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Chapter

Clustering

Abstract

Clustering is a widely used technique to partition data imbgeneous groups.
It finds applications in many fields from information retid\o bio-informatics.
The main goal of clustering algorithms is to discover thedbiu structure of data
and group them without any a-priori knowledge of the data @amClustering is
often used for exploratory tasks.

The intuition behind partitioning data is that if two objeetre closely related
and the former is also related to a third object, then moriklso the latter has
a similar relation. This idea is known as thister hypothesis

In this chapter we survey the principal strategies for elusy, the main clus-
tering objective functions and related algorithms, themakgifinitions for similarity
and the clustering validation techniques.
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Introduction to clustering

1.1 Introduction to clustering

Clustering is a technique to split a set of objects in growes $hatsimilar objects
are grouped together, while objects that are not similarifiatlifferent clusters.
The choice of the notion of similarity (or distance) amonggeots that are needed
to be clustered is of crucial importance for the final result.

Clustering algorithms have no a-priori knowledge aboutdhta domain, its
hidden structure and also the number of hidden classes ichvetata are divided
is unknown. For this characteristic, clustering is oftefemed as un-supervised
learning in contrast to classification (or supervised legnin which the number
of classes is known and for each class a certain number offg®arare given.

The independence of clustering algorithms from the dataailoiis at the same
time the secret of its success and its main drawback. In face £lustering does
not need any a-priori knowledge of the data domain, it candpied to a wide
range of problems in different application areas. In catirgeneral purpose pro-
cedures do not allow to apply (even trivial) problem dependgptimizations and
consequently they typically perform worse then ad-hoctgmis.

1.1.1 Metric space for clustering

The choice of how to represent the data objects one wantsstec| together with
the choice of the clustering strategy, is critical for thestéring result. The repre-
sentation schema depends from the type of data we are warking some fields
de-facto standards are widely used.

In text retrievalthe vector space model is the most commonly used. Documents
in this model are represented as vectors of weighted teriteddaag of words
For weighting, many approaches are used: binary schemahfchwhe weight of
a term is O if the term does not appear in the document, 1 otbeywthe tf-idf
scoring and so on. Imideo retrievalframes are represented as vectors in the HSV
color space. Iio-informatics DNA microarrays are matrices in which each gene
is stored in a row and each column corresponds to a probe.

In all the above cited cases, a set of objegts- {o1,...,0,} are represented
with m-dimensional vectors which are stored in a matkik of n rows andm
columns, wheren is the number of objects in the corpus whiteis the number
of features of the objects. These vector spaces endowedavdistance function
define a metric space. The most widely used distance fursctice

e Cosine similarity: it is defined as the cosine of the angle betwegando,,.
More formally

5(0g, 0p) = —2a % _
h [[oall - llowll

A distance can be easily derived from cosine similarity by:

d(0g,0p) = /1 — 5%(04,0p)
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The most important property of cosine similarity is thatdied not depend
on the length of the vectors(o,, o) = s(«og, 0p) for a > 0. This property
makes the cosine similarity widely used in text informatretrieval.

Jaccard coefficient:in its basic form it is defined as:

#(Oa N Ob)
#(Oa U Ob)

whereo, N oy, is the set of features in common betwegrando, ando, U oy,
is the total set of features (this approach assumes binatyrés). Many
variants of the Jaccard coefficient were proposed in theatitee. The most
interesting is the&seneralized Jaccard Coefficie(BJC) that takes into ac-
count also the weight of each term. It is defined as

J(0g,0p) =

miny”; (0q,i, 0p.;)

GJC(04,0p) =

max?ll (Oaﬂ‘, Obﬂ')

GJC is proven to be a metri€harikar, 2002 The Generalized Jaccard Co-
efficient defines a very flexible distance that works well witith text and
video data.

Minkowski distance: it is defined as:
Ly(0a,05) = (Y _ |00 — op,P)"/?
i=1

It is the standard family of distances for geometrical peaid. Varying the
value of the parameter, we obtain different well known distance functions.
Whenp = 1 the Minkowski distance reduces to the Manhattan distanme. F
p = 2 we have the well known Euclidean distance

L(0a,08) = | > _(0ai — 0b,)?

=1
Whenp = oo this distance becomes the infinity norm defined as:

Lo (0a7 Ob) = I?jalx(oa,ia Ob,i)

Pearson correlation:it is defined as follows:

P(o. 0p) > kit (0ak — pta) (b1 — 1p)

as - ™m )
\/Zkzl(oa,k — Ha)? - \/Z?ﬂ(ob,k — p)?

where ., andy;, are the means af, and oy, respectively. Pearson coeffi-

cient is a measure of similarity. In particular it computhe similarity of
the shapes between the two profiles of the vectors (it is rmistoagainst
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outliers - potentially leading to false positive, assigntngh similarity to a
pair of dissimilar patterns -, it is sensible to the shapertmitto the mag-
nitude). To compute a distance, we defifig ,, = 1 — P(0q4,0p). Since
—1 < P(o04,bp) < 1, for all o,, 0y, we haved < d,, ,, < 2. This distance
is not a metric since both the triangular inequality and $elf-distance
(do, 0, = 0) do not hold. However, the square rootlef P(o,, o) iS propor-
tional to the Euclidean distance betwegnando, [Clarkson, 2005 hence
only the small self-distance condition fails for this vartiszand metric space
methods can be used.

1.2 Clustering strategy

Clustering algorithms can be classified according with ndiffgrent characteris-
tics. One of the most important is the strategy used by tharisthgn to partition the

space:
e Partitional clustering: given a seO = {oy,...,0,} of n data objects, the
goal is to create a partitiof = {cy, . .., ¢; } such that:
-Vie[lL,kl ¢ #0
- Uf:l ¢ =0
- Vi,je[LklNi#] ciNe; =0
¢ Hierarchical clustering: given aseO = {o4,...,0,} of n data objects, the

goal is to build a tree-like structure (calleéndrogramy H = {h1,...,hq}
with ¢ < n, such that: given two clusters € h,, andc; € h; with Iy
ancestor of,,, one of the following conditions hold; C ¢; orc;N¢; =0
foralli,5 #i,m,l € [1,q].

Partitional clustering is saidard if a data object is assigned uniquely to one

cluster,soft or fuzzy when a data object belongs to each cluster with a degree of

membership.

1.2.1 Partitional clustering

When the data representation and the distance fundtlmave been chosen, parti-
tional clustering reduces to a problem of minimization ofigeg target function.
The most widely used are:

e K -centerminimizes the maximum cluster radius
min max max d(z, C;)

J  xEc
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e K-mediansminimizes the sum of all the point-center distances

min Z Z d(z, 115)

S

e K-meansminimizes the sum of squares of inter-cluster point-cedier

tances
miny_ Y (d(x, 1y)?
J TEC;
whereC' = {c,..., ¢} arek clusters such that’; is the center of thg-th

cluster andy; is its centroid.
For all these functions it is known that finding the global miam is NP-hard.
Thus, heuristics are always employed to find a local minimum.

1.2.1.1 FPF algorithm for the k-center problem

As said in 1.2.1 one of the possible goal for partitional @tisg is the minimiza-
tion of the largest cluster diameter solving theenter problem. More formally
the problem is defined as:

Definition 1. The k-centers problem: Given a setD of points in a metric space
endowed with a metric distance functidpand given a desired numbkeof result-
ing clusters, partitiorO into non-overlapping clusters, ..., Cy and determine
their “centers’cy, ..., ¢ € O so thatmax; max,cc; d(w, ¢;) (i.e. the radius of
the widest cluster) is minimized.

In [Feder and Greene, 1988 was shown that thé&-center problem is NP-
hard unless? = NP. In [Gonzalez, 1985; Hochbaum and Shmoys, 138®-
approximated algorithms are given.

The FPF algorithm Given a seD of n points, FPF increasingly computes the set
of centersc; C ... C ¢ € O, whereC}, is the solution to thé-center problem
andC; = {c } is the starting set, built by randomly choosingin O. At a generic
iteration1 < i < k, the algorithm knows the set of centérs_; (computed at the
previous iteration) and a mappingthat associates, to each paing O, its closest
centeru(p) € C;_1. Iterationi consists of the following two steps:

1. Find the poinip € O for which the distance to its closest centéfy, 1.(p)),
is maximum; make a new center; and letC; = C;_1 U {¢; }.

2. Compute the distance of to all points inO \ C;_; to update the mapping
u of points to their closest center.
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After k iterations, the set of centers, = {ci,...,c;} and the mapping:
define the clustering. Clusté; is the set of point§p € O \ Cj such thatu(p) =
¢}, fori € [1, k]. Each iteration can be done in tinfi&n ), hence the overall cost
of the algorithm isO(kn). Experiments have shown that the random choice, of
to initialize C; does not affect neither the effectiveness nor the efficieidhe
algorithm.

EPE:

Data: Let O be the input sets the number of clusters

Result C, k-partition of O

C = z such thatz is an arbitrary element ap;

fori=0;71<k;i++do

Pick the element of O \ C furthest from the closest elementdh
Ci=Ci=u;
end
forall z € O\ C do
| Letisuchthati(c;,z) < d(cj,x),Vj # i C;.append£);
end
Algorithm 1: The furthest point first algorithm for thie-center problem.

1.2.1.2 K-means

The k-means algorithn{Lloyd, 1957 is probably the most widely used in the
literature. Its success comes from the fact it is simple tplément, enough fast
for relatively small datasets and it achieves a good qudltg k-means algorithm
can be seen as an iterative cluster quality booster.

It takes as input a roughclustering (or, more precisely,candidate centroids)
and produces as output anotiteclustering, hopefully of better quality.

K-means, as objective function, attempts to minimize the sittme squares of
the inter-cluster point-to-center distances. More pedgighis corresponds to par-
tition, at every iteration, the input points into non-oagbing clusterg’;, ..., Cy
and determining their centroids, ..., ux So that

k
> D ()’

j=1zeCj
is minimized.
It has been showfSelim and Ismail, 1984that by using the sum of squared
Euclidean distances as objective function, the procedumgerges to a local min-

imum for the objective function within a finite number of iégions.
The main building blocks of-means are:

e the generation of the initial £ candidate centroids In this phase an initial
choice of candidate centroids must be done. This choiceitic tecause
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both the final clustering quality and the number of iteradioeeded to con-
verge are strongly related to this choice. In the next seeti@will survey the
most important initialization strategies. A more complstevey and com-
parison can be found iiBradley and Fayyad, 1998; Peégal., 1999.

e the main iteration loop: In the main iteration loop, given a set #fcen-
troids, each input point is associated to its closest ciehtemd the collec-
tion of points associated to a centroid is considered assietluFor each
cluster, a new centroid that is a (weighted) linear comimmabf the points
belonging to the cluster is recomputed, and a new iteratanmss

¢ the termination condition: Several termination conditions are possible; e.g.
the loop can be terminated after a predetermined numbee@tivns, or
when the variation that the centroids have undergone inasieiteration is
below a predetermined threshold.

The use ofk-means has the advantage that the clustering quality iglistea
enough good in different settings and with different datasisThakes:-means the
most used clustering algorithm. Due its importance, thera vast literature that
discusses its shortcomings and possible improvementg tioatsic framework.

A lot of efforts was spent to reduce tlhemeans computational time that de-
pends on the size of the dataset, the number of desired rdlumte the number
of iterations to reach convergence. Some methods attenugetolever data struc-
tures to cache distancf8lkan, 2003; Smellie, 20Q4others exploit the triangular
inequality for avoiding distance computatiof®hillips, 2002. For small datasets
or when only few iterations are enough to achieve the desitgput quality, the
performance ok-means is acceptable, but for nowadays needs clusterimghas
become a shortcoming.

Another well-known shortcoming is that some clusters mayhee empty dur-
ing the computation. To overcome this problem, the “ISODAIFou and Gonza-
lez, 19771 technique was proposed. Essentially when a cluster becemesy,
ISODATA splits one of the “largest” clusters so as to keepribmber of clusters
unchanged.

Initialize k-means Essentiallyk-means accepts as input an initial clustering that
can be made with any clustering algorithm. It is well-knovmattthe quality of
the initialization (i.e. the choice of the initiagl centroids) has a deep impact on
the resulting accuracy. Several methods for initializkixgheans are compared in
[Bradley and Fayyad, 1998; Pe@gal. 1999. The three most common initializa-
tions are:

RC The simplest (and widely used) initialization femeans is the one in which
the initial centroids are &xdomly hosen among the input points and the

INote thatk-means is defined on vector spaces but not in general on rp&@s, since in metric
spaces linear combinations of points are not points themsel
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remaining points are assigned to the closest centroid. 8hdtmng clustering
is often referred aseandom clustering

RP In the_ Random_Rrturbation, for each dimensiaf} of the space, the distri-
bution of the projections od; of the data points is computed, along with its
meany; and its standard deviatios;; the £ initial centroids are obtained
throughk perturbations, driven by thg;’s ando;’s, of the centroid of all
data pointdPefiaet al, 1999.

MQ MacQueen’s[MacQueen, 19@7proposed a variant df-means: the initial
centroids are randomly chosen among the input points, amdetimaining
points are assigned one at a time to the nearest centroiccaatdsuch as-
signment causes the immediate recomputation of the cdntnmlved. Then
k-means is initialized with the resulting clustering. Siceas experimen-
tally shown that this initialization achieves generallyaod quality in con-
siderably less time thak-means, this initialization is often used in place of
the standard-means and it is often referred ase-pass:-means.

1.2.1.3 PAM: partition around medoids

Partition around medoidEKaufman and Rousseeuw, 199@as introduced by
Kaufman and Rousseeuw. PAM introduces the conceph@doid A medoid is
a point of the input, it means that PAM is particularly suieam all those cases
in which the concept of centroid in not well defined. Moregwemany cases, the
more the number of objects increase, the less centroidstéene representative;
instead medoids are not affected by this problem.

PAM builds ak-clustering and it can be described as follolidgy and Han,
1994:

1. Select a set df random input object® = {0y, ...0x},
2. for each input object ¢ O compute the cost functiohC'(z, o;),
3. select the pair of objectsando; that minimizeT'C,

4. if TC(z,0;) < 0replaceo; with 2 and restart from step 2.

The final clustering is obtained using the objeetsas cluster centers and as-
signing the input points to the cluster with the nearesterent

PAM is computationally expensive, in fact there &ne— k) different pairs of
object for each of thk medoids. It means that for each iterati®d@' is computed
k(n — k) times. Due to its computational cost, many variations armfbpmaance
improvements were proposed in the literatliftbang and Couloigner, 2005
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1.2.1.4 SOM: self organizing maps

Self organizing Map$Kohonen, 200llwere introduced by Teuvo Kohonen as sub-
type of artificial neural networks used to produce low diniemal representation
of the training samples while preserving the topologicaperties of the input
space.

INPUI VALUES

WEIGHT
MATRIX FEATURE MAP

Figure 1.1. A simple 3 x 3 self organizing map.

A self-organizing map is a single layer feed-forward netwydthat is a network
without direct cyclic paths. Neurons are arranged in a loweisional grid (typ-
ically two-dimensional or tridimensional). Each neurors lagsociated a vector of
weightsw; = {w;1,...,w;m} of the same size of input vectors. There are two
main ways to initialize the weights vectors:

e using small random values,

e using a random perturbation from the subspace spanned hwthiargest
principal component eigenvectors. This initializationsvgiown to speed up
the training phase of the SOM because they are already a ggpodxdma-
tion of the SOM weights.

Self-organizing maps work in two phases:

e training: the training phase can be seen as the process in which the sel
organizing map attempts to adapt the weight vectors of ileado the train-
ing data. For this purpose a large number of examples mustdm finput.

If a training set is not available the input data are ofterdusdrain the net-
work. The training algorithm is based orcampetitive learningapproach:
when a new sample(t) is presented to the network it is compared with all
the weights vectors and the neuron with closest weight véctiled Best
Matching Unit) is selected (i. e. the neurpsuch thainin; d(z(t), w;)). The
weight vector of the BMU and its neighbors, are modified aditagy with the
sample. More formally let the BMU ande a generic neuron of the SOM.
Let h(e,i) be a proximity function between the two neurons andt) be
the value ofw, at the epoclt. The weight vector of the generic neurelis
updated according with the following:
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We(t + 1) = we(t) + aft) x h(e, i) x (x(t) — we(t))
wherea(t) is a monotonically decreasing learning coefficient.

e mapping: in this phase the input vectors are simply assigned to thsest
neuron. Borrowing the terminology df-means the nodes of the network
in this phase play the same role of centroids. It is intemgstd note that
the number of clusters in output depends on the number obnstin the
network. This means that the structure of the SOM drasyigalluences the
clustering results.

Learning:
Data: the SOMM = {m;Vj < TOTNoges }, (t), h(—, —),
X ={z(t)vt < TOTSample}
Result the trained SOMV/
forall m € M do
| initialize (m);
end
fort =1;t < TOTsqmple; t + + do
i = arg min; d(x(t), m;);
forall m, € M do
| me(t+1) = me(t) + a(t) = hie, i) * (x(t) — me(t))
end
end
return M;

Mapping:
Data: the SOMM = {mjVj < TOTNOdeS}v X = {x(t)Vt < TOTSample}
Result The clustering”
fori =1;t <TOTNodes; t + + do
| Ci=0;
end
fort =1;t < TOTsqmpie; t + + do
i = arg min; d(x(t), m;);
C;=C;U ZC(t)
end

return C, _ o .
Algorithm 2 : The self-organizing map algorithm.

In the case in which the size of input vectors is higher thanrtbmber of
nodes in the output grid, SOM becomes a powerful tool to makedsionality
reduction[Tanet al, 2003 (Feature selection).
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1.2.2 Hierarchical clustering

The main difference between partitional clustering anddnahical clustering con-
sists in the fact the latter does not limit only in grouping thata objects in a flat
partition, but it also arranges the data into a tree likecstme. This structure is
known asdendrogram Each data object is assigned to a leaf of the tree, while
internal nodes represent groups of objects such that fdr paic of elements in
such group, their distance is within a certain thresholde Tdot of the dendro-
gram contains all the objects. A flat clustering can be eakitgined by cutting the
dendrogram at a certain level.

Animportant characteristic of hierarchical clusteringhiat it requires the com-
putation of theproximity matrixthat is the squared matrix of the distances between
all the pairs of points in the data set. This makes the timespade complexity of
this family of algorithms at least quadratic in the numbedata objects. In recent
years, a lot of effort was done to improve the hierarchicabtdring algorithms
performances and make them suitable for large scale dstaBgiical example
are: BIRCH[Zhanget al., 1994 and CUTE[Guhaet al., 1999.

The two main strategies for hierarchical clustering are:

e Divisive: in this case the dendrogram is built from the root to thedebfi-
tially all the n objects are in the same cluster. A series of split operations
is made until all clusters contains just a single elemené Jiiitting opera-
tion is made by computing all the distances between the péiobjects in
the same cluster and selecting the two diametral pointsestssthen all the
points in the group are assigned to the closest seed.

e Agglomerative: the dendrogram is built from the leaves to the root. At the
beginning each object is inserted in a cluster (that reptegsdeaf of the
dendrogram), than a series of merge operations is madealirttile points
belong to the same cluster. Since the data objects arel each merge oper-
ation reduces the number of objects of one unit; 1 merge operations are
needed. It is important to note that the operations of megeade between
the two closest entities (either objects or clusters). Aamobf cluster-cluster
distance and cluster-object distance must to be defined.

1.2.2.1 Divisive clustering

As mentioned in section 1.2.2, hierarchical divisive aisty algorithms start with
considering the whole input set as a single cluster thaeisdbt of the dendrogram.
Before to start the procedure, a threshold distance mushbgsea. Once this is
done, hierarchical divisive clustering proceeds as fadtow

e the proximity matrixM is calculated and for each cluster and the furthest
pair of objects is selected,
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e if the cluster satisfies the algorithm splitting criterighe. the distance be-
tween the diametral pair is higher than a certain threshitid)cluster is
divided into two clusters by using the pair selected in thevimus step as
seeds,

e when no more clusters must to be splitted, the algorithmsstop

One of the most important issues in divisive hierarchicastring is the choice
of the splitting criterion[Savareskt al., 2004. The following strategies are typi-
cally usedKarypiset al., 1999:

e each cluster is recursively splitted until each subclustertains exactly one
element. In this case a complete tree is obtained. The maangabe of this
method is that a complete tree is obtained. The main dissalyans that the
final clustering quality is not taken into account by thisestia.

e The cluster with the largest number of elements is splittésing this ap-
proach a balanced tree is obtained.

e The cluster with the highest variance with respect to itaiticad” is splitted.
This is a widely used method to choose the cluster to splabseit is related
to the distribution of the elements inside the cluster.

1.2.2.2 Agglomerative clustering

As mentioned in section 1.2.2, hierarchical agglomeratiustering attempts to
cluster a set of objects providing also a tree like structure built from thaft to
the root.

In the merging operation the two closest entities of the degrém (leafs or
internal nodes) are joined into a single entity. Considglaafs as clusters contain-
ing only an element, the notion of inter-cluster distancenie defined. There are
many different possibilities for this choice. The most coomones are based on
a linkage criterion (i. e. the distance between two clugtethe distance between
two points that are associated to them in such a way). GiverctustersC; and
C; we have:

e Single linkage d(C;, Cj) = minyec;qec; d(p,q) is the distance between
the closest pair of objects from different clusters. Thighod has the draw-
back that it tends to force clusters together due to a sirgjlegh close ob-
jects regardless of the positions of the other elementseitlisters. This is
known aschaining phenomenon
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Figure 1.2. Single linkage criterion.

e Complete linkage d(C;, C;) = maxpec,qec; d(p, q) is the distance be-
tween the farthest pair of objects from different clustd@itss method tends
to make more compact clusters, but it is not tolerant to ndes.

Figure 1.3. Complete linkage criterion.

e Average linkage d(C;, C;) = Wl\cj\ > pec, Lgec, d(p, ) is the mean of
the distance among all the pairs of objects coming from wiffe clusters.
This method is more robust with respect to the previous anefact the
impact of outliers is minimized by the mean and the chainihgr@menon
is typically not observed.

Figure 1.4. Average linkage criterion.

Single linkage and complete linkage can be generalizedggested by Lance
and Williams in[Lance and Williams, 1967using the following formula:
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whered is the distance between two entitigs};, C;) is the cluster coming
from the union ofC; andC; and the four parameters;, o, 3, v, depend on the
specific strategy used. Note that when= «; = 1/2, § = 0 andy = —1/2,
formula (1.1) becomes

d(Cy, (G, C5)) = min(d(Cy, C;), d(Cy, Cy))

that is the single linkage formula. Instead, the choice.of= o; = v = 1/2 and
0 = 0 makes (1.1) be

d(Cy, (C;, C5)) = max(d(Cy, Cy),d(Cy, Cy))

that is the formula of complete linkage.
The hierarchical agglomerative clustering algorithm carstbmmarized by the
following procedure:

1. Initialize the proximity matrix)/ such that)/; ; is the distance between the
i-th and thej-th entity

2. Findi andj such that # j andvh, k: h # k, M; j < My,
3. JoinC; andC; and updaté\/ accordingly

4. Repeat from step 2 until all the clusters are merged

1.2.3 The choice of the number k of clusters

All the algorithms we considered in this chapter are not sibtéscover the number
of groups in which the hidden structure of the input set sthdadl divided. For all
the described algorithms, the number of clusters is patieiriput. In some cases,
like SOMs, the choice ok is subjugated to the algorithm constraints. It is clear
that the final clustering quality is strongly dependent fithia choice. In fact, a too
large number of clusters can have the effect to complicaeattalysis of results,
while too few clusters can lead to information loss or inaateimodeling.

Many different techniques were proposed in the literatorértd the “right”
value fork; the most common approaches are based on: the construttratices
that take into account properties like homogeneity, sejparand silhouette (a
survey of some of them and an evaluation of their performsmwes be found in
[Milligan and Cooper, 1985; the optimization of some probabilistic functions and
heuristics.

It is also important to note that all those methods, basechercomputation
of indices or on the optimization of probabilistic funct&yrmust be applied to
many choices of. This makes desirable to have clustering algorithms abiestice
clusters incrementally without the need to knévin advance and to backtrack if
needed. To this aim divisive hierarchical clustering an& BFe more flexible with
respect tok-means and SOMs.
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1.2.3.1 Stability based techniques

We describe here in more details the stability based tedeni@sed on the pre-
diction strength method (developed by Tibshirani efTabshiraniet al., 2009)
to estimate the numbdr of clusters. Then we describe an efficient variant of this
schema applied to the FPF algorithm as we adoptd@Garaciet al, 2007. This
approach can be used efficiently for all the incrementaltetuslgorithms such as
the divisive hierarchical clustering.

To obtain the estimate of a good valuekgfthe method proceeds as follows.
Given the seO of n objects, randomly choose a samplgof cardinality .. Then,
for increasing values df(t = 1,2, ... ) repeat the following steps:

1. using the clustering algorithm, cluster bath, = O \ O, andO, into ¢
clusters, obtaining the partitiorts;(ds) andCy(r), respectively;

2. measure how well theclustering ofO,. predicts co-memberships of mates
in Oy (i.e. count how many pairs of elements that are mates;{ds) are
also mates according to the centerspfr)).

Formally, the measure computed in step 2 is obtained asvsllGivent, clus-
teringsCy(ds) andCy(r), and object®; ando; belonging toOg;, let Di, j] = 1 if
o; ando; are mates according to botl(ds) andCy(r), otherwiseD|i, j] = 0. Let
Ci(ds) = {Ci1(ds),...,Ci(ds)} , then the prediction strengtRS(t) of Cy(ds)
is defined as:

1
PS(t) = min , > DIlij) (1.2)
Cii(d
1<i<t #pairs € Cy (ds) €O s)i<i

where the number of pairs i, ;(ds) is given by its binomial coefficient over
2. In other words,PS(t) is the minimum fraction of pairs, among all clusters in
Cy(ds), that are mates according to both clusterings, heéhgé) is a worst case
measure. The above outlined procedure terminates at thestavalue oft such
that PS(t) is above a given threshold, settikgequal to such.

We now describe the modified version of the stability basetrtigjue we ap-
plied to FPF in[Geraciet al, 2007. Note that this modified procedure depends
only on the ability of the clustering algorithm to createstkrs one by one. We
first run the clustering algorithm of,. up tot = y, storing all the computed cen-
terscy,...,c,. In acertain sense, the order in which centers are selegté&dBb,
is used as a sort of ranking of the points(@f. In the case of using FPF this step
costsO (1|0, ]) = O(u?).

We then cluster the input sé€,;,. Suppose at stepwe have computed the
clustersCy 1 (ds), ..., Ct+(ds) and suppose, for eache Oy, we keep the index
i(o,t) of its closest center among, . . ., ¢;. Such index can be updated in constant
time by comparingi(o, ¢;(,,+—1)) With d(o, ¢;), i.e., the distance of from the “cur-
rent” center and that to the new centgrNow, for eachC'; ;(ds), I € [1,...,t] we
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can easily count in timé&(|C;;(ds)|) the number of elements that are closest to
the same center;, j € [1,...,t], and finally compute the summations in formula
1.2intimeO(|Og4s).

After the last iteration, we obtain the clustering@ty simply associating the
pointscy, . . ., ¢, to their closest centers it (ds). The overall cost of the modified
procedure using FPF as clustering algorithr®i{g:? + k(n — pu) + ku) = O(kn)
for u = O(n'/?). Note that, differently from the original technique, westhis
procedure at the first value ofsuch thatPS(t) < PS(t — 1) and sett =t — 1.

In [Geraciet al, 2007 we have empirically demonstrated that this choice of the
termination condition gives good results.

1.3 Clustering validation

Since the clustering task has an ambiguous definition, tesament of the quality
of results is also not well defined. There are two main phjpbses for evaluating
the clustering quality:

e internal criterion : is based on the evaluation of how the output clustering
approximates a certain objective function,

e external criterion: is based on the comparison between the output clustering
and a predefined handmade classification of the data aiteshd truth

When a ground truth is available, it is usually preferablause an external
criterion to assess the clustering effectiveness, begadsals with real data while
an internal criterion measures how well founded the clirgjeis according with
such mathematical definition.

1.3.1 Internal measures

There is a wide number of indexes used to measure the overdityqof a cluster-
ing. Some of them (i.e. the mean squared error) are also wsgakhfunctions for
the clustering algorithms.

1.3.1.1 Homogeneity and separation

According with the intuition, the more a cluster containsrogeneous objects the
more it is a good cluster. Nevertheless the more two cluarersvell separated the
more they are considered good clusters. Following thetiotyihomogeneity and
separatiorf Shamir and Sharan, 20pattempt to measure how compact and well
distanciated clusters are among them.

More formally given a set of object8 = {01, ..., 0, }, we denote wittf(o;, 0;)
the similarity of the objects; ando; according to a given similarity function. We
say thato; ando; are mates if they belong to the same cluster. We define:
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Homogeneity of a clustering: the average similarity between mates.Akbe
the number of mate pairs:

1
Hype = M Z S(Oiuoj)

04,05 mates,i<j

Separation of a clustering: the average similarity between non-matassM is
the number of mate pairs, the number of non-mates pairs endiyn(n —
1)/2 — M.

2
Save = n(n—l)—?/\/l Z S(Oiﬂoj)

0i,0; non—mates,i<j

Observe that the higher homogeneity is, the better theeringt is. Analo-
gously, the lower separation is, the better the clustesng i

Alternative definition can be given using distances instefdimilarities. In
this case a better solution is given with a higher separaimha lower homogene-
ity.

Finally, homogeneity and separation can be approximatatiagdhey can be
calculated in linear time with the numberof objects (instead of quadratic). Given
aclusteringC = {C1,...,Cy}, leter(t) be the center (or centroid) of clustét:

k
Happro:c = %Z Z S(Oi,CT‘(t)),

t=1 0,€C}
1
Soppror = —=——————— CH||CL|S(er(t), er(z)).
pp Zt<z|0t||02|;‘ t” | ( () ())

Again, these measures can be expressed in terms of disiastesd of simi-
larities.

These two measures are inherently conflicting, becauseatjypian improve-
ment on one will correspond to a worsening of the other.

1.3.1.2 Average silhouette

Another measure that is worth calculate for a given clusggis theaverage silhou-
ette[Rousseeuw, 1987for each element we compute a quantity, called silhouette,
that gives an indication of how well the element fits into thester it is assigned to.
The silhouette is based on homogeneity and separationyiicydar we compute
the homogeneity of the element with the elements in its ehusbd the separation
of the element with the closest cluster (among the othersghi$ way we can see if
the element is well placed or if it is better placed in anottiaster. The silhouette

of objecto; that belongs to cluster € C is given by:
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bi — Q4
1(0;) = ’
sil(os) max{a;,b; }

whereq; is the average distance of to the elements in its cluster, white is
the average distance of to the elements of the closest cluster. In formulas:

1
a; = HZCK(OZ‘,OJ')

oj€C

. 1
bi = C/QHC}}CI};AC m Z d(Oi,Oj)

. /
oj€c

(The valuesa; andb; can be approximated using the centers (or centroid) of
clusters, in the same way as for homogeneity and separation)

Observe that for each elementwe have—1 < sil(o;) < 1 and that whenever
o; fits in its cluster, the; > a; andsil(o;) > 0, while if o; fits better in another
cluster, then we havig < a; andsil(o;) < 0.

To measure the quality of the whole clustering we useatlerage silhouette

5il(C) = %Z sil(03).

1EN

The higher this value is, the better the clustering is.

1. Asingleton{o;} has silhouette equal to one because- 0 andb; > 0 (each
element fits well in a cluster by its own).

2. If there is only one big cluster then for eaghe n we havesil(o;) = —1,
because; = 0 anda; > 0 (no element fits well in a cluster with all other
elements).

The silhouette is not only used for assessing the clusteyiradjty but can be
helpful to guide the clustering task in many ways:

1. Given a cluster, the elements with lower silhouette migghexcluded from
the cluster to have more homogeneous clusters.

2. Given two clusterings of the same set of objects, done thétsame cluster-
ing algorithm, but with different number of clusters, theeamith higher av-
erage silhouette is preferable to the one with lower avesdgeuette. Thus,
it can be used to decide the number of clusters in the clusteridgamrous
and Tailerb, 200b Experiments show that silhouette index is not very useful
for this purpose.
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1.3.2 External measures

In the following, we denote wittGT'(S) = {G11,...,GT}} the ground truth
partition formed by a collection aflassesand withC' = {¢y, ..., ¢; } the outcome
of the clustering algorithm that is a collectiond@isters

1.3.2.1 F-measure

The F-measure was introduced [ioarsen and Aone, 199%nd is based on the
precisionandrecall that are concepts well known in the information retrieviarh
ature[Kowalski, 1997, [Van Rijsbergen, 1999Given a cluster; and a clas&:7;
we have:

|GT; N ¢y

1

|GT; N ¢

precision(GT;, ¢;) = W,

recall(GT;, ¢j) =

Note that precision and recall are real numbers in the réimge. Intuitively
precision measures the probability that an element of tass¢lT; falls in the
clusterc; while recall is the probability that an element of the clusigis also an
element of the clasST;. The F-measuré’(GT;, c;) of a clusterc; and a class:T;
is the harmonic mean of precision and recall:

precision(iGT c;)recall(GT;, ¢j)
precision(GT;, ¢j) + recall(GT;, c;)
The F-measure of an entire clustering is computed by theviilg formula:

F(GT;,c;) =2

GT;

wheren is the sum of the cardinality of all the classes. The valu€ @ in the
range[0, 1] and a higher value indicates better quality.
1.3.2.2 Entropy

Entropy is a widely used measure in information theory. Iruesinell we can use
the relative entropy to measure the amount of uncertairgyile have about the
ground truth provided the available information is the catep clustering. Given
a clusterc; and a clas€:7;, we can define

|GT; N ¢
bij = ’
’ |GT;|
Ej=> pijlogpi;,

3
¢l
F = —F
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wheren is the number of elements of the whole clustering. The vafug is in the
rangel0, log n] and a lower value indicates better quality.

1.3.2.3 Accuracy

While the entropy of a clustering is an average of the entafgingle clusters, a
notion of accuracy is obtained using simply the maximum aiger

Aj = m?‘xpi,j

|4
A= —
2
J
The accuracy is in the rangd0, 1] and a higher value indicates better quality.

1.3.2.4 Normalized mutual information

Thenormalized mutual informatio(see e.glStrehl, 2002, page 11)) comes from
information theory and is defined as follows:

P

NMI(C,GT) = o 2, 2 Pled) s 5y

where P(c) represents the probability that a randomly selected objebie-
longs toc, and P(c, ¢’) represents the probability that a randomly selected object
o; belongs to botke andc’. The normalization, achieved by t'?%m factor, is
necessary in order to account for the fact that the cardieslofC' andGT are in
general differenfCover and Thomas, 1991

Higher values ofV M I mean better clustering qualiti)W M I is designed for
hard clustering.

1.3.2.5 Normalized complementary entropy

In order to evaluate soft clustering, thermalized complementary entroftrehl,
2002, page 1d8is often used. Here we describe a version of normalized aampl
mentary entropy in which we have changed the normaliza@oiof so as to take
overlapping clusters into account. The entropy of a cluster C is
|GT|
‘GTkﬂCﬂ ‘GTkﬂCﬂ
E; = — lo
2 T, % |GT]

k=1
The normalized complementary entropycofis

E;
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NCE ranges in the interval), 1], and a greater value implies better quality of
c;. The complementary normalized entropy @fis the weighted average of the

contributions of the single clusters @. Letn’ = E'ﬁl lc;| be the sum of the
cardinalities of the clusters @f. Note that when clusters may overlap it holds that
n’ > n. Thus
|C]| ]
NCE(C,GT) =) _ n—j,NCE(cj, GT)

Jel
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Chapter

Text document clustering

Abstract

Dealing with text documents is one of the foremost issuegfiorination re-
trieval. In this context, clustering plays a strategic rdlarge text document cor-
pora have become popular with the growth of the Internet hedécrease of price
of disk storage space and connection band-width.

Dealing with text documents is a hard task. This is due to siotni@sic char-
acteristics of human languages. For example, the same veordhave different
meanings according with the context in which it is referfddreover the prefix or
suffix of a word can vary in different contexts. All the peeuifies of human lan-
guages motivate the effort of researchers in the field ofitdatmation retrieval.

In this chapter we survey the most important problems arfthiqoes related
to text information retrieval: document pre-processingl &ftering, word sense
disambiguation, vector space modeling, term weighing astauce functions.
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2.1 Introduction

The terminformation retrieval(IR) was firstly introduced by Calvin Mooers at the
end of 40’s. Then information retrieval has become a veradifteld of computer
science. It can be intuitively defined as the task of findirigresting and typically
unstructured “objects” for the user information needs inidevcollection.

Conceptually, IR systems can be designed to manage alnerstleng (texts,
images, videos), but the data type which has concentrated ofidhe studies is
text. The growth of the Internet has stressed even more theest in this sense.
A lot of efforts have been spent to design general modelseidribformation re-
trieval. Of course, the question about how similar are twoutieents has still not
found a univocally accepted answer. There are many reakahsake it difficult
deal with texts. First of all, the same concept can be expdessmany different
ways by different writers. Moreover, the use of synonyms deastically reduce
the number of words shared by two related documents. On thieary, the same
word can assume very different meanings according with eiméext in which it is
used. Nevertheless texts have the intrinsic charactetisdit a not negligible part
of words are due to grammar rules and do not provide additiof@mation.

Despite text documents do not have a clear structure in gkribrs can not
be considered always true. In fact, text documents are lysdigided in sections,
begin with a title and, in many standard document file formtisir structure is
precisely marked using tags (HTML, XML and RTF just to giversexamples).
Another example is constituted by semi-structured texdsdhe documents with a
poor structure (i.e. web snippets).

In this chapter we survey the major techniques designed tageatext docu-
ments and some considerations for applying clusteringrisiigos to these data.

2.2 Text representation

A text document is, in its most simplistic representatiorseguence of words.
With the purpose of indexing it or computing its similarityitivother documents
(or equivalently with a text query), it must be preprocesgedemove the noise
due to “syntactic sugar” and make it more treatable by coergureprocessing
typically consists of many steps:

e Text normalization: in a document the same word can appear in different
forms. For example the beginning of a sentence begins wititatdetter.
Naturally, these little variations do not affect the sern@nbf the term. To
make it easier for IR systems to manege texts, terms must tmeafined
by converting them to lower case, remove dashes in multds/terms, etc.
Numbers, dates and punctuation are removed from textse lvettp of words
model, where the context of the words is not used, terms des @brted
lexicographically.
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e Stemming one of the major differences between human languages and pr
gramming languages is that, in the first case, words have @ foa and a
suffix (often also a prefix) that can vary depending on theexdntvhile, in
the last case, keywords are invariable. However, the laagegh the words
semantics is contained in their root, thus terms with theesaoat should be
considered as the same term. The goal of stemming algorithtogeduce
a word to its root. To complicate this task there is the faat the rules for
extracting the root of a word depend from two aspects: the tfpvord (i.

e. verbs, conjugations) and the language (i. e. Englisharia Moreover
human languages admit a lot of exceptions (i. e. the plurah fof the word
child is children instead of childs as suggested by the stahdile). Mar-
tin Porter[Porter, 198Din 1979 introduced a rule based algorithm that has
become the most famous stemmer algorithm for English stillse. Simi-
lar word stemmer algorithms are now available in almostaaluages. The
major perplexity in using stemming is that it can cause nmdsustanding
and change the meaning of the words. For example a too aggressm-
ming can reduce the word “organization” to “organ” or “p@lico “police”.
On the other hand, also a mild stemming can modify the origiease of a
word.

e Stop words removal to the contrary of computer languages, human lan-
guages are rich of words. Most of them have not a meaning bydékes
but are used as grammar bricks to build complex sentencesx@nple ar-
ticles or prepositions). All these words can be safely reeddvom the text
without any loss of information. There are also words whiavéha very
general meaning or are too popular to be really helpful inuth@erstanding
of the semantics of a text or its topic (i. e. above or belowjeil removal
cause only a marginal loss of information, but has the bepéfieducing
the size of the representation of the text (in sections 2x& Will explain
the reasons that make this reduction a desirable prop@itg) set of all the
terms, removable with a negligible semantics loss, is datep words list.

e Vocabulary building: the growth of the computational power, memory size
and bandwidth was followed by an increase of the availabieié informa-
tion. Low hardware costs had the effect that, even smalrprises want to
be able to process their internal knowledge base. Vocabsldo not change
the models for storing and querying texts, they are only usqutoduce a
more compact representation of texts with the goal of maintauch more
documents in main memory. To each distinct term of the cogpusnivocal
identifier is assigned and it is stored in a tablecalled vocabulary. Thus,
each document can be represented in a more compact formsaoatérm
identifiers with a consequent reduction of the requiredagter

Before to discuss a model for dealing with texts, it is impottto understand
how words are distributed in documents and what are the dapdins of this dis-
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tribution. Words in a corpus are not evenly distributed. Ateismall set of words
appear very frequently. Some of them like articles and psitjpos are connected
to grammar and can be removed as stop words, some othersstaadnopic de-
pendent. A medium size set of words appear with intermediatpency and a
broad set of words appear rarely. This last set is made widlendample by words
containing typos or by very specific words. This distribafi@nown agpower law
was observed in all the human languages and is widely actesten intrinsic
human characteristic. Clearly, words that appear with iighuency are useless
because they do not exploit differences among documergg (tresence in two
documents does not means that those document are similao) ré&e words can
be useless (the reason will be more clear in section 2.2.1).

2.2.1 The vector space model

With the termmodelin information retrieval we refer to a representation focuato
ments and queries equipped with a notion of distance/gityilamong them. The
vector space modés a well known model, widely accepted and used, for organiz-
ing texts. After preprocessing, described in the previagdicn, a text document
is reduced to a flat list of terms. Moreover, after prepraogsa vocabulary of all
the terms in the document becomes available. Thus a docuraetite stored in a
vector that has as many components as vocabulary words.déagbonent of the
vector represents a score for the corresponding word (diépgfrom the chosen
weighting schema) or it i§ if the word is not present in the document. All the
documents of the corpus can be arranged in a matrix cdtbedment matrixsuch
that rows correspond to documents and columns refer to terms

Let D = {d,...,d,} be a corpus ofi documents such théf is the vocabu-
lary of all the words inD. ThusD can be arranged in a matri¥ such thatmn; ;
corresponds to the termy € V in documentd; € D. There are many possible
different weighting schemes proposed in the literatures imost advanced IR sys-
tems weight terms according to their importance and chaniatts (i.e. frequency
in the document and in the corpus). The most used weightingnsas are:

e Boolean (binary) model if v; is present ind;, thenm,;; = 1 otherwise
mi ; = 0.

o Term frequency (TF): lettf; ; be the number of occurrences of tetmin
documentd;. In the term frequency model we hawe; ; = ¢f; ;. It could
be more convenient to normalize the weights to be indepenidem the
document length. LetV C; = E‘Z‘Ql tfi; be the total number of words in
d;, then:

mij = tfij

’ WCj

According to this normalizationy; ; is in the rang€g0, 1] and can be inter-

preted as the probability that worg appears in documeanl;.
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e Term frequency - Inverse document frequency (TF-IDF) let w; the num-
ber of documents in which; appears. We defingf; = log n/w;. According
to the TF-IDF scheman; ; = idf; = t f; ;. To normalize the TF-IDF score in
the rang€0, 1] the following formula is often preferred:

= VI (12, oae2
\/Zk:1(tfk,j * idf ;

This scheme assigns high score to those words that appeaefty in a
document, but are rare in the corpus. Instead, words thataapp a large
portion of the document corpus are not too helpful to expliiffierences
among documents and thus are considered not important.

The vector space model has two main drawbacks. Since do¢sigaenvectors
with |V| components, even in the case of small corpora the dimenigjonathe
resulting vector space is usually high. Moreover, docusian¢ very sparse vec-
tors. A side effect of these two phenomena is that distanoesig documents tend
to become high. In addition, the distance between a pairnoiai documents is
not so far from the distance between two unrelated ones. tahdard technique to
reduce vector space dimensionality and make documentrgatiore dense is the
feature selection that will be discussed later in this secti

Another important issue is that the bag of words model do¢soisiderate
the context of words. Context is clearly important to extrthe sense of a term
because the same word could change its meaning in diffecgnéxts. This fact
became more evident for multi word terms. For example phrasas in English
or people names. The problem of assigning the correct mgaaia word, called
word sense disambiguatipis well studied and many techniques have been pro-
posed in the literature, but they are typically more commexcomputationally
expensive or their performance depends from a knowledge doad thus are topic
dependent. Moreover, none of them has at the moment exgpkitéciently higher
performances with respect to the bag of words model to bedems as a valuable
alternative.

2.2.1.1 Metric spaces and distance

A natural way to see documents (and queries) in the previalescribed model
is thinking to them as vectors (or points) in a high dimenaidéuclidean space.
When a normalized weighting schema is applied, documegtinlghe positive
part of the surface of a iper-sphere of radlus

The most natural way to compute distances among documamggigthe clas-
sical Euclidean distance. This distance is a special cageedinkowski distance
in which the parameteris set to2. Given two documentg; andd, and the related
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rows of the matrix\/, The Minkowski distance is defined as

14
Ly(dy,d2) = (Y [miq — miofP)'/?
=1

Given two vectors the measure of the angle formed by them eamsbd as
distance between the two represented documents. If the dgongents contain
exactly the same words, they give raise to the same vectothaisctheir angle is
0. In case the two documents do not have words in common thejupeotwo or-
thogonal vectors and thus their distance is maximum. Basedi®idea theosine
similarity is defined as the cosine of the angle formed by two vector deaotsn
More formally letd;, d; be two documents:

dy - ds
) =
Note that denominator is used only to normalize the cosiméagiity to be in the
rangel0, 1] independently from the length of the involved vectors. Th&asure is
a similarity score. Similarity is the dual concept with respto distance. The more
two objects are similar (similarity value is high) the moheit distance tends
and vice versa. Cosine similarity and all algorithms destgto employ similarity
measures can be converted to use distances and vice vensatetisin[Clarkson,
2004 the inner product of two vectorg, andds of length1 (in norm 2), that is
the standard cosine similarity of two normalized vectaguined into a distance
by D(dy,ds) = 1 — s(dy,d2). This distance function is not a metric in a strict
sense since the triangular inequality does not hold, homtéesfollowing deriva-
tion ||d1 — dgH% =dy-dy+dy-dy—2d; -dy = 2(1 —di - dg) = 2D(d1,d2)
shows that the square root of the distance is indeed a mEtyigvalently one can
say that it satisfies the extended triangular inequdlityl;, d2)* + D(ds, d3)* >
D(d;,ds)™ with parameterx = 1/2. Moreover a linear combination of distance
functions with positive weights defined on the same spacélli.snetric space
D(di,d2) = ), wiD;(dy,ds) for w; > 0. Thus cosine similarity although not
giving rise to a metric in a strict sense is nonetheless lastated to a metric
space.

Another commonly used coefficient to measure distance legtywairs of doc-
uments is thelaccard coefficientin its original form this measure does not take
into account weights and reduces a weighted scheme to g/lwnar Letd; N do
be the set of terms thal andds have in common and; U d» the set of terms
present in at least one of the two documents. The Jaccarfioveef is defined as:

#(d1 N do)
#(d1 U da)

Many variants of Jaccard coefficient were proposed in tieedlitire. The most
interesting is the&Seneralized Jaccard Coefficietitat takes into account also the

J(dy,da) =
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weight of each term. It is defined as

1% .
SV min(m 1, mi o)

GIC(dy,dy) = ==
=1

max(miyl, mi,g)

GJC is proven to be a metid€harikar, 200R

2.2.1.2 Word sense disambiguation

All these distance measures have the drawback that, irrefiffevays, the more
documents share terms, the more they are considered reldtisdis not always
true for many reasons. Firstly, the same word can have diffemeanings in dif-
ferent contextsléxical ambiguity, thus having a word in common does not neces-
sarily imply similarity. Secondly, all human languagewallthe use of synonyms
to express the same concept with different words, therefgoedocuments can
deal with the same topic sharing only few words. Moreoverilaintoncepts can
involve the use of complex semantic relationships amongnthiels. For exam-
ple, after removing stop words, the two sentences: “theeajgpbn the table” and
“there is an orange on my desktop” have no words in commoridulit say some-
thing about a “fruit on a board”, thus they are not completeiyelated. The above
example shows two important notions of similarity:

e paradigmatic, or substitutional, similarity when two words may be mutu-
ally replaced in a particular context without change theaeios of the text
(i. e. the words table and desktop in the previous example),

e syntagmatic similarity when two words significantly co-occur in the same
context. (i. e apple, orange and fruit in the previous exanpl

To take into account these similarities among words manirnigoes have
been proposed. The most common approaches are based dethetdab generate
(manually or automatically) an ontology of words. The adage of ontologies is
that they can be used to define a degree of similarity betweaples of words,
and thus to find relationships among them. In the previoumpi@both the words
“orange” and “apple” have as ancestor the term “fruit” andstithey are related.
A lot of effort was done to design indexes to measure the @egfesimilarity
between two words in the ontology graph. Many of them take axtcount the
length of the path between two words. [lagirre and Rigau, 1996Agirre and
Rigau propose theonceptual densitthat also takes into account the depth of the
nodes in the hierarchy (deeper are closer) and the densitpdasds in the sub-
hierarchies involved (denser subhierarchies are closer)

The most important project for ontologies of words\srdNet[Miller, 1990.
Originally proposed by the Cognitive Science Laboratoranceton University
only for the English language, WordNet has become a referéorcall the infor-
mation retrieval community and similar projects are nowilatée in many other
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languages. WordNet is a handmade semantic lexicon thapgneards into sets of
synonyms calledgynsetsintuitively one can replace a word in a text with another
from the same synset without changing its semantics. A wardappear in more
than one synset if it has more than one meaning. Moreoveetyase arranged
as nodes in a graph such that there is an edge to connect tves ifdtiere is a
relation between the two synsets. There are different tgppsssible relations, an
exhaustive list of them can be found in the WordNet web|sitiler et al, 2004.
Given two synsets X and Y, the most common types of relationderdNet are:
hypernymif every X is a “kind of” Y, hyponymif Y is a “kind of” X, holonymif X

is a part of Y andneronymf Y is a part of X. Thus, in our example WordNet has a
link between orange and fruit and also between apple andhfenice it is possible
to infer a relation between orange and apple.

Clustering is often used also for grouping words into seinally homoge-
neous sets. This technique is knownwasrd clustering[Dhillon et al, 2002;
Li and Abe, 1998. In this case the set of objects to be clustered are not datisme
like in the previous case, but only words. Thus, the mainessn this context
are the features associated to each word and the definitidre afistance among
words. In fact the distance should be designed in a mannakéoimto account all
the considerations we made before. There are two main pipifdss available in
the literature. One is to define a distance over an ontoldg[Agirre and Rigau,
1994 and thus the issue of how to create the ontology still remaies. Another
opportunity is to use distributionally-based semantic similarigpproach. In this
last case the key idea is that the semantic content of a worlecaredicted study-
ing how the word occurs with other words in a corpus. Two wasconsidered
semantically related if they co-occur in a certain numbetdafuments. IhiBrown
et al, 1991, a vector containing all the immediately succeeding wondté doc-
ument, is assigned to each term. For each of these wordspdsted the number
of times they occur after the considered term in the whol@usrThen a notion
of distance between two terms is defined as the average ninfimiahation among
all the pairs of words in the context of the two terms.

The other problem we addressed in this section is that the sard can dras-
tically change its meaning in different contexts, thus ibd be disambiguated
to avoid misapprehensions. There are two main approactszsv®e this problem.
In theory, one should attempt exploit a sortivadrid knowledgehat makes it pos-
sible to determine in which sense a word is used. Moreovirnilethod must be
endowed with an inference mechanism that would make usesdfdke of knowl-
edge to infer the intended sense of words. Clearly, thisaggpr is not suitable in
practice because a computer readable general purposeddymubase for this task
does not exist. Some effort was spent to design knowledgestand inference sys-
tems, but they are usually very limited since they are egdnhandmade. What
disambiguation systems do in practice is not to try to urtdadsthe meaning of
text at all, but simply trying to guess the correct meaning @ford looking at the
context in which it appears. The key idea of this approacthas, tafter observ-
ing several contexts in which a word is used, it can be passibtisambiguate a
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word only considering its own context. Many different methavere proposed in
the literature; a good survey of the most important ones atadad problems can
be found in[lde and Veronis, 1998[Sanderson, 2000[Stokoeet al, 2003 and
[Linden, 200%. Here we limit to mention two of the most important results.

Despite the fact that many important ideas and algorithmsvéyd sense dis-
ambiguation have been proposed in the literature sinceQlse the first working
disambiguator was written by Legkesk, 1988 in 1986. It was the first software
that, for its characteristics, could be used for large terpora. It was based on the
use of an on-line dictionary. In order to disambiguate a terma certain context,
all its possible definitions were looked up in the dictiondrgen all the definitions
were treated as a document corpus. The context of the terfisambiguate was,
instead used as a query. Thus the problem of word sense dgasatibn reduced to
a ranking problem (or alternatively to a similarity seanghproblem). Dictionary
clues are too small pieces of text and this negatively afféet disambiguator pre-
cision. Since large text corpora became available to reBegrthey were employed
to overcome this problem.

In [Gale et al, 2004, a hybrid approach that uses both a dictionary and a
document corpus is proposed. The only requirement is thelt dacument in the
corpus must be available in at least two different languagieghis purpose they
use for example the Canadian Hansards which are availaBleghsh and French.
The dictionary is used to translate a tern from a languagegother. Note that an
ambiguous word has typically at least one different traimiafor each meaning.
For example the wordutyis often translated adroit when used with the sense of
tax and aglevoirwhen mean obligation. In this way it is possible to autonadityc
extract a certain number of instances for each meaning oftind. Moreover, all
the meanings of a word can be ranked by collecting statisfitkeir frequencies
in the corpus. These data are then arranged in a traininghded &est set. Thus,
statistical models can be used for word sense disambiguatio

2.2.1.3 Feature selection

Documents in the vector space model are represented byargeyand sparse vec-
tors. Using the standard TF-IDF weighting scheme one canhsse as points in
the surface of the positive region of a iper-sphere. As eéxpthbefore, the high
dimensionality of documents in this representation hasithe effect that the dis-
tances among documents become high and distances betweseof gamilar doc-
uments tend to be close to the distance between pairs ofatedebnes. This is
due to the summation of the contributes in the distance ctatipn given by unin-
formative words. The goal of feature selection is to remavrea( least drastically
reduce) the dimensionality of the vectors by removing thieimformative words.
There are two main strategies for feature selection: onerdignt from the content
of the corpus, the other independent. Stemming and stop weondval go in the
latter direction. Despite the fact that these strategibgese a good filtering, they
are unable to remove those words that are uninformative iaréicplar context.
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For this reason a lot of effort was spent to design algoritkimas are able to take
into account also the corpus content. Some of these methadsdtent Semantic
Indexing (LSI)[Deerwestert al, 19940 and Random ProjectiofBingham and
Mannila, 2001 employ structural properties of the document corpus. Qtieth-
ods use information theoretic indexes to measure the ir#tweness of a word
and filter those terms out of a certain range.

information theoretic indexes for feature selection Different indexes were pro-
posed in the literature to measure the informative strenfita word, the great
majority of them are suitable only for classification. The kdea in this case is to
measure the degree of informativeness of the word for eass eind then discard
those terms with a poor informative power for all classesv Frelexes are suitable
for unsupervised learning, in essence they are based orothangnt frequency.
The most common of these measures used for feature selacton

e Document Frequency (DF)is the number of distinct documents in which a
certain word appears in. This number is often normalizecetmlihe range
[0, 1] by dividing it by the total number of documents in the corpiscord-
ing to section 2.2, words that appear with high frequencyiaetess because
they do not exploit differences among documents, rare wardsalso use-
less because their contribution in the distance compuisiti® negligible.
Thus words with document frequency above or below certagstiolds can
be discarded.

e Term Strength: was originally proposed ifWilbur and Sirotkin, 199pfor
vocabulary reduction in text retrieval. As the documeng@@ncy, this index
is not task-dependent, thus can be applied also to clugtévloreover some
variants were proposed in the literature specific for thé ¢exegorization
problem[Yang and Wilbur, 1996 We describe here its original definition.
Term strength collects statistics about the presence of rd wopairs of
related documents in a training set, then it uses thesetatatio assign a
score to the word. A pair of documents is considered to beeeld their
distance (usually the cosine distance) is under a certegshbld. Let/; and
do be two related documents anda word, term strength is defined as:

TS(w,dl,dg) = P(w S d1|’LU S dz)

In other words, given two related documents, term strengtthé condi-
tional probability that a word occurs in a document giver thaccurs in the
other. Let(d;, d;) be a pair of related documents in the training set, the term
strength is:

#(dl,d]) TwEd; Nw € dj

#(dl,d]) TwEd; Vw € dj

TS(w) =
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e Gain: let n the number of documents in the corpus aifg the number
of documents in which the word appears in, th&ain [Papineni, 200}
function is defined as:

Gam(w) = df—w * (df_w — 1= log dfﬁ)

n n

In this case the gain function assigns a low score both tcaradd¢o common
words. On the contrary of DF which requires a range of adiissialues,
in this case all the words with gain under a certain threshoéddiscarded.
An important difference between Gain and DF is that in thenfarcase the
connection between rare and common filtered words is ekphajure 2.1
shows the Gain function.
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Figure 2.1. The gain function.

¢ Information Gain : is only suitable in the context of classification. The irfor
mation gain functiorfCover and Thomas, 1991; Yang and Pedersen,]1997
measures the contribution in terms of informativeness tthatfpresence or
absence of a word gives to a certain class. dbe a document taken uni-
formly at random in the set of documents P(v;) is the probability that!
contains term;, P(c;) is the probability thatl is in categoryc;. The com-
plementary events are denot®dv;) = 1 — P(v;) andP(¢;) = 1 — P(c;).
P(v;,c;) is the probability thatd is in categoryc; and contains term;,
P(v;,¢5) is the probabilityd does not contairy; and is not in category
¢;. P(vs,¢;) is the probability that! containsv; but is not in category:;
P(v;,c;) is the probability that/ does not contaim; and is in category:;.
Clearly being these mutually disjoint events it holé#§u;, ¢;) + P(v;, ¢;) +
P(v;, ¢;) + P(v3,¢;) = 1. The information gain is the contribution of the
four terms:

P(v,c)
IG ’U,,c] Z Z (v;c logw

ve{v;,0;} ce{c;,¢5}
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Note that information gain assigns a scoretonly for a category. In order
to have a global score for the termdifferent choices are possible. The most
common is:
IG oz (vi, ¢5) = max IG(v;, ;)
c;elC
In this case the key idea is that,if is highly informative for at least one
class, its presence helps to classify documents of thag.clas

e Gain Ratio: attempts to overcome some drawbacks of information gain. |
fact the value of the information gain formula does not ordpehds onw;
andc;, but also from the entropy of the class. Thus normalizing tactor
we obtain the gain ratio formula:

IG(UZ‘, Cj)
- ZCE{ijéj} P(C) 1Og P(C)

GR(Uiv C]) =

e Mutual Information : is a measure of the degree of dependence between a
documentd and a classg. Like in the case of information gain, this index is
only suitable in the context of classification. More forngatiutual informa-
tion is defined as:

MI(w,c) =log P(w|c) — log P(w)

wherew is a word ana is a class. The main drawback of mutual information
is that it is highly influenced by the teri(w). Thus for an equal value of the
conditional probability rare terms are highlighted. Samly to information
gain a global score for a terma can be computed by one of the following
formulas:

m

MIaprg(w,c) = P(e)MI(w,c;)
=1

M Ings (w, ¢) = miax MI(w, c;)
A comparison of many of the above described measures candafilvang
and Pedersen, 19p7

Random projection One of the most simple and effective method to reduce the
dimensionality of the vector space is tremdom projectior{ Kaski, 1998; Lin and
Gunopulos, 2008 The idea behind random projection is to reduce the dimaensio
ality of the document matrix by multiplying it for a randomaggection matrix.
More precisely: letM be the document matrix with documents and. features.
Suppose we want to reduce the vector space té-temensional, withk < m.
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Let R a matrix formed bym randomk-dimensional vectors. We can project the
original document vectors onto a lower dimensional space by

Akexn] = Bsim) * Mimxn)

Random projection is motivated by the Johnson-Lindensgé&mmdWw.Johnson
and j. Lindenstrauss, 1984

Theorem 1. Letn an integer and) < ¢ < 1 andk such that

62 63 —k
>4(S-S) m

Then for any seb/ of n points inR™ there exist a mag : R™ — R* such that
Vu,we M (1 —e)llu—wl <|[f(u) - f(w)| < 1+ €)llu—w]]

In simple words, according with the above lemma a set of pamta high-
dimensional Euclidean space can be mapped in a lower-dioteisspace such
that distances between pairs of points are approximatelyepved.

One of the mayor issues in the random projection method ishb&e of the
vectors ofR. In theory, if the random vectors are orthogonal the distaretween
the original points are exactly preserved, thus an orthaboratrix is desired. In
practice, orthogonalization is a very costly operationsth reasonable approxima-
tion is used. In the literature many methods were proposkgtitialize the elements
of R, in the most common case they are Gaussian distributédchiioptas, 2008
two simple possible alternative initializations were pyegd to reduce the compu-
tational time needed for the calculation #Brx M:

e r; ; = 1 with probability 1/2 otherwiser; ; = —1

—1 with prob.1/6
o rij=13" 0 with prob.2/3
1 with prob.1/6

Latent semantic indexing The main idea behinlhtent semantic indexin@-Sl) is

to project documents into a low-dimensional space withefiéit semantic dimen-
sions. Even in the case in which two documents do not sharestier the original
vector space they can still have a high similarity score atdrget space as long
as they share “semantically” similar words. Latent sentaintilexing is based on
the Singular Value DecompositiofsVD) applied to the document matrix .

Latent semantic indexing takes the document matixand represents it as a
matrix M in ak dimensional space:(< < m) such that it minimizes the following:

A= | M — M|, (2.2)
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Let M be the document matrix with documents aneh features. Using SVD,
latent semantic indexing decompos#ésinto three matrices such that:
M[an] = T[mxr}z[rxr](D[nxr])T
whereT and D are orthogonal matrices that contain respectively thededft
the right singular vectors df/ and represent the terms and documents in the target
spaceX is a diagonal matrix that contains the singular the valued/cindr is
the rank ofM . If values onX are sorted in decreasing order, SVD can be seen as a
method to rotate the axes of the target space such that fethexis is associated
to the direction with the-th largest variation. Thus singular valuesncan be
used to rank the “importance” of each dimension in the tasgere. As a direct
consequence latent semantic indexing attempts to redecdirtiensionality in a
way such that the dimensions of the target space correspahé aixes of greatest
variation.
By restricting the matrice®’, > and D to their firstk < r columns we obtain:
M) = T Sk (Dpncag) -
which is the best approximation for equation 2.1. At thisnpoio move from
the m-dimensional space of words to thedimensional space of concepts, docu-
ments can be represented as the rows of the following matrix:
Z[an} = Z[kxk](D[nxk})T
Despite the high computational cost, latent semantic iimgeis one of the
most powerful techniques for dimensionality reductioneTdinoice of the value
of k is arbitrary and it is still one of the mayor issues for LSI. dotaggressive
dimensionality reduction can negatively affect the qyatif results while a too
mild reduction can leave noise in the vector space. Typicaioes fork are in the
range of 100 - 150 features.
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