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Abstract

We define a set of process algebra operators (controllers) that mimic the se-
curity automata introduced by Schneider in [18] and by Ligatti and al. in [4],
respectively. We also show how to automatically build these controllers for given
security policies.

1 Overview

Recently, several papers tackled the formal definition of mechanisms for enforcing
security policies (e.g., see [3, 4, 7,12, 14, 18)).

The focus of this paper is the study of the enforcement mechanisms introduced by
Schneider in [18] and security automata developed by Ligatti and al. in [4, 7].

In [18], Schneider deals with the problem of enforcing security properties in a sys-
tematic way. He discusses whether a given security property is enforceable and at what
cost. To study those issues, Schneider uses the class of enforcement mechanisms (EM)
that work by monitoring execution steps ofaagetsystem, herein and terminating its
execution if it is about to violate the security property being enforced.

A security automaton defined in [18] is a trifl@, o, §) whereQ is a set of states,
qo 1s the initial one and : Act x Q@ — Q, whereAct is a set of security-relevant
actions, is the transition function. A security automata processes a sequeace.
of actions. At each step only one action is considered and for each action we calculate
theglobal state)’ that is the set of the possible states for the current action, i.e. if the
automaton is checking the actianthen@’ = quQ, 0(a;i, q). If the automaton can
make a transition on a given action, i@’ is not empty, then the target is allowed to
perform that step. The state of the automaton changes according to the transition rules.
Otherwise the target execution is terminated. A security property that can be enforced
in this way corresponds to a safety property (according to [18], a property is a safety
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one, if whenever it does not hold in trace then it does not hold in any extension of this
trace).

Starting from the work of Schneider described above, Ligatti and al. in [4, 7] have
defined four different deterministic security automata which deal with finite sequences
of actions: theruncation automaton (similar to Schneider’s ones) which can recog-
nize bad sequences of actions and halts program execution before security property is
violated, but cannot otherwise modify program behavior. The behavior of these au-
tomata is similar to the behavior of security automata of Schneider’s because both of
them read one action at a time. Thigpression automatorhas the ability to suppress
individual program actions without terminating the program outright in addition to be-
ing able to halt program execution. The third automaton idrikertion automaton.

It is able to insert a sequence of actions into the program actions stream as well as
terminate the program. The last one is #dit automaton. It combines the power of
suppression and insertion automaton hence it is able to truncate actions sequences and
insert or suppress security-relevant actions at will.

These works have been extended by studying how truncation automata and edit
automata work on possible infinite sequence of actions (see [8]). In this way they
analyze how certain non-safety properties may be enforced. This work comes back to
the original Schneider’s idea to deal with also possibly infinite sequences of actions.

In this paper we introduce process algebra operators (see [15]) able to mimic the
behavior of the security automata briefly described above. The process algebra opera-
torsY >k X (whereK is the name of the corresponding automata) act as programmable
controllers ') of a target systemX).

We can then exploit a huge theory for security analysis based on process algebra
theory. In particular, depending on the kind of security automata one chooses, we
show how to automatically build programs that allow to enforce security properties
for whatever target system. Since many properties of systems are naturally specified
by means of fixed points, the-calculus is an expressive and important specification
language.

We automatically synthesize the appropriate controlling progréior an operator
>k, given the security property expressed by a-calculus formula. The synthesis is
based on a satisfiability procedure for tlealculus that allows to obtain a model for
a logical formula (in our framework a suitable property), i.e., it is possible to decide if
there exists a model of a given logical formula. In particular, for truncation automata
we show a method to build the maximal model.

This work represents a significant contribution to the previous works (see [4, 7, 8, 18]),
where the synthesis problem for the security automata was not addressed. In fact, most
of the related works deal with the verification rather than with the synthesis problem.

Moreover, other approaches deal with the problem of monitoring the comp&nent
to enjoy a given property, by treating it as the whole system of interest. However, often
not all the system needs to be checked (or it is simply not convenient to check it as a
whole). Some components could be trusted and one would like to have a method to
constrain only the un-trusted ones (e.g. downloaded applets). Similarly, it could not be
possible to build a reference monitor for a whole distributed architecture, while it could
be possible to have it for some of its components. Our approach is that it actually starts
from a property that the overall system must enjoy, gand, using theartial model



checkingtechnique, projects this property on another one that only the compahent
must satisfy, say’. This allows one to monitor only the necessary/untrusted part of
the system. Thus we can now foréeto enjoy¢’ by using an appropriate controller
Y >k X. (Note that as a special case we have the opportunity to Xest a whole
system as in other approaches).

This paper is organized as followSection 2 presents the necessary background on
process algebras and (Generalized) Structured Operational Semantics (SOS), logic and
security automata. Section 3 describes some process algebra operators (controllers)
corresponding to the security automata under investigation. Section 4 shows how to
automatically build controller programs that enforce desired security policies. Section
5 shows how to build the maximal model for truncation automata and Section 6 shows
a simple example.

2 Background

2.1 Operational semantics and process algebra

We recall a formal method for giving operational semantics to terms of a given lan-
guages. This approach is call@éneralized Structured Operational Semanf€s 0.5)

(see [5]). It permits to reason compositionally about the behavior of program terms.
2.1.1 GSOS format

LetV be a set of variables, ranged overdy, . . . and letAct be a finite set of actions,
ranged over by, b, c. .. A signatureX. is a pair(F, ar) where:

e [is a set of function symbols, disjoints fromn,

e ar : F' — N is arank functionwhich gives the arity of a function symbol; if
f € Fandar(f) = 0thenf is called aconstant symbol

Given a signature, lell’ C V be a set of variables. It is possible define the set of
Y-termsover W as the least set s.t. every elementiihis a term and iff € F,
ar(f) = n andty,...,t, are terms therf(¢1,...,t,) is a term. It is also possible
to define anassignmengs a functiony from the set of variables to the set of terms
Stoy(f(t,.. . tn)) = f(v(t1),...v(tn)). Given a termt, let Vars(t) be the set of
variables int. A termt is closedif Vars(t) = 0.

Now we are able to describe tl&SOSformat. AGSOSrule r has the following
format:

aij <i<k bij \1<i<k
{zi ==y hsiom, {zi A2hZis,
f(xl; .. 'axk) L) g(fag)
where all variables are distinct; and ¢ are the vectors of alk; andy;; variables
respectively;m;,n; > 0 andk is the arity off. We say thatf is theoperatorof the
rule (op(r) = f) andc is the action. AGSOSsystemg is given by a signature and a

finite set of GSOSrules. Given a signature = (F, ar), an assignmery is effective
foratermf(sy,...,s,)and aruler if:

(1)




1. ((x;) =s;forl <i<k;

2. foralli,j with 1 <i < kandl < j < m;, it holds that( (z;) —2 ¢ (yi;);

3. foralli,jwith1 < i < kandl < j < n,, it holds that¢ (z;) /2,
The transition relation among closed terms can be defined in the following way: we
have f(s1,...,s,) — s iff there exists areffectiveassignment for a ruler with
operatorf and actionc s.t. s = ((g(Z,¥)). There exists a unique transition relation
induced by &5SOSsystem (see [5]) and this transition relatiorfimstely branching

2.1.2 Anexample: CCS process algebra

CCS of Milner (see [16]) is a language for describing concurrent systems. Here, we
present a formulation of Milner§'C'S, in theGSOSormat.

The main operator is thparallel compositionbetween processes, namdljf| F'
because, as we explain better later, it permits to modep#rallel compositionof
processes. The notion of communication considered is a synchronous one, i.e. both
the processes must agree on performing the communication at the same time. It is
modeled by a simultaneous performing of complementary actions that is represented
by a synchronization action (or internal actian)

Let £ be a finite set of actions = {a@ | a € L} be the set of complementary
actions whereis a bijection witha = a, Act be L U £ U {7}, wherer is a special
action that denotes an internal computation step (or communication)ldrela set
of constant symbols that can be used to define processes with recursion. To give a
formulation of CC'S dealing withGSOSwe define the signatuteccs = (Foes, ar)
as follows.

Foes ={0,+, ||} U{ala € Act} U{\L|L C LU L} U{[f]If : Act — Act} UIL

The functionar is defined as follows:ar(0) = 0 and for everyr € II we have
ar(m) = 0, || and+ are binary operators and the other ones are unary operators.

The operational semantics 6fC'S closed terms is given by means of tB&0S
system in table 2. Informally, a (closed) teemE represents a process that performs
an actiona and then behaves @ The termFE + F represents the non-deterministic
choice between the processBsand F'. Choosing the action of one of the two com-
ponents, the other is dropped. The teB{jF represents the parallel composition of
the two processeE and F. It can perform an action if one of the two processes can
perform an action, and this does not prevent the capabilities of the other process. The
third rule of parallel composition is characteristic of this calculus, it expresses that the
communication between processes happens whenever both can perform complemen-
tary actions. The resulting process is given by the parallel composition of the succes-
sors of each component, respectively. The proéggs behaves likee but the actions
in L U L are forbidden. To force a synchronization on an action between parallel pro-
cesses, we have to set restriction operator in conjunction with parallel one. The process
E|[f] behaves like th& but the actions are renameth f .



2.2 Behavioral equivalence

It is often necessary to compare processes that are expressed using different terms but
have the same behavior.

2.2.1 Strong and weak bisimulations

We recall some useful relations between processes (see [16]). Now we give some
preliminary definition. In the following, we let = ¢ and for actionn # 7 a = a.

Definition 1 Let(£,7) be an LTS of concurrent processes, andRdbe a binary re-
lation over€. ThenR is calledstrong simulatiorfdenoted by<) over (&, 7) iff, when-
ever(E, F) € R we have: ifE % E'then3F' € £s.t.F % F'and(E', F’) € R.
Moreover, a binary relatiorR over€ is said astrong bisimulatiorfdenoted by-) over
the LTS of concurrent processgs 7) if both R and its converse are strong simula-
tion.

Referring to [5], letG be aGSOS system, the strong bisimulation is a congru-
ence w.r.t. the operations @, i.e., the strong bisimulation is preserved by@$0S
definable operators.

Another kind of equivalence is used when there is the necessity of understanding if
systems with different internal structure - and hence different internal behavior - have
the same external behavior and may thus be considered observationally equivalent.

First of all we present the notion observational relatioris the following: E = E’

(orE = E"if E 5" E (where S is the reflexive and transitive closure of the
relation);F = E'if E 5% F/.

Let Der(F) be the set of derivatives @, i.e., the set of process that can be reached

through the transition relations. Now we are able to give the following definition.

Definition 2 Let (£,7) be an LTS of concurrent processes, and7ebe a binary
relation over a set of procesS. ThenR is said to be asimulation(denoted by<)
if, wheneverE, F) € R, if E % E'then3F’ € £s.t.F & F'and(E',F’) € R.
Moreover, a binary relatiorR over¢& is said aweak bisimulatior{denoted byx) over
the LTS of concurrent processgs 7)) if both R and its converse are weak simulation.

It is important to note that every strong simulation is also a weak one (see [16]).

2.3 Equational u-calculus and partial model checking

Equationalu-calculus is a process logic well suited for specification and verification of
systems whose behavior is naturally described using state changes by means of actions.
It permits to express a lot of interesting properties Biedetyandlivenessproperties,
as well as allowing to express equivalence conditions over LTS. In order to define
recursively the properties of a given systems, this calculus uses fixpoint equations. Let
a be in Act and X be a variable ranging over a finite set of variablés Given the
grammar:

A:X‘T‘F|A1/\A2|A1\/A2 ‘ (a)A\ [a]A

D:=X=,AD| X =,AD |¢



where the symbdI' meangrue andF meandalse A is the symbol for the conjunction
of formulae, i.e. the conjunctioA; A A, holds iff both of the formulael; and A, hold,
andV is the disjunction of formulae and, v A, holds when at least one df; and A,
holds. Moreover the meaning ¢f) A (possibility operatoyis "it is possible to do an
a-action to a state wheté holds” and the meaning ¢#) A (necessity operatdis "for
all a-actions performed! holds”. X =, A is a minimal fixpoint equation, whet# is
an assertion (i.e. a simple modal formula without recursion operator)Xaad Ais a
maximal fixpoint equation. Roughly, the semarjti2] of the list of equation® is the
solution of the system of equations correspondingto According to this notation,
[D](X) is the set of values of the variahl, andE = D | X can be used as a short
notation forE € [D](X). The formal semantic is in Table 3 in appendix.

The following standard result gi-calculus will be useful in the reminder of the
paper.

Theorem 1 ([20]) Given a formulap it is possible to decide in exponential time in the
length ofg if there exists a model @f and it is also possible to give an example of such
model.

Partial model checkingpmg is a technique that was originally developed for compo-
sitional analysis of concurrent systems (processes) (see [2]). The intuitive idea under-
lying thepmcis the following: proving thaf || F" satisfies a formula (E||F | ¢) is
equivalent to proving thak' satisfies a modified specification, , (F' = ¢,,g), where

//E is the partial evaluation function for the parallel composition operator. The for-
mula ¢ is specified by use thequationalu-calculus A useful result of partial model
checking is the following.

Lemma 1 ([2]) Given a proces¥| F and a formulap we have:E|F = ¢iff F E
/B

The reduced formula,,z depends only on the formula and on proces#. No
information is required on the proceBswhich can represent a possible enemy. Thus,
given a certain systerfi, it is possible to find the property that the enemy must satisfy
to make a successful attack on the system. It is worth noticing that partial model
checking function may be automatically derived from the semantics rules used to define
a language semantics. Thus, the proposed technique is very flexible.

A lemma similar to Lemma 1 holds for every process algebra operators (see [2]).
The partial model checking functions for parallel operator, relabeling and restriction
are given in Table 4 and Table 5 in appendix.

2.4 Characteristic formulae

A characteristic formulds a formula in equationat-calculus that completely charac-
terizes the behavior of a (state in a) LTS modulo a chosen notion of behavioral relation.
Itis possible to define the notion of characteristic formula for a given finite state process
E w.r.t. weak bisimulation as follows (see [17]).

Definition 3 Given a finite state procesg, its characteristic formula (w.rt. weak
bisimulation)Dg | X is defined by the following equations for evétyc Der(E),

Xp =y (/\Q;E//;E/i,E//«&»XE”) N (/\aeACt([a](\/E”:E/:é}E” XE”)))
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where ((a)) is the equivalent of the modality operat@t) w.r.t. weak bisimulation,
which can be introduce as abbreviation (see [17]):
def def

(o = pX.oVv(nX ((a))o = ((){a)((e)¢
The following lemma characterizes the power of these formulae.

Lemma 2 ([17]) Let E; and E5 be two finite-state processes.@lf, is characteristic
for E then:

1. If FE| ~ Es thenE1 ‘: (]5E2
2. If By E ¢g, and E; is finite-state ther®; =~ Es.

It is possible to define the notion of characteristic formula for a finite state process E
w.r.t. weak simulation as follows.

Definition 4 Given a finite state process, its characteristic formula (w.r.t. weak sim-
ulation) Dg | Xg is defined by the following equations for evety € Der(E),

XE/ v /\aéAct([a](vE//:E/:@Eu XEN))

Following the reasoning used in [17] for the definition of characteristic formula w.r.t
strong bisimulation. The following proposition holds.

Lemma 3 Let E be a finite-state process and l¢; < be its characteristic formula
w.r.t. weak simulationf” < E < F |= ¢ <

2.5 Enforcement mechanisms and Security automata

In this paper we chose to follow the semantic approach given by Ligatti and al. in [4]
to describe the behavior of four different kind of security automata.

A security automatorat least consist of a (countable) set of stai@s,a set of
actionsAct and a transition (partial) functiof : Act x @ — Q. We use als@ to
denote a sequences of actionfar the empty sequence and to represent an internal
action.

The execution of each different kind of security automata is specified by a labeled
operational semantics. The basic single-step judgment has the dogn—- (¢, ¢')
wheres’ andq’ denote the action sequence and state after the automaton takes a single
step, and: denotes the sequence of actions produced by the automaton. The single-step
judgment can be generalized to a multi-step judgméntq =12 (c’,q")), wherey
is a sequences of actions, as follows.

(0_7 q) i} (U”,q”) (0//761//) :V> (O'/,q/)
—_ fl
= @0 B (0d)

The operational semantics for each security automaton is the following.

(Trans)

1In [4] internal actions are denoted hyWe user because we use process algebras where internal actions
are commonly denoted by.

2Consider a finite sequence of visible actions= a1, ...,a,. Here we use= to denote automata
computation. Before we use the same notation for process algebra computation. The meaning of the symbol
will be clear from the context.



Truncation automaton. The operational semantic of truncation automata is:

(Ja q) i>T (017 ql) (T'Step)
if c =a;o’
andd(a,q) = ¢’
(07 Q) L)T ('7 q) (T'Stop)
otherwise.

Suppression automaton.ltis define ag 9, qo, 9, w) wherew : Actx Q — {—,+}in-
dicates whether or not the action in question should be suppressed (-) or emitted
()
(Ja q) i’s (0,7 ql) (S_StepA)

if o =a;o0’
andé(a,q) = ¢
andw(a,q) = +
(Ja q) LS (0,7 ql) (S—StepS)

if o =a;o0’
andd(a, q) = ¢’
andw(a,q) = —
(07 q) L)S ('7 Q) (S'Stop)

otherwise.

Insertion automaton. It is define ag 9, qo, J,y) wherey : Act x Q — Act x Q that
specifies the insertion of an action into the sequence of actions of the program. It
is necessary to note thatin [4, 7] the automaton inserts a finite sequence of actions
instead of only one action, i.e., it controls if a wrong action is performed by
function~. If it holds, the automaton inserts a finite sequence of actions, hence
there exists a finite number of intermediate states. Without loss of generality,
we consider that it performs only one action. In this way we openly consider all
intermediate state. Note that the domainya$ disjoint from the domain of in
order to have a deterministic automata;

(0,9) =1 (', q) (I-Step)
if o =a;o0’
andd(a,q) = ¢
(0,9) 1 (0,4) (I-Ins)
if o =a;o0’
andy(a,q) = (b,¢)
(0,9) =1 (-9) (I-Stop)

otherwise.



Edit automaton. Itis defined agQ, qo, 9, v,w) wherey : Act x Q@ — Act x Q that
specifies the insertion of a finite sequence of actions into the program’s action
sequence and : Act x @ — {—,+} indicates whether or not the action in
guestion should be suppressed (-) or emitted (+). Also here the domairsof
disjoint from the domain of in order to have a deterministic automata.

(0,9) =5 (0',q) (E-StepA)
if c =a;o0’
andé(a, q) = ¢
andw(a,q) = +

(0,9) —& (0',q) (E-StepS)
if o =a;0’
andd(a, q) = ¢
andw(a,q) = —

(Ua Q) L>E (07 ql) (E'lnS)
if o =a;0’
andvy(a, q) = (b,¢)

(0,9) —& (- q) (E-Stop)

otherwise.

3 Modeling security automata with process algebra

In this Section we give the semantics of some process algebra operators that act as
controller operatorsdenoted by > X whereK € {7, S, I, E}3. These can permit

to control the behavior of the (possibly untrusted) compoérgiven the behavior of

the control prograny.

3.1 Our controller operators in process algebra

To compare security automata with our controllers, it is crucial to have a rigorous defi-
nition of the semantic rules that describe the behavior of each operator. We denote with
E the program controller and with' the target. We work, without loss of generality,
under the additional assumption tHatand F' never perform the internal actian

3.1.1 Truncation automata: >

ESEFSF
F > F i) E’ > F’
This operator models the truncation automaton that is similar to Schneider’'s automaton
(when considering only deterministic automata, e.g., see [4, 7]). Its semantic rule states
that if I’ performs the actiomn and the same action is performed By(so it is allowed
in the current state of the automaton), tHén F' performs the action, otherwise it
halts. The following proposition holds.

3We choose these symbols to denote four operators that have the same behavior of truncation, suppres-
sion, insertion and edit automata, respectively.



Proposition 1 Each sequences of actions that is an output ¢fuacation automata
(9, qo,0) is also derivable from» and vice-versa.

3.1.2 Suppression automatasg

ELEFLF E-%E F%F

EbsFﬁE/DSF/ El>5Fl>E’l>5F'
where—a is a control action not it ¢t (so it does not admit a complementary action).
As for the truncation automaton, i performs the same action performed byalso
E>g F performs it. On the contrary, i performs an action that £ does not perform
and E can perform the control actiona thenE > F' performs the action thatsup-
presseshe actiong, i.e.,a becomes not visible from external observation. Otherwise,
E g F halts. The following proposition holds.

Proposition 2 Each sequences of actions that is an output efippression automata
(9, qo,d,w) is also derivable froms and vice-versa.

3.1.3 Insertion automata:>;

ESE FSF ELE E™E FSF,
EviF S E o F Evs; FL B F

where+a is an action not inAct. If F' performs an actiom that alsoF can perform,

the whole system makes this action Fliperforms an action that £ does not perform
andF detects it by performing a control actiaru, then the whole system perform the
an actionb. It is possible to note that in the description of insertion automata in [4]
the domains ofy and ¢ are disjoint. In our case, this is guarantee by the premise of

the second rule in which we have that/- E’, E +ab B, In fact for the insertion
automata, if a paita, ¢) is not in the domain of and it is in the domain of it means
that the actior and the state are not compatible so in order to change state an action
different froma must be performed. It is important to note that it is able to insert
new actions but it is not able to suppress any action performefl.byhe following
proposition holds.

Proposition 3 Each sequences of actions that is an output dhsertion automata
(9, g0, 0,7) is also derivable fron»; and vice-versa.

3.1.4 Editautomata:>pg

In order to do insertion and suppression together we define the following controller
operator. Its rule is the union of the rules of theandr;.

ESXE F%F E%E F2%F ELE EBE%Ep rop
EvpF % EvpF' EvpF 5 EopF EvpFS Eog F

4This meansz =% E, _®, E’. However we considefa.b as a single action, i.e. the stdig is hide
and we do not consider it iber(E).
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This operator combines the power of the previous two ones. The following proposition
holds.

Proposition 4 Each sequences of actions that is an output ofdit automata
(9, qo,9,7,w) is also derivable from» ; and vice-versa.

It is important to note that we introduced the control actiemin the semantic ofg

and+a in the semantic af; in order to find operators that were as similar as possible to
suppression and insertion automata, respectively. Other definitions could be possible,
although some attempts we made failed on defining and tractable semantics.

4 Synthesis of controller programs

Exploiting our framework we can build a program controlfewhich allows to enforce

a desired security property for any target syst&mWe present an extension of [12].
Here we have four different operators and in particular we have to deal with control
actions.

Let .S be a system, and lef be one component that may be dynamically changed
(e.g., a downloaded mobile agent) that we consider an unknown agent, i.e. we do not
know what is the behavior oK. At the beginning we have the syste$fj X, and
we want that it enjoys a security property expressed by a logical forgule., v.X
(SIIX)\L = ¢. In order to protect the system we may simply check the correctness of
each procesX before it is executed or, if it is not possible (or not desirable), we may
define a controller that, in any case, forces each process to behave correctly.

We study here how to build a program controller in order to force the intruder to
behave correctly, i.e. as prescribed by the formuldhus, we want to find a control
programY such that:

VX (SIIY bk X\L [ ¢ ®)

By using the partial model checking approach proposed in [11], we can focus on
the properties ot >k X, i.e.:

WYX (Vg X) = ¢ 3)

where¢’ = ¢,,5\ . In order to manage the universal quantification in (3), we prove
the following proposition.

Proposition 5 For everyK € {T,S,1,E} Y bk X < Y[fk] holds, wherefk is a
relabeling function depending d{. In particular, f7 is the identity function o ct®
and

fs(a) Z{

a ifa€ Act

T ifa € {+a,—a}

a ifa€ Act fi(a) = a ifa€ Act
r ifa=-a T\WTY 7 ifa=+a

fe(a) Z{

Now we restrict ourselves to a subclass of equatipnehlculus formulae that is de-
noted byF'r,,. This class consists in equationacalculus formulae without.). It is

easy to prove that this set of formulae is close for partial model checking function. The
following result holds.

SHere the setdct must be consider enriched by control actions

11



Proposition 6 Let E and F’ be two finite state processes apda: Fr,,. If F < E then
EL¢=FE¢

At this point in order to check the equation (3) it is sufficient to check:

vV Yifkl = ¢

To further reduce the previous equation, we can use the partial model checking function
for relabeling operator. Hence, for evéye {T, S, I, E'} we calculatepy, = ¢’//[fK].
Thus we obtain:

E) D Q= 4)

In this way we reduce ourselves to a satisfiability problemu-calculus that can be
solved by Theorem 1.

5 Automated synthesis of Schneider’s controller opera-
tor

In this section we synthesize a maximal program contralléor the operatol” > X
by exploiting the theory developed by Walukiewicz in [13, 21].

We define the notion of maximal model w.r.t. the relation of simulation as follows:
a process is amaximal model for a given formulaiff £ = ¢ andVE’' s.t. E' |=
o, E' < E.

Informally, the maximal program controlléf is the process that restricts as less as
possible the activity of the targéf.

Usually the discovered model is a non-deterministic process. In order to find a
deterministic model we consider a subset of formulaé'of without\/.. This set of
formulae is called theniversal conjunctive:-calculus formulaev . uC' (see [6]).

Definition 5 The set , uC' of universal conjunctive.-calculus formulaés the largest
subset of equational-calculus formulae that can be written without either thep-
erator and the(_) modality.

Proposition 7 Given a formulap € V,uC, a maximal deterministic modél of this
formula exists.

Due to the fact that Schneider in his article [18] is interestedsice of executiorfs we
assume that the process with a good behavior is deterministic, i.e., we are interested in
properties of the forn{E|| X)\L < E\L whereFE\ L a deterministic process. Hence
the characteristic formula of, Xp' =, A,cac(lal(V . 4, XE7))), bECOMes
simpler becausg/ Xpn is reduced either toX . or to false. So it is in
VauC.

In order to apply our logical approach based on partial model checking we also
need to ensure that after the partial model checking phase for the characteristic formula

E":E'SEr

SFor anyE € & the setT'r(E) of traces associated Wit is Tr(E) = {vy € (Act\{r})*|3E’ :
E =% E'}.
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we still get a formula inv, uC' whose satisfiability procedure returns a deterministic
process. This actually holds.

Proposition 8 ([6]) VuC is closed under the partial model checking function.

Thus, by using the result in proposition 7, it is possible to find a maximal deterministic
model that synthesizes a controller operator to force a security policy, i.e. the synthesis
of a truncation automaton for a component that will allow the whole system to enjoy
the desired security property.

6 A simple example

Consider the process = a.b.0 and consider the following equational definitign=,,
[7]Z A [a][[c]]"F. It asserts that after every actiancannot be perform an action
Let Act = {a,b,c,7,a,b,¢} be the set of actions. Applying the partial evaluation
for the parallel operator we obtain, after some simplifications, the following system of
equation, that we denoted wifh:

Z)s =v 1127 Nal 2y, NalWyys AW,

W//s/ =y [T]W//S, /\_[b]W//O A\ [C}F

Z)15 =v (11275 N[0 Z)0 N1alW)

W//S =, [T]W//S A [EL]W//S, N [C}F

Zjjo =T

Wyp=T
whereS - 5’ 505" is b.0.

The information obtained through partial model checking can be used to enforce a
security policy. In particular, choosing one of the four operators and using its definition
we simply need to find a proce¥d fk |, whereK depend on the chosen controller, that
is a model for the previous formula. In this simple example we choose the controller
operaton-g. Hence we apply the partial model checking for relabeling funcfign
to the previous formula, that we have simplified repladitig,, andZ,,, by T. We
obtain thal’D//fS is:

Z)1s =v [=dZys NalZyy NaWy s AWy,

W//s’ =, [—C]W//s, /\Jb]T N [C]F

Z//s' =, [—C]Z//S, A\ [b]T A\ [a]W//s,

W//s = [—C]W//S A\ [d]W//s, A\ [C]F
We can note note the proce¥s = a. — ¢.0 is a model of“D//fs. Then, for any
componentX, we haveS||(Y >s X) satisfiesD. For instance, consideX = a.c.0.
Looking at the first rule of g, we have:

(S|(Y > X)) = (a.b.0]|(a. — c.0>5 a.c.0)) == (a.b.0[|(—c.0>g c.0))
Using the second rule we eventually get:

(a.b.0]|(—=c.0>5 c.0)) — (a.b.0[|0>5 0)

"We defing][c]]¢ as—((c))—¢ where((c)) is defined as follows{{e))¢p et uX.oV(TX, ((c))p =
() {e)((e)) o (see [17]).
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and so the system still preserve its security since the actions performed by the compo-
nentX have been prevented from being visible outside.

7 Discussion on enforcing techniques

7.1 Security automata

As we have already said, one way to enforce security properties is withnéor that

runs in parallel with thearget program (see [18]). A program monitor can be for-
mally modeled by asecurity automaton A security automatomlefined in [18] is a

triple (Q, o, §) whereQ is a set of stategy is the initial one and : Act x Q@ — Q,

where Act is a set of security-relevant actions, is the transition function. A security
automata processes a sequeage, ... of actions. At each step only one action is
considered and for each action we calculatedlobal state@’ that is the set of the
possible states for the current action, i.e. if the automaton is checking the agtion
then@" = U,cq d(ai, g). If the automaton can make a transition on a given action,
i.e. Q' is not empty, then the target is allowed to perform that step. The state of the
automaton changes according to the transition rules. Otherwise the target execution is
terminated. Thus, at every step, it verifies if the action is in the set of the possible ac-
tions or not. As we have already shown, in [7] four different kind of security automata
are defined. To study the cost in term of time of these security automata, we must
consider how much transition function costs. Since the security automata we consider
are deterministic (thu®’ would be either a singleton or empty), by using the standard
graphical representation through matrix, it is easy to understand that the cost in time
is O(1). Thus, given a sequence ofactions, we need(n) to check whether this
sequence is acceptable or not.

7.1.1 Enforceable properties with Security automata

Referring to [18], the truncation automata is able to enforce security property that cor-
responds to a safety property (according to [18], a property is a safety one, if whenever
it does not hold in trace then it does not hold in any extension of this trace).

Refer to [7] we consider theffectively enforcementThis definition of enforce-
ment uses a system-specific equivalence relationan executions that is reflexive,
symmetric and transitive. Moreover, any property that we might consider should not
distinguish equivalent sequences:

o0 = P(o) & P(o)
whereP is the property that we want enforce.

Definition 6 A automatonA with starting statey, effectively enforces property P
— —
on the system with action sdtt iff Vo € Act® 3¢’ Jo’ € Act:

1. (07 qO) £>A ('7q/)

- .
8 Act is the set of sequences of actions
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editing properties

insertion props suppression props

truncating props

Figure 1: A taxonomy oéffectivelyenforceable security properties

2. P(¢'),and
3. Plo)=>020.

The power of the four different kinds of security automata is different as we show in
Figure 1.

7.2 Model checking a path

A technique that is used in run-time verification is tim@del checking a path.e.,
solve the model checking problem on a single path instead on the whole model. It was
introduced by Markey and Schnoebelen in [9].

In particular, this technique is developed for model checking of linear time logic.
We recall some definitions, even if, we will not recall the syntax and semantict bf

Definition 7 A pathis a finite sequence of states= sg, s1,... where astateis a
valuations € 24% of the atomic proposition (namelyP). |7| € NU {w} denotes the
length ofr.

Let L alinear logic.

Path Model Checking for L (PMC(L)):

Input: given a path: and a temporal formula of L.

Output: yes iff u = ¢, no otherwise.

Using standard dynamic programming methods a path can obviously be checked
in bilinear time,O(|path| x | formulal). In particular, we recall here some important
results on linear temporal logic.

Theorem 2 ([9]) PMC(LT L) can be solved in tim&(|u| x |¢|) where¢ is an LTL
formula.

Theorem 3 ([9]) PMC(LTL + Past) can be solved in tim&(|u| x |¢|) whereg is
an LTL + Past formula.
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Logic: Relabeling

FOMLO PSPACE- complete
LTL PTIME — easy

LTL + Past PTIME — easy

LTL + Past + Now PTIME — complete
LTL + Chop PTIME — complete

Table 1: Checking richly expressing logics on paths

In [9] article, authors study the complexity of the model checking a path on linear
temporal logic and prove that for the first-order monadic logic of order the algorithm
is PSPACEcomplete. In [10], they prove that model checking a path of medal
calculus formulae has the complexity Of(|u| x |¢|*¢) wheread is the alternation
depth (when dealing with safety properties it is 1).

We show in Table 1 all the complexity results.

7.2.1 Enforceable properties with model checking (paths)

We can use this approach in order to enforce security properties. This technique permit
us to control if a target execution is correct or not. As we have already said, this
techniques was developed in order to deal with run-time verification.

The algorithm The behavior of the target is not known a priori. To every target
action is associated a new target state. Thus every time an action is performed a new
state is add to the path that have to be checked. Hence for every action wés{ply
on the new path. For example, let the sequence of states at timeWe can apply
path model checking on,. If the output is "yes” we allow that the target performs the
next actioru, otherwise we stop it. After an actianthe target goes in a new state ;
and the sequences of state becomgs and we repeat the same algorithm. Using
standard dynamic programming, that works by memorizing outputs that are obtained
at the previous step of the algorithm, the cost of this metha@djsath| x |¢|) where
¢ isaLTL formula.

We can note that this technique is developefifal formulae and, in [9], the au-
thors give the cost of the algorithm féf" L formulae and fol.T'L + Past formulae.

These two logics are suitable for express safety properties.

7.3 Comparison

It is easy to note that using this technique it is easy to implement a controller with the
same behavior of truncation automata. In fact, this technique permits to recognize a
bad action but it does not give any advantage to repair it. Security automata instead
allow us to modify the behavior of a target system to make it compliant with the policy.

9Take from [9]
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This is a main difference from a declarative policy language as logic instead of an
operational one as security automata.
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A Tables

In this section there are all the table whose references are in the paper. The first table
shows the operational semantics@€'S; the second one the equationatalculus.

The last two tables show how partial evaluation function works w.r.t. parallel, restric-
tion and relabeling operators respectively.

B Technical proofs

Lemma 3 Let E be a finite-state process and gk < be its characteristic formula
w.r.t. weak simulationthef’ < £ < F = ¢ <.
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Prefixing: ————
a.r — X

Choice: & — 2’ y—y
sty i rty-——y
a ’ a ’ l ] ’
Parallel: — 2 —1 y—9y rT—T y—y
/ / T / /
ally —a'ly  zlly — 2|y zlly — a'|ly
a /
Restriction: —Z——L
2\L — a'\L
a /
Relabeling:—%—>%

z[f] = 2'[f]

Table 2:GSOSsystem for CCS.

[T], =5 [FI, =0 [X],=p(X) [A1A A} =[Ai]} N [A],
[Ar v Ao, = [Au], U [A2]),  [{a)A], = {s|3s’': s = s’ ands’ € [A],}
[la]A], = {s|Vs":s % s’ impliess’ € 1Al }

We useLl to represent union of disjoint environments. lgebe the environment ( a
function from variables to values) amdbe in{yu, v}, thenoU.f(U) represents the
fixpoint of the functionf in one variabldJ.

[l =1 [X = AD'], = [D'J i)y U [U/X]

whereU’ = oU.[A]{,1,1/x)00 (1)) @00 (U) = [D'T v/ x))-

It informally says thathe solution to( X =, A)D is theo fixpoint solutionU’ of [ A]
where the solution to the rest of the lists of equatidhis used as environment

Table 3: Equationgl-calculus

Proof. In order to prove the following proposition we give the following chain:

F<E&Va F3F 3B E2EANF <F &
Vo FSF F =\ Xp Vo Flld(VXe) <
F = A(a(V XEg))

Before starting to prove proposition 1, 2, 3, 4, we note that in our controller operator
the halt condition is not roundly given because this occurs when there are not rule that
could be applied, i.e., when premises of all rules are not verify. As we have already
note, also in security automata described in section 2.5, the actiostop rule of each
automata is an internal action that is not really performed. So in our proofs, without
loss of validity, we can omit the stop case because the stop rule of each automata is
equivalent to the halt condition of respectively operator.

Proposition 1 Each sequence of actions that is an output &fuacation automata
(9, qo,0) is also derivable from»; and vice-versa

Proof: To simplify the notation,(o,¢) denotes a generic state of automata and
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(DI X)//t=(D//)| X¢ €//t=¢

(X =¢ AD)//t = ((Xs =0 A//$)seper(m))(D)//t X[/t =X,

[a]A//s = [al(AIS)NN, o, AJ/s' iTa#tT AL NAsf/s = (A1]/s) N (Az2//s)
(@)AJ)s = (a)(A)/s)V N, o, Al/s' iFaFT A1V As//s=(A1/[s)V (A2//s)
[T1A//s = [TI(AIS)N N\, =, AJ/s" NN\, =, [al(A //$)

()A[)s =(T)(A//s)VV -, Alfs TJ/s=T F//s=F

Table 4: Partial evaluation function for parallel operafgf-.

Restriction: Relabeling:

X/\L=X | X=X

@ane={ W OB @A = Vi g A1)
dajne={ JAND g ot (AN = Aoy DAL

AL A AsJ)\L = (ALJ/\L) A (A2//\L) AL A AsJ1f] = (AL A (s 1)
A1V AsJ)\L = (A ALYV (Aa/\L) AV Ao 1] = (A1) v (Ao (F))
T/\L=T T//[f| =T

F//\L=F F//[]] = F

Table 5: Partial evaluation function for restriction and relabeling operator.

E>r F ageneric state of the process. In order to define a relation of strong bisimulation
Rr, we underline that every couple, ¢) of the suppression automata dependjon

As the proces# is a constant, also it can depend on this function. So we defiote
with E4. This process has the following definition:

EY=a.E" iff 6(a,q)=¢
Now we can defin& ¢ in the following way:
Ry = {((0,q), E's1 F) : (0,q) € Act x Q, F %}

Assume tha{o, q) ——1 (o/,¢'). For the semantic rule ofy, if £ - EY and
F % F' perform the action alsoE? > F -2 EY sp F andF’ &L
Now assume thak? >, F -2 E7 > F' and F” 2. This means that(a,q) = ¢
ando = a;0’. We should prove that exists (@, q)’ s.t. (0,q) ——r (0,q)" and
(B9 >p F', (0,q)") € Ry. For the rule T-Stefo, ¢) ——1 (¢, ¢'). So the couple that
we are looking forigo”’,¢’). O
Proposition 2Each sequence of actions that is an output sfippression automata
(9, qo, 0, w) is also derivable fron»s and vice-versa
Proof: The scheme of the proof and the notation are the same of the previous one.
Every couple(o, ¢) of the suppression automata dependd@ndw hence we denote
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FE with E9* and define it as follows

o QB9 iff w(a,q) = +andd(a,q) = ¢
- —a. BT iff w(a,q) = — andd(a,q) = ¢’

Now we can defin&R g in the following way:
R ={((0,9), B bs F) : (0,q) € Act x Q, F %}

We have two cases: the first one is similar of proposition 1 in fact(¢ely), E2“>g F)
be inRs and(0,q) ——s (¢’,¢'). We should prove that exists(@?* b5 F)' s.t.
Bt pg % (B >g F) and((o',q), (B bg F)') € Rs. By the first rule
of >g and by definition ofE/%*, using a similar reason of the proof of proposition 1,
we trivially have the thesis. On the other hand,(B¢“ g F (o,q)) be inRs and
Ev@ngF -4 B7«g F'. We should prove that existga, ¢)’ s.t. (0, ¢) ——s (o, q)’
and (EY“ g F’,(0,q)") € Rs. For the rule S-StepA we have that’, ¢') is the
solution we are looking for. The reasoning is similar to the previous one.

Now, let ((c,q), B >g F) be inRg and (o, q) —s (¢',¢'). We should prove
that exists d E9% g F)' s.t. B9% bg F —— (B9 g F) and((0’,¢'), (B bg
F)) € Rs. We have, by the second rule e and by the definition oz, that
if o =% B andF - F' thenE% pg F - E7% g F'. We have also
F'% So((0,¢'), B bg F') € Ry trivially.

Now assume thatE?* >g F, (0,q)) be inRg and B9« bg F — E9% pg F/,
Remembering that neithdf nor F' can perform the actiom, this transection means
thaté(a, q) = ¢’ andw(a, ¢) = —. We should prove that existga, ¢)’ s.t. (¢, ¢) —5
(0,9) and(EY“ g F',(0,q)') € Rg. For the rule S-StepS we have that, ¢) is
the solution we are looking for. The reasoning is similar to the previous©ne.

Proposition 3 Each sequence of actions that is an output dfigertion automata
(9,40, 6,7) is also derivable from»; and vice-versa

Proof: The scheme of the proof and the notation are the same of the previous one.
Every couple(o, g) of the suppression automata dependyand~ hence we denote
E with E%7 and define it as follows.

E?Y = a.B9 iff 5(a,q) =¢
= +a.b. BT iff v(a,q) = (b,q)
Now we can defin&; in the following way:
Ry = {((0,q), B >, F) : (0,q) € Act x Q, F %}

We have two cases: the first one is similar of proposition 1 in fact(dety), E 7>,
F)beinR; and(o,q) —=; (o/,q'). We should prove that exists(&¢" >; F)’ s.t.
B > F % (B9 »; F) and((o,¢'), (E%Y >; F)') € R;. By the first rule of
>; and by definition ofE£'47,using a similar reasoning of the proof of proposition 1,
we trivially have the thesis. On the other hand, (B¢ >; F, (0,q)) be inR; and
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Ee7s; F % B4 F'. We should prove that existsa, )’ s.t. (o, q) ——; (0, q)’
and(E?Y>r F', (0,q)") € R;. Forthe rule I-Step we have th@at’, ¢') is the solution
we are looking for. The reasoning is similar to the previous one.

Now let((c,q), E?Y >; F) be inR and(o, q) LI (0,¢"). We should prove that
exists d E47pr F) st. E¢7p F LN (B> FY and((o,q¢), (E*">r F)') € Ry.

We have, by second rule of and by to the definition of£%, that if E47 /£ E97,

Eev T2 pad'v andF -% F’ thenE9Y b; F -2 E97 b F. So(E%Y by F)' is

EY7 s Fand((o,q), B9 b; F) € Ry trivially.
Now, let(E%V >y F, (0,q)) beinR;yandE4Y >, F b, B9, F. this means that

o = a;0’ and~(a, q) = (b,q"). We should prove that exists(a, ¢)’ s.t. (¢, q) LN
(0,9) and(EY7 > F,(0,q)') € R;. For the rule I-Ins we have that, ¢') is the
solution we are looking for. The reasoning is similar to the previous @Gne.
Proposition 4 Each sequence of actions that is an output ofealit automata
(9, qo,9,7,w) is also derivable from»; and vice-versa
Proof: In order to prove this lemma, we give the relation of bisimulation which
exists between edit automata and the controller operator

FOVw — a. BT 7w iff 5(a,q) = ¢ andw(a,q) = +
- —aq. BT iff 5(a,q) = ¢ andw(a,q) = —
- +a.b. B9 iff v(a,q) = (b,q")

We defineR i in the following way:
R ={((0.q), B*™ > F) : (0.q) € Act x Q.%o F € P,F %)

We have three cases ad their proof following the reasoning made in the proof of lemma
2 and lemma 3. In fact:

e —Let((0,9),E®*>p F)beinRg and(o,q) ——x (¢’,¢'). We should
prove that exists 4£97% b F) s.t. B9 b F - p (B9 g F)
and((¢’,q¢"), (B bg F)') € Rg. We have, by the first rule ofg
and by definition ofE%7« | that if E27 —%,, E4w and F -2 F’
then 97 b F — 47 by F'. Now F/ \%. So(E%7% b F)' s
ETYY g Frand((o/,q¢'), ET7Y g F') € R trivially.

— Let (B9"% by F,(0,q)) be inRg and B4 g F -2 E170% sy BV
We should prove that exists(a, )’ s.t. (0, ¢) —— (0,¢)’ and(EY""¢ b
F’, (0,q)") € Rg. Forthe rule E-StepA we have th@t, ¢’) is the solution
we are looking for. The reasoning is similar to the previous one.

e —Let((0,q9),E"* >y F)beinRg and(o,q) —x (¢/,¢'). We should
prove that exists 4£97* b F)' s.t. B4 pp F 1 (B9 bp F)
and((¢,¢"), (E*" >g F)) € Rg. We have, by second rule ofg
and by the definition of29:7-, that if E47« —% E47« andF -2 F’
then B4 by F B4 >p F'. Now F %' S0 (B9 b FY is
ET 7% pp F and((o’,q'), BTV b F') € R trivially.

22



— Let (E®"“ sy F,(0,q)) beinRg and B9 g F —— B9« /. We
should prove that exists @, ¢)’ s.t. (0,q) —. (0,¢)" and (E®7* pp
F’' (0,q)") € RE For the rule E-StepS we have that, ¢’) is the solution
we are looking for. The reasoning is similar to the previous one.

o —lLet((o,9),E?"" >R F)beinRg and(o,q) L (0,q¢"). We should

prove that exists §£97“ by F)' s.t. E¢7% g F LN (B9 pp F)
and((o,¢'), (E*"“ >g F)') € Rg. We have, by third rule of z and by

the definition of E47« that if B9V A pdvw pove 100 pdayw
andF -% F' thenE4" by F -2 B9 g F. So(E9Y by F) is
ET7% g Fand((o,¢'), E7 7 g F) € R trivially.

— Let (B9 by F, (0,q)) be iNRg and B4« by F -2 179 by F.

We should prove that exists(a, ¢)’ s.t. (0, q) LN (0,q)" and(EY by
F,(0,q)") € Rg. For the rule E-Ins we have thét, ¢') is the solution we
are looking for. The reasoning is similar to the previous one.

|
Proposition 5 For everyC € {truncation, suppression, insertion, egthe follow-
ing relation holds
Y D> X = Y[f/c]

where fx is a relabeling function definition of which depend/on
In order to prove this proposition we prove the following four lemmas. The proof
of the proposition comes from these.

Lemma 4 The following relation holds
Yor X 2 Y[fr] (5)
where fr is the identity function.
Proof: We prove that the following relation is a weak simulation.
Sr={(Evr F,E[fr))|E,F €&}

Note that beingfr the identity function we could omit it without loss of generality.
Assume thaF > F = E'>p F' with the additional hypothesis that = F’ then,
by the rule of>r we have tha®? = E’ and, obviously(E’ > F', E') € Sy. O

Lemma 5 The following relation holds

Vs X 2Y[fs] (6)
where .
a={ 2 focte
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Proof: We prove that the following relation is a weak simulation.
Ss ={(Evs F,E[fs])|E, F € &}

There are two possible cases: the first one is whieny F' performs the action. The
proof of this case is the same of the proof of lemma & s FF — E’1g F’ means
that E —% E’ and F perform an actior: that £ should not perform. Applying the
relabeling functionfs to £ we obtainE, = E[fs] s.t. By == FE). whereF} is
E'[fs]. Hence(E' bg F',E}) € Sg. O

Lemma 6 The following relation holds

Yo X 2Y[fi] (7)
where
a ifac Act
fl(a){ T ifa=+a

Proof: We prove that the following relation is a weak simulation.
SI = {(EDI FaE[fI])|EaF € 5}

There are two possible cases: the first one is whien F' performs the action. The
proof of this case is the same of the proof of lemma 4 f; F’ LNy o > F' means

that E =% £’ and F perform an actior: that £ should not perform in order to go

in the stateE’. Applying the relabeling functiorf; to F we obtainE; = E[f;] s.t.
B, =% Ej. whereE] is E'[f1]. Hence(E' >; F', E'1) € §;. O

Lemma 7 The following relation holds

Yop X 2Y(f5] 8
where . )
a ITa€ Act
fE(a)_{T ifa € {—a,+a}

Proof: We prove that the following relation is a weak simulation.
Sp={(Evp F.E[fp])|E, F € £}

There are three possible cases: the first one is whem F' performs the actiom.
The proof of this case is the same of the proof of lemma 4. the other two case is the
following:

e EvpF - E'vp F'wewantto find &' [fz] s.t. E[fg] — E|[fz]'. Referring
to the second rule of the edit automata we seefhat, ' — E’ > F’ when
E =% E'. Through the relabeling functiofi; we haveE[fr] — E'[fz] and
(E'vp F', E'[fE]) € Sk.
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o EvpF - E'vp F we wantto find &' [fe| st E[fE] N E[fg]. Referring

to the last rule of edit automata we see tRhat; I LN E'>p FwhenE tab pr.

Through the relabeling functioriz we haveE|fx)] = E'[fg] and (E' >g
F,E'|fp]) € Sp

O Proposition 6 Let E and F' be two finite state processes apd= F'r,. If ' < E
thenE = ¢ = F = ¢.

Proof: A translation from equational-calculus to moda):-calculus is possible
[1]. So first of all we consider the modal formula associated with the given forgula
then the proof may be divided in two part. Former we prove the proposition holds for
the formulae of modal:-calculus without recursion operator, latter we extended the
results also tuX.¢ andv X.¢.

The first part is very similar to the proof proposed by Stirling in [19] that is made
by induction on the structure of the formua The base case is clear. For the inductive
step first suppose = ¢ A ¢o and that the result holds for the componeftsandg,.

By the definition of satisfaction relatiohl = ¢ iff E = ¢; andE |= ¢. By inductive
hypothesist' = ¢, andF = ¢, thenF' = ¢. A similar argument justifies the case

® = ¢1V ¢o. Next suppose = [a|p; andE = ¢. Therefore for any’ s.t. E = E’

it follows that E’ = ¢;. Let F % F’ we know that for somé®’ there is the transition

E 2 E' andF’ < FE', so by inductive hypothesi®’ |= ¢; and soF = ¢. Now we
have to prove that i) = uX.¢, or ¢ = v X.¢; the proposition holds. Referring to the
definition of minimum and maximum fixed point we can consider these as inductive
limit (the union) of formulae likeuX®.¢,, whereuX%.¢; = F anduX°tl.¢; =

&1 [uX*.¢1/X], andv X*.¢; wherer X0.¢; = T andvX®l.¢; = ¢ [v X .01/ X].

In this way E = uX.¢, iff £ = pX*.¢, forsomea iff E = \/_ (uX“.¢1) and
EE=vX.¢ iff EEvX*.¢ foralaiff E = A, (vX“.¢1). Inthe former case we
have a sequence of disjunction and in the latter we have a sequence of conjunction. We
can apply again the argument of the first part of the proof.

Proposition 7: Given a formulap € V,uC, a maximal deterministic modél of
this formula exists.

In order to prove this proposition we introduce the following notions.

B.1 Canonical structure

The vocabulary of the-calculus is extended by a countable B&onsof fresh sym-

bols that will be referred to adefinition constanaind usually denotet, V, - - - (see
[21]). These new symbols are now allowed to appear positively in formulae, like propo-
sitional variables. Adefinition listis a finite sequence of equation® = ((U; =
UlX.Oél(X)), s, (Un = O'nXCKn(X)) WhereUl, s, U, € DCons andaiX.ai(X)

is a formula such that all definition constants appearing;iare amond/,--- ,U;_1.
We assume thdl; # U; anda; # «; fori # j. If ¢ < j thenU; is said to be older
thant.

A tableau sequeris a pair(I', D) whereD is a definition list and” is a finite set
of formulae such that the only constants that occur in them are thoseZfroive will
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denote(T', D) by T Fp.

A tableau axiomis a sequent’ -p such that some formula and its negation occurs
inT.

Below we present the set of rules for constructialgleau Let S be the following
set of tableau rules:

(cons)% whenever(U = o X.a(X)) € D
() % whenever(U = uX.a(X)) € D

) % whenever(U = vX.a(X)) € D
’ I'kp

(@l () ({3 [Fel}rp :(@acl]

where in the last rule each formulalihis a propositional constant, a variable, a nega-
tion of one of them or a formula of the forgb)3 or [b]5 for some actiorb and a
formulag.

Observe that each rule, excépt) or (all ()), has exactly one premise.

The systens,,,q is obtained fronsS by replacing the rul¢or) by two rules 6r. ¢+)
and(or,;gn:) defined in the obvious way.

The systemsS,.; is obtained fromS by replacing the rulgali()) by the rule

(a)a, T Fp , - :
) o {B:[FcTTFp with the same restrictions on formulaelires in the case

of (all()) rule.

Definition 8 Given a positive guarded formulg, a tableaufor ¢ is any labeled tree
(K, L), whereK is a tree andL a labeling function, such that

1. the root of K is labeled with¢ -p whereD is the definition list of;
2. if L is atableau axiom then is a leaf of K;

3. if L(n) is not an axiom then the sonsiofn K are created and labeled according
to the rules of the systeth

A quasi-modebf ¢ is defined in a similar way to tableau, except the syst&ry, is
used instead of and we impose the additional requirement that no leaf is labeled by
a tableau axiom. Ayuasi-refutatiorof ¢ is defined in a similar way to tableau, except
the systemS,..; is used instead of and we impose the additional requirement that
every leaf is labeled by a tableau axiom.

Let P = (v1,ve,---) be a path in the tre&. A trace 7r on the pathP is any
sequence of formula&y; };c; such thai; € L(v;) anda;44 is eithera;, if formula
a; was not reduced by the rule appliedi or otherwisey,; ; is one of the formulae
obtained by applying the rule t®;.

A constantlU regenerate®n the traceZ r if for somei, a; = U anda;+; = a(U)
where(U = 0 X.a(X)) € D. The traceT r is called av-trace iff it is finite and does
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not end with a tableau axiom, or if the oldest constant in the definitiorDlisthich
is regenerated infinitely often ofir is av-constant. Otherwise the trace is called a
u-trace.

Definition 9 A quasi modeP M is calledpre-modeiff any trace on any path aP M
is av-trace.

A quasi-refutation ob is called arefutationof ¢ iff on every path of there exists a
u-trace.

Definition 10 Given a pre-modeP M, thecanonical structuréor P M is a structure
M = (SM RM pM) such that

1. SM s the set of all nodes G? M which are either leaves or to whichi{()) rule
was applied. For any node of P M we will denote by, the closest descendant
of n belonging taS™M.

2. (s,8') € RM(a) iff there is a sonn of s with s,, = s, such thatL(n) was
obtained fromL(s) by reducing a formula of the fordu) .

3. pM(p) = {s : p occurs in the sequeri(s)}.

In the following we assume pre-models (and so canonical models) that are built
using quasi-models where ther(. ;) is applied only if the ¢r,;4x+) fails to provide a
pre-model. With this assumption, since we will apply the canonical model only to one
kind of formula with disjunction, we may control which branch will be followed and
so the kind of canonical model generated.

Proposition 9 ([21]) If there exists a pre-modé? M for a positive guarded sentence
¢ theng is satisfiable in the canonical structure f&M.

B.2 Proof of proposition 7

Lemma8 Let¢ € V uC andy = X whereX =, A 4. ([0]F V (@) X A [a]X)).
If ¢ is satisfiable therp A v is satisfiable.

Proof: The formulaX =, A, 4. ([o]F V ({a) X A [a] X)) or its equivalent formu-

lation in modalu—calculusv X. A . 4., ([o]F V ((a) X A [a] X)) holds in every state

(i.e. itis a tautology) and so i is a model ofp thenE is also a model fot). To prove

thaty is a tautology one can build a refutation for its negation usingSthe tableaux.
a

Lemma9 LetE’ = ¢ with ¢ € V,uC. Then the canonical modél of ¢ A ¢, is such
that £’ < E.

Proof: We define the following relation:
R={(E E)3¢,E' = ¢ €eVuC andE = ¢ A1)

andFE is the canonical structure fgrA ¢}
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and prove thaR is a simulation.

Suppose thak’ %> E}, E' = ¢ andE} = ¢’ for some¢’ € V,uC. As a matter
of fact, due to the specific assumptions we have ome may rewrite it in an equivalent
form ¢* asAqcact[a]da. Thusg’ would be equivalent ta,, andg,, is not equivalent
to F (since it has a moddt”).

In the canonical model (that must exist singe\ v is satisfiable) the possibility
is to choose theof,;41+) and soE will do an « action reaching another state that is
a model fory and is also a model fop,,, see ruleall in the tableaux construction.
As a matter of fact the initial tableaux contruction exactly ptita the desired format
before applying the reduction. ]

Proof of proposition 7 It is necessary to prove that suéhis a model forg, that
it is a maximal model and that it is a deterministic process. By Lemma A.1 it follows
that £ is a model forg. Being E' the canonical structure, it is easy to note that it is
deterministic because it performs only one actfonand so every rule that permits to
construct it has only a premise (see ralf. The maximality follows from Lemma
A2

|
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