingits definition.
In (Wexler et al., 2004) for a similarity functionφ that measures the ali-
gnment score of two sequences, it is defined aη-Simple Approximate Tandem
Repeat (η-SATR) a stringX = x1...xt such that: there exists a motif
x̄ ∈ Σ∗ so that for everyi ∈ [1, .., t], φ(x̄, xi) ≥ η. In other words the
TR consists oft duplications of a single consensus stringx̄ with mutations.
Such strinḡx is also called aSteiner motif if x̄ is not constrained to be equal
to some repeatxj . Often in practicēx is chosen as the repeatxj that mini-
mizes the error function, and is called apivot motif. The distinction is critical
since, as mentioned before, Steiner motifs lead to NP-complete recognition
problems, while pivot motifs do not.
Theη-Neighboring Approximate Tandem Repeat (η-NATR) is a stringX, so
that for eachi ∈ [1, .., t − 1], φ(xi, xi+1) ≥ η (Wexleret al., 2004). The
Pairwise Approximate Tandem Repeat (PATR) is a stringX, such that for
every pair of indicesi, j ∈ [1, ..t]2 with i 6= j we haveφ(xi, xj) ≥ ηij ,
whereηij is set to be a monotonically decreasing function of|i − j|, thus
allowing more slackness when comparing distant copies of the basic motif.
In (Krishnan and Tang, 2004) it is used a definition similar tothat of
the Neighboring Approximate Tandem Repeat, except that theHamming
distance is used and that the threshold is not absolute but relative to the

length. Aγ-Hamming Approximate Tandem Repeat (γ-HATR) is a string
X such that: for eachi ∈ [1, .., t − 1], DH(xi, xi+1) ≤ |xi|γ.
In (Stolovitzkyet al., 1999) a more complex definition is given that takes into
account the substring alignment score density function forpairs of random
substrings of a given length. Here the definition of a TRX depends on the
properties of the longer stringY into whichX is embedded. In particular a
(µ, p)-TR must comply to two conditions: 1)

Pt−1
i=0 φ(xi, xi+1) ≥ (t −

1)µ, that imposes an average high similarity score for adjacentrepeats, and
2) defineα(p, k) as the value of similarity such that there is probabilityp
that two random substrings of lengthk in Y have similarity aboveα(p, k).
There must be an indexq ∈ [1, .., t] such thatφ(xq , xj) ≥ α(p, k) for all
j ∈ [1, ..t]. Note that this condition limits the dispersion of the similarity
with respect to one of the copies (called thepivot).
TRF (Benson, 1999) uses as final validation algorithm the wraparound dyna-
mic programming technique (WDP) that tests efficiently the alignments of a
given candidate motif with the surrounding portions of the input sequence,
so to determine the maximum number of adjacent repetitions within a user-
defined score bound. This implies a notion of TR akin to that ofsimple
approximate tandem repeats (SATR) with pivot motif. Classical results on
string alignments (Gusfield, 1997, page 351) ensures that, for the metric
score given by the sum of motif-repeats distances, the solution found using
the optimal pivot motif has a score within a factor(2 − 1/t) of the score
induced by the optimal Steiner motif. For low levels of errors one could use
a pivot-SATR definition doubling the error threshold to capture a Steiner-
SATR, however for higher error levels (say, above 25%), doubling the error
threshold forces the existing systems to work in a range of values (say, above
50%) where most methods do not perform well.

3.5 Gapped q-grams
Let I be a finite subset of non-negative integers. We callI an index set. The
span of I is span(I) = max{i−j|i, j ∈ I}, the position ofI is pos(I) =
min i ∈ I, and theshape of I is shape(I) = {i − pos(I)|i ∈ I}. When
setI has|I| = q andspan(I) = s, its shape belongs to the class of(q, s)-
shapes. Any set of non-negative integersQ containing 0 is a shape. For an
alphabetΣ = {A, C, G, T}, a stringS ∈ Σ∗ of lengthn can be seen as
a function defined over[0, .., n − 1] with values inΣ, and for any subset
I ⊂ [0, .., n − 1] the restriction ofS to I, denoted byS[I] is a substring of
S.

Given any shapeQ in the class of(q, s)-shapes, all setsI ⊂ [0, ..n − 1]
such thatshape(I) = Q, form the set ofIndexes(Q, n). We can use
elements from theIndexes(Q,n) to generate restrictions for the stringS.
Given two index setsI1, I2 ∈ Indexes(Q,n), we call themmatching (or
homologous in S, if S[I1] = S[I2]. The value|pos(I1)−pos(I2)| is called
theperiod of the match.

An index setI with |I| = q andspan(I) = q − 1 is called anungapped
q-gram since its shape isshape(I) = [0, ..q − 1]. If we have an index
setJ with |J | = q and span(J) = s ≥ q we have agapped q-gram
since its shape is formed of non consecutive integers. In order to generate a
population of candidate periods we consider now all possible (q, s)-shapes
with q = 3 ands = 4, 3, 2. Denoting with− the gaps and with# symbols
from Σ, (the first and last positions must be always #), we have the(3, 4)-
shapes##−−#, #−#−#, and#−−##; the(3, 3)-shapes#−##,
## − #; and the(3, 2)-shape###.

As noted in (Burkhardt and Kärkkäinen, 2003) and (Burkhardt and
Kärkkäinen, 2002), if we fix an ungapped shape and an error level in
Hamming distance, there are error patterns for which every corresponding
ungapped q-gram is affected by error. In contrast, with the same Hamming
error level, for some gapped shapes, there are always some gapped q-grams
unaffected by the injected error. Thus using a small complete family of gap-
ped q-grams we can detect the correct period in situations where ungapped
q-grams cannot.1

1 A precise characterization of the relative gain under different error models
would be theoretically interesting but is now beyond the focus of this paper.
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3.6 Anti-smear weighting
Let P be aq-gram in the input stringY at positioni. Let j1, .., jh be the
nexth occurrences ofP in Y following the occurrence at positioni. Theh
corresponding detected distances arexg = jg − i, for g ∈ [1, ..h]. For the
periodxg , we increment its weight:

w0(xg) = w0(xg) + 1 +
X

y∈Q

2−|xg−y|,

whereQ is a queue holding the lastH detected distances in the sequential
scan of the input stringY . After the weight update, we enqueue allh values
xg in the queueQ, and we dequeue an equal numberh of items. In line with
other constants fixed in TRStalker, we have chosenh = 5 andH = 20
since they do work well in our synthetic experiments for a large range of TR
error and length values. A fine tuning of these parameters as afunction of
the characteristics of the TR sought is possible, but beyondthe focus of this
paper.

3.7 Positional Density
Let k be the period under investigation. Consider the setKk of the positi-
ons of thoseq-grams (i.e. substrings ofY ) that contribute to the weighting
of k through the multiplicity weighting. In order to avoid double coun-
ting we always take the position of the first of the two matching probes.
Note that, if a position is shared by several pairs of probes it will be coun-
ted only once. Letf : [1, .., |Y |] → {0, 1} the characteristic function
that for each position inY denote the membership of that position toKk.
Consider thek-window smoothing off : F (i) =

Pi+k
j=i f(j) that com-

putes thek-smoothed density of the functionf , for i ∈ [1, .., |Y | − k].
Finally we define a thresholdt(k) proportional to the averagek-density
by a user-defined constant, and we consider as a candidate position set
CP (Y, k) = {i ∈ [1, .., |Y |−k]|F (i) ≥ t(k)}. The output of this positio-
nal density computation is a sequence of pairs(k, i) wherek is a candidate
period andi a candidate position.

3.8 Validation
The definition of Steiner-STR is composed of two conditions that will be
tested in cascade starting from the one less computationally demanding.
Testing condition (a). The wraparound dynamic programming technique in
(Fischettiet al., 1993) solves the following problem. Given a stringP of
lengthm and a textT of lengthn, with m ≪ n, find the best alignment
of P n (concatenation ofn copies ofP in T ), in time and storageO(nm).
Note that a naive application of the standard dynamic programming based
optimal alignment of two strings would requireO(n2m) time/storage. We
modify the WDP approach in order to (1) work with edit distance instead of
similarity matrices (2) take as pattern the candidate initial tandem copy in
positions[i, i + k − 1] and as text an adjacent portion of the input string of
sizeO(m). (3) we iteratively expand the the text length till the termination
condition is met. (4) we stop the matching as soon as the next adjacent copy
of the TR differ from the previous one by more thancµm in edit distance.
Testing condition (b). Let x1, ..xt be the candidate TR to test for pro-
perty (b) that passed the test for property (a). We incrementally compute
an approximate generalized medianx̄i, usingxi and the previously compu-
ted approximate generalized median stringx̄i−1. Initially x̄1 = x1. Let k
andh be two positive integers andK = {j/k|j ∈ [0, k]} be the set formed
by k + 1 equally spaced real values between 0 and 1. For each valueα ∈ K
we determine up toh median strings betweenxi andx̄i−1 with weightα.
This set of at mosthk candidates is then searched for the stringa that mini-
mizes the function

Pi
j=1 DE(a, xj). So we set̄xi = a and start the next

iteration.

Selecting larger values ofq ands, as a function of the period to be detected
and the error level, may increase the filtering ability of themethod at the
cost of slower computations. Exploring these connections is left for future
research.

A median string of weight α ∈ [0, ..,1] of two stringsa andb is obtai-
ned as follows. Compute the edit distancee = DE(a, b) and record the
setA(a, b) of edit operations that transforma into b. Pick any subset of
size⌊αe⌋ in A(a, b). The median weighted stringc is obtained by applying
those operations to the stringa. It is not difficult to show that it holds that
DE(a, c) = αDE(a, b) andDE(b, c) = (1 − α)DE(a, b). Note that
depending on the value ofe we have

`

e
αe

´

different subsets ofA(a, b) we
can choose. In our algorithm we randomly selectmin{h,

`

e
αe

´

} of them.

3.9 Evaluation of recall in synthetic sequences
In order to measure the quality of the TRs reported by TRSTalker and by
other benchmark algorithms in our synthetic experiments weneed to give a
score to a pair of TRs. The higher the similarity of the two TRs, the higher
should be the score. Since perfect equality is rare we need a more flexible
score function. A TR can be characterized by the triple:(b, p, r), whereb is
the initial position,p the period,r the repetition number. Also, the same TR
covers the positions inY from indexb to b + rp − 1. We identify the TR
with the set of positionsSeg(TR) = [b, b + rp − 1]. Given two tandem
repeatsTR1 andTR2 represented as sets of positions, the classical Jaccard
coefficient measure of set similarityJC is:

JC(TR1, TR2) =
|Seg(TR1) ∩ Seg(TR2)|

|Seg(TR1) ∪ Seg(TR2)|
.

Modified Jaccard Coefficient. Let t0 be a TR embedded inY . Even if t0
is a TR according to the definition, when we embedt0 in a stringY , it
is well possible thatt0 is not maximal inY , thus if an algorithm reports
correctlyt′ ⊃ t0 there will be a slight penalization in the JC measure. This
phenomenon arose a number of times, thus we decided to use a modified
version of the Jaccard Coefficient, called JC2, where the denominator is
changed. The resulting measure is thus more robust w.r.t. this penalization:

JC2(TR1, TR2) =
|Seg(TR1) ∩ Seg(TR2)|

max{|Seg(TR1)|, |Seg(TR2)|}
.

Given a TRt0 and a set of TRs:T = {t1, ..., ts} we define the best-match
BM(t0, T ):

BM(t0, T ) = arg max
t∈T

JC2(t0, t),

and the best-match-score BMS:

BMS(t0, T ) = max
t∈T

JC2(t0, t).

In our controlled experiments the evaluation module knows the embedded
TR t0 and receives the output of an algorithmT , giving back the best match
score. For a series of experiments we will report the averageof the BMS.
Note that BMS has values in the range[0, .., 1], and higher values corre-
spond to better quality. At first sight one might consider this metric as overly
generous. However, since we cannot rule out the existence ofother TRs in
Y besides the embedded ones, we do not want to penalize the presence inT
of valid TRs different fromt0. Also, the setT will not contain nested TRs.

3.10 Evaluation of recall on biological sequences
The evaluation has been carried out according to the following procedure.
Let TTRS , TTRF , TATR be the set of TRs found by TRStalker, TRF,
and ATRHunter respectively. First, we removed from every set all the TRs
that have a Jaccard coefficient greater than a thresholdJ when compared
with another TR in the same set. In other words, we removed TR duplica-
tes from every set of results, where two TRs are considered asduplicates
when they cover the same region with an approximationJ . Since TRF and
ATRHunter have been executed with options that discard all TRs having a
score lower than a given threshold, we filteredTTRS by removing all the
TRs with a score under such value (this has been done to not penalize TRF
and ATRHunter with respect to TRStalker). More in detail, TRF has been
executed with match, mismatch, and indel score equal to 2, 3,and 3 respec-
tively, maximum motif length equal to 2000bp2, and threshold equal to 30.

2 Maximum possible value for TRF.
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ATRHunter has been executed with match, mismatch, gap and terminal gap
score equal to 1 0 -1 0, maximum motif length equal to 500bp3 and threshold
equal to 30. For the TRs found by TRStalker the score is computed by using
the same weights used by TRF and ATRHunter then we filtered theresults
using the same threshold. After the filtering phase, we computed the union
of the TRs found by all algorithms,U =

S

(TTRS , TTRF , TATR). The
removal of duplicates with thresholdJ is also applied toU . Naturally the
higher the value ofJ and less filtering will be performed.

4 DISCUSSION
We have performed comparative experiments both with synthetic
and with biological sequences. Here we describe the experimental
set up, how the synthetic sequences are generated and the outcome
of the comparison. For biological data we briefly indicate the reason
why that sequence has been selected, and the new TRs found by the
application of TRStalker.

4.1 Synthetic Data
4.1.1 Generation of synthetic data. We carried out a first set of
experiments by using synthetic data. This allows a fine grained
control on the amount of mutations introduced within the regions
covered by the TRs. The sequences we gave as input to the programs
have been built according to the following steps:

1. the background sequence is generated by selecting the four
bases A,C,G, and T with equal probability;

2. a perfect TR is embedded within the previous sequence, theTR
is generated asr repetitions of a motif with lengthl;

3. the region covered by the TR is mutated according to substi-
tution, insertion and deletion probabilities (ps, pi, and pd);
the number of substitutions, insertions and deletion for every
repetition of the motif is exactly equal tolps, lpi, andlpd;

4. if the TR is a Steiner-STR, mutations are introduced in every
repeat with respect to the consensus motif; if the TR is a
Neighboring-TR, mutations are introduced with respect to the
previous repeat.

The experiments have been carried out running ATRHunter with
these parameters: match, mismatch, gap and terminal gap score
equal to 1 0 -1 0 (the most permissive setting on the website);maxi-
mum motif length equal to 500bp (the maximum allowed by the
tool). In order to select the definition of TRs among those allowed
by ATRHunter, we performed a preliminary set of experiments: the
definition that gave the best results was the third one (minimum
alignment score). In this case, ATRHunter reports only the TRs
that have a score higher than a given threshold. The value of the
threshold has been set to 30.

For the web-based version of TRF all the experiments have been
carried out with these parameters: match, mismatch, and indel score
equal to 2, 3, and 5 respectively; maximum period equal to 500;
minimum score equal to 30. For the binary version we used the fol-
lowing ones: match, mismatch, and indel score equal to 2, 3, and
3 respectively; match and indel probability equal to 0.75 and 0.20;
maximum period equal to 500; minimum score equal to 30. The
parameters of the experiments have been set so to make sure that
the minimum allowed score for all the tools tested is attained on the

3 Maximum possible value for ATRHunter.

input data. TRStalker is run with the error parameterµ = 0.3 and
the constantc = 1.5.

4.1.2 Discussion of the comparative experiments. For the expe-
riments on Neighboring-TR (Figure 1), we tested TRs with motifs
of length from 60 to 300, and a number of repeats from 2 to 8.
TRStalker has recall always above 95%. TRF (binary) has always
a recall above 80% except for TR with repeat number 2 for which
the recall drops to 60%. ATRHunter has recall of about 60%. These
experiments confirm the effectiveness of the new techniquesfor the
initial filtering steps.

Results on Steiner-STR with motifs of length from 60 to 300,
and a number of repeats from 2 to 8 are shown in Figure 2. Here
we notice that all methods have degraded performance for longer
motifs (above 200 bases) while TRStalker still manages to have
recall above 60%. For shorter motifs (of less than 100 bases)TRF
(binary) is able to match TRStalker only when the repeat number is
above 6. Thus for a large range of values TRStalker attains the best
performance in recall, or a matching one, always above 80%.

The time performance of TRStalker has not been yet optimi-
zed. At the moment it is within an order of magnitude of TRF
and ATRHunter. More details on the running time are in the Suppl.
Materials.

4.2 Biological sequences
Testing of TRStalker on biological sequences has confirmed the
potential of our method for finding very fuzzy TRs not detected by
TRF and ATRHunter, and, to the best of our knowledge, not reported
in literature. We tested the following sequences:

1. U43748 Homo sapiens frataxin gene, promoter region and exon
- 2,465 bp long (FRDA).

2. L3609 Homo sapiens germline T-cell receptor beta chain,
complete gene - 684,973 bp long (HSBT).

3. NC 001133.8 Saccharomyces cerevisiae Chromosome I -
230,208 bp long (YCh1).

4.2.1 Experimental settings. The three algorithms have been run
with the setting used in the synthetic experiments4 (thus with a very
permissive acceptance policy). In general, none of the three algo-
rithms generates all TRs found by the two others, and in Table1
we show the percentage of the TRs found by each algorithm with
respect to the union of the TRs found. In Table 2 we report some
very long TRs that were detected by TRStalker but missed by the
other two methods. We check the motif/repeat alignments using the
tooljaligner5 using the BLOSUM62 score matrix, that confirms
the good quality of the motifs found (see Table 3).

4.2.2 Frederich’s ataxia. Frederich’s ataxia is an autosomal
recessive degenerative disease involving the central and peripheral
nervous system and the heart, that roughly affects 1 person in 50,000
(Wells, 2008). In 1996 it was shown (Campuzanoet al., 1996) that in
98% of the cases this disease was caused by an abnormal expansion

4 For TRF the maximum motif length has been raised to 2000 bp.
5 http://jaligner.sourceforge.net/
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(c) Motif length: 200
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(d) Motif length: 300

Fig. 1. Best Match Score (BMS) as a function of copy number for Neighboring-TR (NTR). The total length of the input sequence is 10000bp; the amount
of substitutions, insertions, and deletions are equal to 10% of the motif length each (thus with total error allowed of 30%). Every point is the average of 30
measurements and the 95% confidence intervals are shown.
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Fig. 2. Best Match Score (BMS) as a function of copy number for Steiner-STR. The total length of the input sequence is 10000bp; theamount of substitutions,
insertions, and deletions are equal to 10% of the motif length each (thus with total error allowed of 30%). Every point is the average of 30 measurements and
the 95% confidence intervals are shown.

in the copy number of a triplet TR in the first intron of the Frata-
xin coding sequence. It belongs to the family oftrinucleotide repeat
disorders. Very recently (Visserset al., 2009) it has been shown that
the local repetitive structure of DNA may play a role invariable
copy number genomic disorders. Applying TRStalker to the frata-
xin sequence we detected a divergent TR in positions [2036-2414],
of period 188 and copy number 2, to the best of our knowledge
not previously reported, that includes the breakpoint region of the
repeat disorder (See Table 2). Experimental data reported in (Brod-
zik, 2007) on the Frataxin sequence did find a number of short TRs
(of period up to 10/13) that are completely covered by the longer
fuzzy TR reported by TRStalker.

4.2.3 Human Beta T cell receptor locus. The cellular immune
system detects the presence of pathogens largely through the activa-
tion of T cell receptor proteins (TCR) (Glusmanet al., 2001), which
come in four different familiesα, β, γ andδ. The complete DNA
sequence of the humanβ T cell receptor locus has been determined
(Rowenet al., 1996) and it has been found that a large fraction of
the locus sequence (about 47%) is formed by locus-specific repeats
(Rowenet al., 1996). This sequence was selected as a test case for
TRStalker because of its richness in repeating elements with the aim
of highlighting the ability of TRStalker in finding repeats with high
divergence among adjacent copies. Here (see Table 2) we could
find a few such repeats apparently not recorded in the GenBank:
L36092.2 record, nor found by TRF and ATRHunter (still set with
very loose parameters).

4.2.4 Yeast Chromosome I. Saccharomyces cerevisiae (baker’s
yeast) has been the focus of intensive study as the first eukaryotic

organism whose genome was completely sequenced (Dujon, 1996),
and serves as a model organism in basic genomic investigations.
Chromosome I (Busseyet al., 1995) is the smallest of the 16 chro-
mosomes present in yeast. It has been noticed that the yeast genome
is remarkably poor in repeated elements (Dujon, 1996), thusfinding
new TRs in such organism is a challenging task for any algorithm. In
Table 2 we report a TR in position [186168,188347] of copy number
2 and motif length 1089. This TR is not reported in the TRDB data-
base, while ATRHunter in the same region finds 15 shorter TR of
length ranging from 50 to 180. This region, according to the NCBI
record, is rich in genes of the DUP240 gene family (encoding mem-
brane proteins). The presence of a fuzzy repeat in this region thus
suggests a possible remote gene duplication event.

4.2.5 Performance on biological sequences. Reporting intere-
sting single new tandem repeats, as in Table 2 is useful to demon-
strate that biological relevant TRs are still unknown. We give
also an evaluation of the overall behavior of the three different
methods on biological sequences. Thus, we compared TRStalker,
TRF, and ATRHunter by estimating their recall on the three biologi-
cal sequences with the methodology described in sub-section 3.10.
Table 1 reports i) the number of unique TRs found by the different
algorithms and ii) the percentage of the union reported by a given
algorithm, with two filtering thresholds atJ = 90% andJ = 70%.
For all the three sequences, TRStalker is able to find a large num-
ber of TRs that are not discovered by using the other methods.In
practice a better overall coverage can be attained by using all three
methods and merging their results. Although lowerJ values imply
a more aggressive filtering, the percentage of the union attained by
TRStalker is almost constant.
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N. Sequence Seq. Length TR Start TR End TR Length Consensus Repetitions Score Norm. Score
1 HSBT 684973 411000 413127 2127 1061 2.00 2868 1.384
2 HSBT 684973 448001 449687 1686 842 2.00 2310 1.370
3 HSBT 684973 636116 638622 2506 1253 2.00 3323 1.326
4 YCh1 230208 186168 188347 2179 1089 2.00 3053 1.401
5 FRDA 2465 2029 2407 378 188 2.011 501 1.325

Table 2. Examples of TRs found by TRStalker and missed by TRF and ATRHunter. We report the original sequence name and length, the TRstarting and
ending positions, the TR length and the TR repeating unit length and copy number. The score is computed by assigning +2 to matches and -1 to mismatches
and gaps w.r.t the consensus string. The normalized score isthe score divided the TR length.

Seq. N. Repeat Length Identity Gaps Score
HSBT 1 1 1107 805/1107 (72.72%) 91/1107 (8.22%) 3657.00

- 1 2 1093 895/1093 (81.88%) 70/1093 (6.40%) 4291.00
HSBT 2 1 878 638/878 (72.67%) 85/878 (9.68%) 3045.50

- 2 2 866 716/866 (82.68%) 52/866 (6.00%) 3568.00
HSBT 3 1 1300 1000/1300 (76.92%) 94/1300 (7.23%) 5206.00

- 3 2 1313 1004/1313 (76.47%) 120/1313 (9.14%) 5176.50
YCh1 4 1 1130 895/1130 (79.20%) 83/1130 (7.35%) 4280.50

- 4 2 1123 901/1123 (80.23%) 77/1123 (6.86%) 4345.50
FRDA 5 1 193 149/193 (77.20%) 10/193 (5.18%) 723.50

- 5 2 191 146/191 (76.44%) 5/191 (2.62%) 765.00

Table 3. Motif/repeats alignment scores computed byjaligner using the BLOSUM62 score matrix with gap open penalty set to 10.0 and gap extend
penalty set to 0.5 for the TRs reported in Table 2.

Frataxin
Algorithm filter 90% filter 70%
TRStalker (TRF filter) 59 (56.2) 43 (56.5)
TRStalker (ATR filter) 43 (41.0) 30 (39.4)
TRF 24 (22.9) 18 (23.6)
ATRHunter 24 (22.9) 23 (30.2)
Union 105 (100.0) 76 (100.0)

Homo sapiens T-cell receptor beta chain
Algorithm filter 90% filter 70%
TRStalker (TRF filter) 22557 (59.1) 14137 (60.2)
TRStalker (ATR filter) 18124 (47.5) 11427 (48.7)
TRF 9977 (26.1) 8521 (36.0)
ATRHunter 7392 (19.3) 7034 (29.6)
Union 38218 (100.0) 23743 (100.0)

Saccharomyces cerevisiae chromosome I
Algorithm filter 90% filter 70%
TRStalker (TRF filter) 7168 (61.8) 4656 (63.5)
TRStalker (ATR filter) 5621 (48.4) 3655 (49.9)
TRF 2892 (24.9) 2518 (34.1)
ATRHunter 2037 (17.6) 1958 (26.4)
Union 11616 (100.0) 7407 (100.0)

Table 1. Evaluation of recall for the three methods under evaluation. Each
entry in the table gives the absolute number of unique TR found, and in ()
the percentage of unique TR w.r.t the union of the 3 methods. For TRSTalker
we used both a TRF-like and an ATRHunter-like filtering (morerestrictive)
on the TRs found.

5 CONCLUSION
TRStalker is a novel efficient heuristic algorithm for finding Fuzzy
Tandem Repeats in biological sequences. TRStalker aims at impro-
ving the capability of TR detection for a class of fuzzy TRs for
which existing methods do not perform well. Initial testingon
biological data show that fuzzy TRs not previously reportedare
present in biologically relevant sequences. In the case of the Fra-
taxin sequence, the fuzzy TR reported is associated with theknown
variable copy number breakpoint of Frederich’s ataxia. Future work
will involve testing TRStalker on relevant families of repetitive ele-
ments such as centromericα-satellites. An extension of TRStalker
to handle amino acid sequences is under development.
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