
Analysis of Security Protocols asOpen Systems�

Fabio Martinelli

Istituto per le Applicazioni Telematiche - C.N.R. ��

Abstract

We propose a methodology for the formal analysis of security protocols. This originates
from the observation that the verification of security protocols can be conveniently treated
as the verification of open systems, i.e. systems which may have unspecified components.
These might be used to represent a hostile environment wherein the protocol runs and
whose behavior cannot be predicted a priori. We define a language for the description of
security protocols, namely Crypto-CCS, and a logical language for expressing their prop-
erties. We provide an effective verification method for security protocols which is based on
a suitable extension of partial model checking. Indeed, we obtain a decidability result for
the secrecy analysis of protocols with a finite number of sessions, bounded message size
and new nonce generation.

Key words: Security protocol analysis, Process algebras, Partial model checking,
Temporal logic.

1 Overview

The increasingly growing amount of security-sensitive information flowing into
computer networks has attracted a lot of interest in the investigation of formal meth-
ods for the definition and analysis of the security properties which these systems
must ensure.

Computer networks may consist of thousands of geographically distributed com-
puters, and communicating between two of them may involve the exploiting of the
communication features of many others in the network. This results in the need
of establishing secure communication channels, so that the exchanged information
is kept confidential all through the communication steps (secrecy). Furthermore,

� This paper is a revised and extended version of [35].
��E-mail: Fabio.Martinelli@iat.cnr.it.

Preprint submitted to Elsevier Preprint

the communicating parties should be sure about the origin of the messages they
receive (message authentication) or the identity of the other parties involved in
the communication (entity authentication). Several communication protocols have
been developed to try to solve these problems through cryptography [44]. The mes-
sages sent in the network are usually encrypted, i.e. manipulated so as to make the
actual message recoverable only by the users who know some given information,
such as a decryption key; furthermore, messages are sometimes digitally signed,
i.e. manipulated so as to make the message recoverable by anyone, while making
sure it may have been originated only by the user who knows a certain piece of
information, i.e. the signature key.

Cryptography is a fundamental tool for ensuring security properties, but it is not
sufficient by itself, as proved by many flaws found in cryptographic protocols (e.g.,
see [3,13,29,40]). This holds even by assuming cryptography as completely reli-
able, i.e. without considering crypto-analysis attacks but only how messages are
exchanged among the parties involved in the protocol. Thus, cryptographic proto-
cols are recognized to be prone to errors, even though, conceptually, they involve
only a few communication steps between the parties.

Over the last few years, several techniques for finding flaws in such protocols have
been developed (e.g., see [13,26,27,29,31,37,40,43]). Some of them are based on
(finite) state-exploration, and can typically ensure error-freeness for bounded sys-
tems only. Other approaches are based on proof techniques for authentication logic
(e.g., see [3,21,42]) or process algebra (e.g., see [2,8]). Type systems and other
static analysis techniques have also been successfully exploited (e.g., see [1,6]).

Our approach is novel in this area. It was spurred by the observation that security
protocols can be conveniently described by open systems. Generally speaking, a
system is open if it has some unspecified components. This un-specification may
depend on several factors: for instance, we are at an early development phase and
hence not all the implementation details are fixed or perhaps we are simply un-
able to predict a component’s behavior within a system. In both cases, however, we
want to make sure that, whenever the unspecified component is definitely fixed, the
resulting system works properly, e.g. fulfills a certain property. Thus, the intuitive
idea underlying the verification of an open system is the following: an open system
satisfies a property if and only if, whatever component is substituted to the un-
specified one, the whole system satisfies this property. In the framework of formal
languages for the description of system behavior, an open system may be simply
regarded as “context”, i.e. a term of this language which may contain “holes” or
placeholders. These are the unspecified components. Consider, for instance, a lan-
guage for describing concurrent systems such as CCS [38] or CSP [20] and let � be
the operator for representing parallel-running systems; then the contexts ��� � and
����� � may be considered as open systems.

Several situations which commonly arise in computer security analysis may be

2

regarded as instances of open systems verification, e.g.:

� Security protocols involve several parties sending and receiving information over
a possibly insecure network. We can then imagine a hostile intruder being ”present
into” the network and being able to listen, tap into and fake messages to attack
the protocol. Suppose, for instance, having a user � willing to send a message
� to another user �. This situation is usually described through the term ���.
It would be better to consider instead the context (open system) ����� �, where
the unknown component (the hole) may be used to take into account the presence
of an intruder whose behavior we are not able to predict. Note that � and � are
not necessarily aware of the presence of the intruder.

� Sometimes, we also need to consider situations where some of the parties to a
protocol behave maliciously, trying to achieve an advantage for themselves. In-
deed, such parties could not behave as prescribed by the protocol. In the above
example, if we choose not to trust �, then the situation should be properly mod-
eled by analyzing the context ��� �. In contrast with the previous example,
where we add information about the presence of an external intruder, here we
remove the information about the “intended” behaviour of a certain user, e.g. �;
however, � still assumes the presence of � with such “intended” behavior. This
amounts to require � has a strategy to protect itself against whatever malicious
behavior � may have during the participation to the protocol.

Thus, when analyzing security-sensitive systems, neither the enemy’s behavior nor
the malicious users’ behavior should be fixed beforehand. This will prevent us from
making unjustified assumptions which could lead to erroneous (and dangerous)
verification results. To sum up, a system should be secure regardless of the behavior
the malicious users or intruders may have, which is exactly a verification problem
of open systems �. Indeed, our proposal for defining security properties as “open
systems” properties is the following (see [34–36]):

��� ����� 	�
����� ��� � � � � �� ����� � � � � ��� �� �

where ��, with � � 	 �
, stands for a possible enemy/malicious user, � is the open
system under examination (consisting of the honest participants plus the “holes”
for the enemy and/or the malicious parties), � is a logical formula expressing the
security property and �� is the truth relation. It roughly states that the property �
holds for the system �, regardless of behavior of any unknown component (i.e.,
intruder, malicious user, hostile environment, etc.).

In the remainder of the paper, we will use a specific context of analysis, i.e. ��� ��
�, where there is only one unknown component and � is the set of channels where

� Note also the analogy between open system verification and game theory issues as re-
marked in [24].

3

all the participants to the protocol (so also the attacker) may interact.

��� ����� 	�
����� � ����� � � �� � (1)

We will prove that considering this simple context is enough for checking many
security properties. (However, we remark that the techniques we exploit are very
general and may be applied to more complex languages and security analysis sce-
narios.)

We need a method to mechanically check the properties expressed as (1).

1.1 The proposed analysis method

We give an outline of our analysis approach, which will be discussed in further
detail in the remainder of this paper.

Note that such properties as (1) look like validity statements of mathematical logic,
i.e.:

��� ����� 	�
����� � � �� � (2)

where the formula � must be checked for every structure � . The main difference is
that in (1) we check the components � in combination with a system �.

Our aim is to reduce such a verification problem as (1) to such a validity checking
problem as (2). To obtain this, we apply and extend the partial model checking tech-
niques used for the compositional verification of concurrent systems (see [5,25]).

Consider a system � in combination with a process � and try to figure out if the
whole system ����� � � enjoys a property expressed by a formula � or not. Then,
partial model checking techniques can be used to find the sufficient and necessary
condition on � , expressed by a logical formula ��, so the whole system �������
satisfies �. Briefly, we have:

����� � � �� � �� � �� �� (3)

The key to obtaining such results is that the semantics of several formal description
languages is given in the Structured Operational Semantics (SOS) style: there is a
set of premises/conclusion rules which are used to infer the activities of complex
systems starting from the activities of their components. Assume, for example, to

4

have a single rule, like the following one:

��
�

�� � �
� ��

�
�� � �

�

�� � ��
�

�� � �
� � � �

�

where �
�

�� � � means the system � is able to perform the activity � and evolve
in the system � �. Then, the semantics of the composition of two systems (�� � ��)
is uniquely obtained from the semantics of the two components, say �� and ��.
This form of compositional reasoning simplifies our task. Suppose to have a set
of formulas denoting system activities and that the formula � means the activity
� may be performed. Assume also that ��

�
�� � �

� holds for some � �
�. Then, a

sufficient condition on �� to have �� � �� satisfying � is simply �� performing the
activity . This condition may be described through a formula, say ��� . However,
the behavior of �� � �� is completely determined by the previous SOS rule. Thus,
the unique possibility to have the firing of the transition � by ����� is through the
application of the rule itself. Indeed, the condition �� enjoying ��� turns out to be
also necessary. (The actual formal framework is rather more complex and depends
on the logic used and the particular format of SOS rules, e.g. see [5,25,34].)

Using the property (3), such verification problems as in (1) can be easily reduced
to such problems as in (2).

Now, we only need to equip our logic with a suitable validity (satisfiability) deci-
sion procedure. The wide research on temporal logic provides us with several useful
techniques and results. The computational complexity of validity decision proce-
dures is usually unfeasible. It is however worth noticing that, at least for the prop-
erties analyzed in this paper, the validity (satisfiability) problem can be efficiently
solved for formulas obtained after partial model checking, i.e. in polynomial time
in their size. (However, note that the size of the formula could be exponential in the
size of the system analyzed.) A software tool implementing our methodology has
actually been developed [30].

Outline of the paper. The remainder of this paper is organized as follows. Section
2 defines the language (actually a process calculus) we use for the description of
cryptographic protocols. Section 3 defines a logical language for the definition of
the secrecy properties of protocols. Section 4 explains the proposed approach. Sec-
tion 5 shows examples of our analysis. Finally, Section 6 provides some concluding
remarks. The proofs have been attached in the Appendix for readability purposes.

2 Crypto-CCS: An operational calculus for the description of protocols

This section presents the calculus we use for the description of security protocols,
which is a slight modification of CCS process algebra [38] using cryptography-

5

modeling constructs and dealing with secret (confidential) values (hence the name
Crypto-CCS). The model consists in a set of sequential agents able to communicate
each other by exchanging messages.

To analyze cryptographic protocols, we need to formally model a wide range of
functions, such as encryption, decryption, hashing etc., and each of them enjoys
specific algebraic properties which may significantly affect the correctness of such
protocols. To manage such variety, we decided to parameterize our calculus through
a set of message-manipulating rules. For the application of these rules, we added a
new construct to the calculus. We thus build a framework which is parametric w.r.t.
the specific crypto–system used and the way messages are manipulated.

2.1 Types, typed messages and inference systems

Here, we define the data handling part of calculus. First of all, we introduce the
notions of type, message and typed message. Types are used to record the struc-
ture and kind of data. Since certain operations are meaningful only over data with
a certain structure, types permits us to define managing rules that precisely cor-
responds to these operations�. Messages are the data manipulated by agents and
typed messages are messages whose structure is explicitly represented. We intro-
duce also the notion of inference system which models the possible operations on
typed messages.

Types. Consider a set of symbols 	� �
� �� � � � � � �� that represent the basic
types and a set of symbols � �
� �� � � � � � �� that represent the constructors for
structured types. Assume to have a countable set �� of type variables. Then, the
set Types is defined by the following grammar:

� ��� � � � � � ����� � � � � ����� ��� � � � � � �
����� � � � � ����� ���

where � ��� � 	� and ���� � is the number of arguments of the constructor
� .

Messages.Consider a collection
T�,. . . ,T�� of infinite sets which are pairwise
disjoint, i.e. �� � �

	 � � when 	 �� �. Each set �� contains the messages of the
basic type � �. Assume to have a countable set � of message variables. Then, the
set Msgs of messages is defined by the following grammar:

� ��� � � � � � ����� � � � � ����� ��� � � � � � �
����� � � � � ����� ���

where � ��� �	���
���
���
	 and ���� � is as above. (Note that we use the set

� of constructors both for types and messages.)

� Types will be also useful for defining some conditions for our analysis.

6

Typed messages.We can label each message with a type that denotes its struc-
ture. Consider an assignment Æ that maps message variables to types and let ���� �
���� �� ����� be:

������� �

�������
������

Æ��� if � � �

� � if � �
�� where 	
�� � � � �
�

� ���������� � � � � ��������� if � � � ���� � � � � ���

Let ����� be the set of typed messages defined as
� � ������� � � �����.
Types, messages and typed messages without variables are said to be closed. The
set of closed typed messages of a closed type � is ������� �. For the sake of
readability, we sometimes leave out a type from a typed message since this can
be inferred from the message itself, when the type of message variables is known.
Equality between typed messages means syntactic equality. Furthermore, we write
���� �������� , with � �
�� � � � �
�, for a sequence �� ��� � � ��� ���.

Inference system.Agents are able to obtain new messages from the set of messages
produced or received through an inference system. This system consists in a set of
inference schemata. An inference schema can be written as:

�� �
�� � �� � � � �� � ��

�� � ��

where �� � ��� � � � � �� � �� is a set of premises (possibly empty) and �� � �� is the
conclusion. Consider a pair of assignments ���� ���, with �� � � �� ����� �� �
�� �� ������, then let ����� be the message � where each variable � is replaced
with ����� (a similar definition applies to the type �����). Given a sequence of closed
typed messages ����

� � �
�
�� � � � � �

�
� � �

�
���, we say that a closed typed message � � �

can be inferred from ����
� � �

�
�� � � � � �

�
� � �

�
��� through the application of the schema

�� (written as ����
� � �

�
�� � � � � �

�
� � �

�
��� ��� � � �) if there exists a pair of assignments

���� ���, with �� � � �� ����� �� � �� �� �����, s.t. ������ � ������ � � � � and
������ � ������ � ��

� � �
�
�, for 	
�� � � � �
�. (Note that, given ����

� � �
�
�� � � � � �

�
� � �

�
����

it is decidable whether or not there exists � � � s.t. ����
� � �

�
�� � � � � �

�
� � �

�
��� ���

� � �.) A deduction (or proof) for a closed typed message � � � is a finite tree, rooted
in � � �, whose nodes are messages built from their descendants through the appli-
cation of an instance of an inference schema. Given an inference system, we can
define an inference function � s.t. if � is a finite set of closed messages, then ����
is the set of closed messages that can be deduced starting from �. We assume that
���� is decidable.

Example 2.1 Tab. 1 shows an inference system for the modeling of cryptographic
functions similar to the one used in [27,31,43]. Consider a set of basic types
	� �
�������
�����
 ��� which stand for encryption keys, agent names and
random numbers. Consider also a set of constructors � �
!� ������� which
are respectively the constructors for encryptions, decryption keys and pairs. For

7

� � �� � � ��
��� �� � �� � ��

���
��� �� � �� � ��

� � ��
���

��� �� � �� � ��
� � ��

���

� � � � ����
���� �� ������� ��

���
���� �� ������� �� ��� ������

� � � ���

Table 1
A simple inference system.

	� �
 �

����	� ������ �
 �
���

	� �
 �

��� ������ ���

	 �

���

Table 2
Inference of 	 �
 from �����	�� ���� ��������
 � �������.

instance, the followings are types: ��
 ������
��� ���
���!�������
 ���
(we use the infix notation for the pairing construct), !������
������
��� (with
� ��) and ����� (we use the superscript notation for the inverse constructor).
Given a set of messages �, then � �� ���� iff � �� can be inferred by the rules
(1-5). Rule 1 builds the pairs of two messages; Rules 2 and 3 are used to obtain the
components of a pair; Rule 4 allows messages to be encrypted using a key, while
Rule 5 allows messages to be decrypted using the corresponding inverse key. Con-
sider the closed typed message �� �� � � �!�"���� "��� ��!����� � � � ������
(note we use commas to separate messages in pairs). Then, � �� ��
�� �� ���
since there exists a deduction of � �� from �� �� � (see Tab. 2).

2.2 Agents and systems

We define the control part of our calculus for the description of cryptographic proto-
cols. Basically, we consider (compound) systems which consist of sequential agents
running in parallel. A sequential agent may be used to represent one (or more)
user’s sessions of a security protocol. These sessions typically consist of ordered
sequences of actions for each user. A protocol which consists of the concurrent exe-
cution of several sessions of protocol participants may be described by a compound
system.

The terms of our calculus are generated by the following grammar:

8

(COMPOUND SYSTEMS:) � ��� ��� � ����� � �

(SEQUENTIAL AGENTS:) � ��� � � � �� � �� � �� � �� � ���������

���������� ��� � �� ������

(PREFIX CONSTRUCTS:) � ��� �� � �� �� � #��
� � ��
�
�� �

where ����� ��� � � � � �� are closed messages or variables, � is a message variable,
�� � � are closed types and � � is also basic, $ is a finite set of channels with $,
� is a finite set of closed typed messages, � is a subset of $ and 	 � � � (the set
of natural numbers).

We briefly give the informal semantics of sequential agents and compound system
as well as some static constraints on the terms of the calculus.

SEQUENTIAL AGENTS:

� � is the process that does nothing.
� � �� is the process that can perform an action according to the particular prefix

construct � and then behaves as �:
� �� allows the message � to be sent on channel .
� �� �� allows messages � �� to be received on channel . The message re-

ceived substitutes the variable �.
� #��
� is used to eavesdrop a communication on channel which occurs in other

sub-components of the system. The eavesdropped message substitutes the vari-
able �.

� ��
�
�� is used to generate new random messages of a basic type � . The message
generated substitutes the variable �.

� �� ��� is the process that non-deterministically decides to behave as �� or ��.
� �� � �������� is the matching construct. If the two messages are equal to each

other, then the process behaves as ��, otherwise as ��.
� ���������� ��� � �� ������ is the inference construct. If, applying a case of

inference schema �� with the premises ���� �������� , a message � �� can be
inferred, then the process behaves as �� (where � is replaced with �); otherwise
the process behaves as ��. This is the message-manipulating construct of the
calculus: we can build a new message by using the messages in ��������� and
the inference rule ��.

Consider, for instance, the inference system in Tab. 1 and the sequential agent:

 �� � !����� � ��
receives ��

�� "�� �� � � � �
and tries to decrypt it�

��%������
with success�

� �%�������
with failure�

9

The agent may receive a message and try to decrypt it using the inverse key "��:
if it succeeds, then the calculated value is sent on channel �%�, otherwise the
system outputs an error message ���.

COMPOUND SYSTEMS:

� The system � � � is prevented from performing actions whose channel belongs
to the set �, except for synchronization.

� A compound system ���� performs an action � if either of its sub-components
performs �, and a synchronization action (&�
�), if the sub-components perform
complementary actions, i.e. send-receive actions. It is worth noticing that, un-
like $$�, our synchronization actions carry information about the message ex-
changed and the channel used. In this way, we can model eavesdropping. Indeed,
the agents of one component, e.g. �, might know the message exchanged during
the synchronization of the other component, i.e. ��, by simultaneously perform-
ing an eavesdropping action #.

� Finally, the term � represents a system which consists of a single sequential
agent whose knowledge, i.e. the set of messages it has, is described by �. The
agent’s knowledge increases as it receives (or eavesdrops) messages (see rules
(�� #) in Tab. 3), infers new messages from the messages it knows (see rules ��

and ��) and generates new random messages (see rule (gen)). Sometimes we
omit to represent agent’s knowledge when this can be easily inferred from the
context. Given a message � in ����, we can find a sequential agent � which
may build � by using several times the inference construct (since proofs always
consist of a finite number of applications of the inference rules).

Remark 2.1 Note that we do not allow constructs for modeling recursion, thus
our systems may have only finite computations. Adding recursion is possible, but
it would make undecidable the verification problem of the properties we are going
to consider in this paper. It is also worth noticing that, using typed channels, we
implicitly assume that the receiver of a message can recognize the structure of the
received messages, even if it may not be able to retrieve the actual meaning of such
messages.

STATIC CONSTRAINTS:

We assume our terms to respect some well-formedness conditions that can be stat-
ically checked. In particular:

Bindings. The inference construct ���������� ��� � �� ������ binds the variable
� in ��, whereas the variable � must not appear in ��. The prefix constructs
 �� ����� #��
� ��� ��
�
�� �� bind the variable � in �. A sequential agent is said
to be closed if every variable is bound. We assume that each variable may be bound
at most once. In the sequel we only consider compound systems made of closed
agents.

10

Agent’s knowledge.For every sequential agent �, we require that all the closed
messages that appear in � belong to its knowledge �. More formally, let 	� '���(
be a function that given a message � returns
�� if this is closed, � otherwise.
Then, let ���� be:

�� ����� � 	� '���(��� �����

�� �� ����� � ��#��
� ��� � ����
�
�� ��� � ����

��� � ��� � ���� ������

���� � �������� � 	� '���(����	� '���(���������������

������������ ��� � �� ������ � �����	� '���(����� ����� ������

So, for every sequential agent �, we require ���� � �.

Random message generation.We partition each set of basic values T�, "
�� � � � �

�, into two disjoint sets, the initial values IT� (finite) and the random values RT�

(infinite and countable). Thus, we distinguish between the values of type � � which
may initially be known by the agents, i.e. IT�, and the ones which are guessed later
on, i.e. RT�. The construct ��
�
�� � allows to guess a random value of a basic type
� �, i.e. a message in ���. (Random messages of structured types can be built using
random values of basic types as sub-components.) Since these values must be ran-
domly guessed, two different agents should not be able to guess the same value and
each guessed value should be different from the previous ones. To formally model
this, we consider a set of injective functions �� � �� ��RT�, with � � basic type,
supplying the values guessed by the agents. We only consider compound systems
s.t. the prefix constructs ��
�
�� appear only once, given 	 and � . Moreover, if ��
�
��
occurs in an agent, and �� ��	� � �, then � must not occur in any knowledge of the
agents of the system. The set of random values of a basic type which belong to a
system �, namely ��
(���, consists of the RT� values contained in the knowledge
of the sequential agents in � plus the messages �, so the prefix ��
�
�� belongs to an
agent in �, with � � �� �	�.

Remark 2.2 Our assumptions on the random messages clearly limit the intruder
capabilities of attacking a protocol in our model. For example, let the intruder know
an encrypted message. Then, in principle, it could try to decrypt it by iteratively
guessing every possible decryption key. This is called a brute force attack. In our
model, each guessed message is always different from those previously guessed
and also from the initial ones. Hence, the guessed decryption keys will always be
different from the key used to encrypt the message and so the intruder will not
be able to decrypt the message. In a real programming system, since the set of
possible keys is usually bounded, the brute force attack would lead the intruder
to guess the correct decryption key and therefore the secret message. However, the
set of possible keys is usually large enough to make similar attacks computationally
infeasible. Our model tries to reflect this situation. (This form of abstraction is often

11

�	�
��		��

���
�� ���

�
�
	 �
 �
	����
 �

��
� �
��
���
�� ���	������� 	��

���
	 �
 �
	����
 �

����
� ��
����
�� ���	������� 	��

�����
� �� ���

�����
�� ��
��
�� ����������� 	��

�����
	 	� ����

�
�� ���

���

��	 	��������
�
�� ���

���
�����

	 � 	� ����
�
�� ���

���

��	 	��������
�
�� ���

���

����
����

�
�� ���

���

��� ����
�
�� ���

���
����

����
�
�� ���

���

��� ����
�
�� ���

���

����
��	� �
�		���
�� 	 �
 ����	������� 	��

�
�� ���

���

����	�		���
�� � �
 �������
�
�� ���

���

����
� ��	 �
 ���	� �
�		���
�� 	 �
 ����

�
�� ���

���

����	�		���
�� � �
 �������
�
�� ���

���

����
�

�
�� ��

����
�
�� �����

����
�
���
�� �� ��

���
�� ��

�

����
����
�� �����

�

����
�
����
�� �� ��

����
�� ��

�

����
����
�� �����

�

����
�

�
�� �� ���������� �� �

��
�
�� ���

Table 3
Operational semantics, where the symmetric rules for ��� �� and �� are left omitted.

assumed when applying formal methods to security protocol analysis.)

2.2.1 Operational semantics and auxiliary notions

Here, we give the operational semantics of Crypto-CCS and some auxiliary defini-
tions.

The activities of the agents of the systems are described by the actions they can
perform. The set � � of actions which may be performed by a compound system
is defined as: � � �
 ��� ���#�
�� &�
� � $�� ������ closed� �
&� �
� ��

��� Below, we give a definition of the function channel that, given an action,
returns a channel ()�	(if the channel is not specified), and message that, given an
action, returns its message.

12

 �� �� &�
� #�
� &�

channel)�	()�	(

message
��
��
��
��
��

We denote a sequence of actions with Greek letters (the empty sequence is *). The
function ����, defined as ������+� � ����������������+� and �����*� � �,
returns the set of communicated messages in a sequence of actions. As usual, we
use a Labeled Transition System (LTS) to assign semantics to our calculus. The
semantics of closed terms is given by the least set of action relations induced by the
rules shown in Tab. 3.

Let ������� be the set of channels that occur in �. This set represents the channels
where agents of � may communicate. We consider �

�
� �	' when �� � � �

� �
�

�� (i.e. when there is no system � � s.t. � �
�� � �). Let �%���� be the set

of subterms of � and �%���� be ����%����. We say that a message �
is initial, i.e. composed only of initial values, if �%���� � ��

� � � for each
"
�� � � � �
�.

For notational convenience, we sometimes use ���
�
� instead of �������. As a

notation we also use �
�
�� � � if + is a finite sequence of actions ��� � � 	 �
 s.t.

� � ��
���� � � �

���� �� � � �.

Note 1 If a sequential agent sends out a message during a computation, then this
message can be deduced by the agent’s knowledge, i.e. if �

�
�� � �

�
���
�� � ��

��

then � �����. Moreover, the static constraints on systems are preserved after
performing activities, i.e. if � satisfies our constraints and �

�
�� � � then also

� � satisfies our constraints. In the following, we also assume that systems in their
initial configuration know only initial messages.

Example 2.2 Consider a simple case of public key encryption, and apply as in-
ference system the one in Tab. 1. For each user , , there is a pair of keys, i.e.
�-��,�� -��,����, so that -��,� (the public key of ,) is known by every one
in the system and -��,��� (the private key of ,) is only known by the user , .
The public key is used to encrypt messages. Since this is public, everyone can do it.
The private key is used to decrypt messages. Since only , is assumed to know this
key, even if an agent could eavesdrop the communication, it could not retrieve the
message �. We thus model a situation where an agent � tries to send � a message
� encrypted with the � public key.

13

The sender �	 , with �� �
�� ��� -���� �����, is the following:

��� -���� �
 � �!����� � ��
encrypts �� with -�����

� ��������
sends it�

� �

The receiver �
 , with �� �
-������ �������, is the following:

 ���� �!����� � ��
receives ��

�� -������ �� . �� �
tries to decrypt it�

��
successful�

� �
failed�

where �� and �� stand for the possible continuations after the protocol of � and �,
respectively. Finally, the description of the compound system is ��� � �	��
 .
Briefly, the agent � builds the encrypted message, then sends it on channel �� .
The agent � receives an encrypted message from channel �� and then tries to
decrypt it using the inverse (private) key -������. If the protocol has been run
properly, the variable . of � should contain ��.

3 A logical language for the description of protocol properties

We illustrate a logical language (��) for the specification of the functional and
security properties of a compound system. We have extended a normal multimodal
logic (e.g., see [46]) with operators which make it possible to specify whether a
message belongs to an agent’s knowledge after a computation + performed by the
whole system, starting from a fixed initial knowledge. The syntax of the logical
language �� is defined by the following grammar:

� ���� �� ����� ����� � ������ � ������ �� �
�
� � �+ � � �

�
�

where � � �, � is a closed message, � is an agent identifier, � is an index set
(possibly infinite) and � a finite set of closed typed messages. The language without
� �

�
� and �+ � � �
�
� (“knowledge” operators) is called �.

Informally, T and F are the true and false logical constants; the ���� modality ex-
presses the possibility to perform an action � and then satisfy � . The ���� modality
expresses the necessity that, after performing an action �, the system satisfies � ;
���� (����) represents the logical disjunction (conjunction). As usual, we consider
���� (����) as F (T). A system � satisfies a formula � �

�
� if � can perform

14

a computation + of actions and an agent of �, identified by � , can infer the mes-
sage � starting from the set of messages � plus the messages it has come to know
during the computation +. The formula �+ � � �

�
� is satisfied by a system �
if there exists a computation + and an agent � of � s.t. � can infer � during the
computation +.

We assume that a unique identifier can be assigned to every sequential agent in a
compound system (e.g., the path from the root to the sequential agent term in the
parsing tree of the compound system term). Then, given a sequence of transitions
�

�
�� � � of a compound term �, let ��

�
�� � �� � be the sequence of actions of

the agent identified by � in �, that have contributed to the transitions of the whole
system� . Finally, the formal semantics of a formula � �� w.r.t. a compound
system � is inductively defined in Tab. 4.

� � �� ��� ����� ������� �

� � �� ��� �� ������� �

� � ������ �� �� � � � � � ��

� � ������ �� �� � � � � � ��

� � ��	� �� ��� � �
�
�� �� ��� �� � �

� � ���� �� ��� � �
�
�� �� ������� �� � �

� � 	 � �
�
� �� ��� � ��

�
�� ��� �� �� ���

	 �
 � ��� �	��������

� � �� � 	 � �
�
� �� �� � � � 	 � �

�
�

Table 4
Semantics of the logical language.

We can establish a decidability result for the sub-logic which consists only of the
logical constants, disjunctions and the possibility modality.

Lemma 3.1 Consider a formula � �, which consists only of the logical con-
stants, disjunctions and the possibility modality, and a finite set of closed messages
�. It is decidable if there exists a sequential agent � s.t. � �� � .

� For simplification, here we leave out the technical details. We can however achieve this
result by suitably adding information on the transitions, e.g., see [10].

15

3.1 Verification problems for security protocols

The formula �+ � � �
�
� plays a central role in the analysis of security proto-

cols, because it makes it possible to express secrecy properties. Indeed, it may be
used to check whether the agent � can discover a certain message or not. We are
mainly interested in the study of properties like:

No agent (intruder), communicating with the agents of the system �, can retrieve
a secret that should only be shared by some agents of �.

or dually

There exists an agent (intruder) that, communicating with the agents of the sys-
tem �, can retrieve a secret that should only be shared by some agents of �.

In our model, the latter property can be formally restated as follows:

�� ��� ��� �� �+ � � �
�
� (4)

where � is the secret message. However, we are not interested in every computation
+ of ��� . Indeed, consider the following example where the system � consists
of the single agent ��� 	��, whose unique secret is �. Then, due to our semantic
modeling of receiving actions (see rule (?) in Tab. 3), it is possible for an intruder
to obtain any secret messages. For instance, let / be �� ����, then:

��� 	���/�
��� 	�
�� ��� 	������ 	��

Thus, / discovers � after performing the receiving action �� �� . This means
that � satisfies property (4), i.e. it is not secure, which contradicts our intuition.
However, note that the receiving action �� �� simply models the potential com-
munication capability of / (and thus of the system ��/) with an external (omni-
scient) environment. But, when we fix �, we want to consider ��� as a closed
system and study only its internal communications, i.e. the actual communications
between the system � and its “hostile” environment represented by � . We thus
consider the following formulation:

�� ��� ����� � � �� �+ � � �
�
� (5)

where � is the set of channels on which � and � can communicate, i.e. ���������.
Note that all the possible computations of ����� � � are actually the internal
computations of ��� . In the context ���� �� � � the intruder � is forced to com-
municate only with the system �. In our working example, i.e. ��/�, no internal
action is possible because � does not perform any output which may synchronize

16

with the receiving actions of / . Thus, the system ���/���� does nothing
 . So, as
the intuition suggests, � does not satisfy property (5). Note that if we consider the
system � � � ������ 	��, whose unique secret is �, then:

� ��/�
����
�� ��� 	������ 	��

which clearly shows that � � does satisfy (5) as the intuition suggests (because � � is
making public its secret). For the previous considerations we make the following
assumption.

Remark 3.1 We analyze the context ���� ���� (���
�
� � by using the short notation)

when we want to study the secrecy properties for a system � against an intruder
(or a malicious) agent � , with ������� � �.

We usually assume the intruders have some initial knowledge. This will depend on
the system under investigation.

Example 3.1 Consider the protocol in the Example 2.2 and look for an intruder
�� , if any, who can actively interact along the communication channel �� and
discover the secret message ��, i.e.:

��	��
���� �
 ��� �� �+ � �� ��
�
�

If we assume that �� � ����� and -������ � �����, then, for every � which
can only communicate via �� , the previous statement does not hold. So, no in-
truder will be able to know the exchanged message �� under the above hypothesis.
In the sequel, we show how to prove this fact.

The formulation (5) models a scenario where a system is attacked by an exter-
nal agent. But, we need also to consider more subtle situations, e.g., where a le-
gitimate user of the system is willing to act maliciously against the other legiti-
mate participants. Consider a system that consists of
 sequential agents ���

, with
	
�� � � � �
�. To check whether the agent �� may apply a successful strategy in
order to obtain a secret � of some other participants, say �	 with 	 �� �, we can
study if:

�� ��� ������
���
������������� � � �� �+ � � �
�
� (6)

We can also imagine more complex situations where a system is under attack
by an external intruder and by a group of internal agents, i.e. we can study if

 Actually, when considering a generic agent � , we also need to take into account the
guessing actions. However, by construction, guessed values will always be different from
	.

17

���/
��
�

� � ��/ ��
�

s.t.:

������
���
�������������������/
��

��
��� � � ��

�+ � � �
�
� �

�������+ � � �
��

� ��
�

(7)

where �� �
	� � � � � 	�� and 	 0 ��.

Note that we only deal with secrecy properties; however, several other security
properties can be encoded as secrecy ones, e.g., for the authentication properties
see [30,33].

4 Analysis method

4.1 Intuition

In the previous sections, we set a framework for defining security properties (so
far secrecy only) for cryptographic protocols as properties of open systems. Now,
we want to define suitable techniques which may help us to solve the verification
problem. In particular, we want to follow and extend the analysis approach for open
systems developed in [34], which is based on partial model checking techniques
(e.g., see [5,25]).

The central idea is to turn the problem of verifying an open system into a validity
(satisfiability) checking problem of a certain logic. To achieve this, we use the par-
tial model checking techniques proposed within the concurrency theory for com-
positional analysis of systems: suppose we have a compound system ����� that
has to satisfy a certain property � . Using partial model checking techniques, we
can reduce this verification problem to checking whether either component, say
��, satisfies a new property �00�� (see Subsection 4.3 for its formal definition),
which is obtained by “evaluating” the behavior of the other component �� (hence
the name “partial evaluation”).

Observing the compositional analysis proposed in [5,25], it can be noted that it is
semantic driven. Likewise, our partial evaluation functions derive from the inspec-
tion of the operational rules of calculus. Below we try to give an insight in the way
partial model checking (or partial evaluation) works and the main difficulties we
encounter in this specific field for the analysis of cryptographic protocols.

Possibility formula. Consider the system �
�
� �� ���� and suppose we want

to determinate the necessary and sufficient condition on a sequential agent � to

18

obtain:
��� �� �&�
����

This statement means that the system ��� performs an internal communication of
the message �� on the channel . Recall that ��� may perform the &�
�� action
(according to the operational semantics in Tab. 3) if and only if either situation
holds (the rule to infer the transition is in brackets):

(1) (Rule ��) � performs &�
�� in isolation.
(2) (Rule �� symm.) � performs &�
�� in isolation.
(3) ��� performs a form of synchronization, i.e.:

� a (Rule ��) � performs a reading action and � the complementary sending
action.

� b (Rule �� symm.) � performs a sending action and � the complementary
reading action.

� c (Rule ��) � performs an internal communication action and � an eaves-
dropping action.

� d (Rule �� symm.) � performs an eavesdropping action and � an internal
communication action.

Cases �� �, � and �(are not possible since � only performs reading actions. Fur-
thermore, case � is not possible either since � is a sequential agent and does not
perform internal actions. To summarize, � can only perform the corresponding

sending action, i.e. � ����

��, which is expressed by the formula:

� �� � �����

Thus �&�
����00� is � �����. The necessity modality is accordingly treated.

Disjunction. The reduction of a formula which is either a conjunction or a dis-
junction can be separately achieved for each operand, and the resulting formulas
connected by the corresponding logical operator, i.e. conjunction or disjunction.
E.g., for the disjunction operator, we have:

��� �� �� � �� ��

��� �� �� �� ��� �� �� ��

� �� ��00� �� � �� ��00� ��

� �� ��00� � ��00�

Note that, at least for the sub-language �, the construction of the formula eventually
comes to an end (see Tab. 5): as a matter of fact, each time a reduction is performed,
either the system � performs a computation step or the formula to be analyzed has
a smaller size than the previous one. It must be borne in mind that we consider
systems which can only perform finite sequences of actions.

19

Knowledge formula. The formula which deals with secrecy, i.e. �+ �� �
�
� ,

is more complex and needs more work. As noticed in the Remark 3.1, the context
���� �� � � (���

�
� � for short) is more suitable than ��� � for secrecy analysis.

Thus, we only perform the partial model checking of the formula �+ ���
�
� in

contexts like ���
�
� �.

To understand how we can perform the partial model checking, note that:

���� �� �+ � � �
�
� (8)

means ���� performs a computation + s.t. � can infer � �� from the messages
discovered during this computation and its initial knowledge �. We have two dif-
ferent situations, depending on the length of +:

(1) + is empty;
(2) + is equal to �+ � for some action � and computation + � and so ���

�
� performs

an action � by reaching a configuration � ���
�
� �. In turn, there is a computation

+� from � ���
�
� � s.t. � may infer �.

More formally, the statement (8) is equivalent to:

���� �� � �
�
��

���
����������+
� � � ��

�
���
(9)

where �� is
��� ������ �� � �� �� s.t. ���
�
�

�
�� � ���

�
� �
��. Each pair in �� rep-

resents an action that ���
�
� can perform and the resulting knowledge of � . The

logical formula in (9) may be considered as an unwinding step of the semantic
definition of �+ � � �

�
� w.r.t. the system �.

Now, note that � �
�
� is equivalent to T or F, depending on � �� ���� or

not. Thus, the first disjunct in the formula in (9) is T or F. Next, we are going to
prove that, under some assumptions, it is possible to finitely iterate the unwinding
step for the formula �+ � � � ��

�
�� until we obtain a formula which only con-
sists of disjunctions, possibility formulas and the logical constants T and F. We can
eventually apply partial model checking techniques to these simple logical opera-
tors and checking the formula �+ � � �

�
� would be possible. So, it is worthy
using the formulation (9) instead of (8).

To illustrate the problems we encounter during the unwinding phase, consider again
the set ��. This can be represented by the combination of the following three sets:

(1) ��� �
��� ������ �� � �� �� s.t. ���
�
�

�
�� � ���

�
� �
� by rules ��� ��or symm.�.

This set represents the possible interactions between � and � .

20

(2) ��� �
��� ����� � s.t. ���
�
�

�
�� � ���

�
� by rule ���. This set represents

the actions performed by � only.
(3) ��� �
��� ������ �� �� s.t. ���

�
�

�
�� ���

�
� �
� by rule �� symm.�. This set

represents the actions performed by � only.

Consider a pair ��� ��� in the first set. Then, if

���� �� �����+� � � ��

�
���

it must be

�� �� � �� �� ����
�
�

�
�� � ���

�
� �
� and � ���

�
� �
� �� �+� � � ��

�
��

We can again unwind the formula �+ � � � ��

�
�� , now with respect to � �. Note
that the system � � may perform less steps than �. Thus, if we could limit ourselves
only to the pairs in ��� , then our unwinding phase would eventually terminate.
The same reasoning applies to pairs in ��� . However, if we also consider the pairs
in ��� , which correspond to the situation where only � acts, then this reduction
strategy is not guaranteed to finish. Indeed, the size of the system � will not de-
crease. Nevertheless, in the context ���

�
� �, the agent � can only guess random

messages without interacting with �. Thus, since we consider only systems with
finite behaviour, we have the following observation.

Observation 4.1 If we could fix an upper bound for the number of generation ac-
tions that are performed by the agent � before any interaction with �, then the
unwinding process would eventually terminate.

In the next subsection, we will identify a class of sequential agents, namely the well
behaved ones, fulfilling the requirement stated in the previous observation. The
partial model checking of the knowledge formula �+ � � �

�
� can be solved
when we consider only well behaved agents. Moreover, we will make some general
assumptions on the inference system. These allow us to safely stick to the class of
well-behaved agents as attackers when analyzing the security of a system. Indeed,
we will prove that, if a generic sequential agent is able to successfully attack the
system, then a well-behaved agent can do that too.

4.2 Well behaved agents

Roughly speaking, an agent is well behaved if it only performs well behaved com-
putations, where a computation is such if and only if, whenever its first action is the
guessing of a random value, then this value occurs in a message successively sent
and between these two events there are only guessing actions. We thus require that
the intruder actually uses its random generated messages in a sending action. First,
we formalize the concept of well behaved agent.

21

Definition 4.1 A sequential agent � is well behaved if, during its execution, it
only performs well behaved computations, where a computation + is well behaved
�� whenever + � &��+

� then +� � &�� � � � &�� ��
�+��� with
 ! �� and
�������
���
���

�%������

The set of basic types that can appear in an agent is finite. Moreover, for each
type, the set of different random messages that can appear as submessages in a
message is limited. Thus, we can find an upper bound for the number of random
generation actions that may appear in any computation of a well behaved agent. By
observation (4.1), the partial model checking phase eventually terminates when the
unknown component is a well behaved agent.

We make two assumptions on the deduction function. Using these assumptions, we
can prove that it is sufficient to consider only well behaved agents as intruders in
the system. Indeed, if an intruder attacks the system, then also a well behaved one
can perform a similar attack. The two assumptions are the following.

Assumption 4.1 Given a message �, suppose � �� � is a random value not oc-
curring either in � or in any of the messages in �. Then, we have � ��� �

� �� ��� �� � ����.

Consider the deduction function � which has only the following rule schema :

� � � � � � �

� ��� � � �� �

where � is a type constructor. Assume also to have a basic message � �� and
a random value �� �� �. We can see that � does not enjoy the previous assump-
tion. Indeed, we have that � ��� �� �� � ��
� ��� �� � � ��� but � ��� �� �� � �
��
� ����, whereas �� �� � does not occur both in � �� and in � ��� �� �� �.

Note, however, that there is no relationship between the message � ��� � � �� �
and � � � �, indeed any type � � message is just sufficient to deduce � ��� � � �� �.
Perhaps, this rule can only be used to test the presence of any type � � message in the
intruder’s knowledge. However, since an intruder can always infer a random type � �

message, this rule seems useless. Inference systems commonly used in literature do
not have any similar rule. According to the next assumption, basic-type messages
cannot be forged.

Assumption 4.2 If � is a message and � ����, then every basic-type value of
� must be a submessage of some message in �.

For example, this assumption prevents the deduction function by producing random
values which are not within the set �, i.e. which are not guessed using the appropri-

22

ate construct ��
. For example, the following rule does not fulfill this assumption:

� � �

!����� � !����� � �

where � is a value of a basic type. Note that this assumption implies that new basic-
type messages can only be obtained by performing a guessing action.

Finally, under the previous assumptions, we can prove the following lemma which
tells that we can limit ourselves to consider well behaved sequential agent only in
the analysis of formulas on the form �+ � � �

�
� .

Lemma 4.1 Given a system � and an initial message �, suppose that there exists
a sequential agent � s.t. ��������� � � and ���

�
� �� �+ � � �

�
� . Then, a

well behaved agent � �
 exists s.t. ���

�
� �
 �� �+ � � �

��
� .

4.3 Partial evaluation functions

Finally, we present the partial evaluation functions. For the logical language �, that
has no knowledge operators, the partial evaluation function for the context ��� is
given in Tab. 5. The main difference w.r.t. the work in [5] is about the constraints
on the generation actions. Indeed, when considering the case about the generation
of an action &�, we cannot let the intruder guess a random message which belongs
to �, i.e. it is in ��
(���. The next statement is about the correctness of the partial
evaluation function.

Proposition 4.1 Given a system �, a sequential agent � and a logical formula
� � then:

��� �� � �� � �� �00��

Sometimes, it is also useful to consider the context � � � �, which consists only of
the restriction operator. The partial evaluation function 00� for such context w.r.t.
the formulas in � is given in Tab 6. The next proposition states its correctness.

Proposition 4.2 Given a system � �, a set of channels � and a logical formula �
�, we have that:

�� �� � � �� � �� � � �� �00��

Example 4.1 Consider the context ���� �� �
 �, where � � �� ����. Then, by

23

����
�
 �

����
�
 �

���	� ����
�
 ��	������ �

�
�

�
�	��

����� �� � ��
�� ���

����
�	� ����
�

�
�
���
�	��

��
		������� �
�
�
���
�	��

��			���������
�
����
�	��

���
�	����� �
�
�
����
�	��

�����

����	� ����
�

�
���	������ � �� ��!����
�

��
�	��

����� "��� #���

����� ����
�
 ��������� �

�
�

�
�	��

����� �� � ��
�� ���

����
��� ����
�

�
�
���
�	��

��
	�������� �
�
�
���
�	��

��		����������
�
����
�	��

���
������� �
�
�
����
�	��

�����

������ ����
�

�
���������� � �� ��!����
�

��
�	��

����� "��� #���

���������
�
 �����������

���������
�
 �����������

Table 5
Partial evaluation function for ��� � and �.

applying Propositions 4.1 and 4.2, we have that:

������� �
 � �� � ���� � �&�
��� �� Prop.���

��� �� �� ���� � �&�
����00��� �� Prop.���

� �� ��� ���� � �&�
����00����00�

Note that �� ���� � �&�
����00��� � �&�
��� and �&�
���00� � � ����.

Now, we will focus on the treatment for �+ � � �
�
� since this is the one mostly

involved in the analysis of security properties. We have already illustrated the idea:
first, we unwind this formula in a disjunction of possibility formulas; next, we apply
the partial model checking function to these simpler formulas. We give the partial
evaluation function for �+ � � ��

�
� and ���
�
� , with � well behaved, in Tab. 7.

We grouped together the formulas corresponding to the same behavior (in brackets)
of the intruder �:

� (Sending). This disjunction takes into account the sending actions of the intruder
on which the system � is willing to synchronize. The intruder performs these
actions only starting from its initial knowledge �, without guessing any new
random message. Indeed, ��
(��� (see Tab. 7) is a set of triples which represent
the channel used, the message sent and the relative derivative of the system �.
Each message must be inferable from the knowledge �.

� (Guessing and sending). Here the intruder performs a preliminary sequence of

24

����
�
 �

����
�
 �

���	� ����
�

�
��	������ ���������� �� �

� "��� #���

����� ����
�

�
��������� ���������� �� �

� "��� #���

���������
�
 �����������

���������
�
 �����������

Table 6
Partial evaluation function for � � � and �.

�� � 	 � �
�
����

�
�

��
��
����������� ��		
�	��� � 	 � �

�
����
�� ����!���� ��

��
��

�����
���� �������
����		�����		

�	

��� � 	 � �
�

�����
�
� ����� ��$������ ��! ���!���� ��

�
����

�	��
��
	�	��� � 	 � �

�����
�
� ����� � ����%���� ��

�
�
����

�	 ��
���
��	��� � 	 � �

�����
�
� ����� ���%���! "&&���� ��

�
�
�	���������
���

�� � 	 � �
� ���� ��!����� �

	 � �
�
���� ��"����� �" !"�

	 � �
�
����

�
 �� � 	 � �

�
���'��
�

��
�� 	 � ����

� 	 �� ����

 !��� �

���!��� ����	�� �����
����

�� �� ���	� � �����

(���!��� ����	�� ���� � ��	� �
����� s.t. �

���
���
����� � �
� � �

����

�� ���

	� � ������ ��������
���
�� � �$)*�	�� ��$)*��� � ��!�����

Table 7
Partial evaluation function for ���

�
� , with �" ������ � �, and �� � 	 � �

�
� .

guessing actions before sending. Since we consider well behaved agents, then
these random values must occur in the message sent. Indeed, 1��
(��� (see
Tab. 7) is a set of quadruples which represent the channel used, the message
sent, the guessing sequence of the random values and the relative derivative of
the system �. (Note that ��
(��� and 1��
(��� depend on the knowledge

25

�, although not explicitly mentioned.) In practice, the number of guessings of
random messages is related to the receiving actions of the system.

� (Receiving). This disjunction takes into account the messages that the intruder
may receive from �. The messages received increase the intruder’s knowledge
�.

� (Eaves-dropping). This disjunction takes into account the messages that the in-
truder may eavesdrop from �. The eavesdropped messages increase the intruder’s
knowledge �.

� (Idling). This disjunction takes into account the possible configurations that are
reached by an action of the system only.

� (Nothing to do). This takes into account the possibility that the intruder has al-
ready gathered enough information to deduce �.

It is worth noticing that these partial evaluation functions are only determined by
the logic chosen to describe the security properties and by the operational semantics
of the calculus. Thus, in our approach, we make no assumptions about the intruder’s
capabilities; the intruders are simply sequential agents of the system, with a certain
initial knowledge.

The next statement is about the correctness of the partial evaluation, where we
assume that � is a well behaved sequential agent.

Proposition 4.3 Given a system � and a well behaved sequential agent � where
� is finite and ��������� � �, then if � is an initial message we have:

���
�
� �� �+ � � �

�
� �� � �� �+ � � �
�
�00��

Eventually, we reduced our verification problem to a satisfiability problem. In par-
ticular, the partial evaluation of the formula �+ � � �

�
�00� actually produces
a formula in �, i.e. which only consists of the logical constants, disjunctions and
possibility formulas. Our next and last step is to provide a satisfiability procedure
for the sublogic which only consists of the previous operators.

4.4 Main result

Note that the formula � � �+ � �� �
�
�00� shows several infinitary disjunc-

tions, i.e. disjunctions whose index set is infinite. This makes it difficult to establish
satisfiability results about such formulas. Indeed, the two index sets, i.e. ��
(���
and 1��
(���, might be infinite. In particular, 1��
(��� is always infinite since,
by construction, we assume an infinite number of basic-type random values. More-
over, ��
(��� is also infinite whenever the set of messages of a certain type � that
can be inferred from � is infinite and the system � is willing to receive on a channel
of type � . Since we want to obtain a theory to be effectively mechanized, we add
two further assumptions to our deduction function. These enable us to find a for-

26

mula which has only disjunctions with finite indexes and which can be satisfied if
and only if the formula obtained after the partial evaluation phase can be satisfied.
Our assumptions seem not too restrictive: as a matter of fact, the inference systems
commonly used in literature enjoy them (and also the one given in Table 2).

According to the following assumption, for each type � , a finite number of mes-
sages can be inferred from a finite set of messages.

Assumption 4.3 When � is finite, ���� � ������� � is finite.

This ensures that ��
(��� is a finite set, when � is finite. As a matter of fact,
��
(��� consists of triples of the form � ��� � ��, where is a channel of �, � is

a message that can be inferred from � and � � is a derivative of � s.t. � ���
�� � �.

The set of channels of � is finite. According to the previous assumption, the set
of messages of a certain type � that can be inferred by the intruder is finite. Thus,
only a finite number of different messages � may appear as a second element of the
triples. Finally, this also ensures that only a finite number of different derivatives � �

of � may appear as a third element.

The reason for the next assumption is to avoid an inference system that depends
on particular random values. First, we need to introduce the concept of type pre-
serving bijection. We say that a bijection 2 between random values of basic type is
type preserving if whenever 2�� �� � � �� �� � then � � � � . Type preserving bijec-
tions naturally extend to bijections between actions, sequence of actions, sequential
agents and compound systems in a straightforward way.

Assumption 4.4 If �� is an inference schema and 2 a type preserving bijection
between random values, then: �� ��� � � ��� ��� ��� � �� �� 2��� ���� � � � 2��� �
��� ��� 2�� �� ��

A schema that does not satisfy this assumption is the following:

� � �

� � � �

where � � ��� � � � are closed messages and � 0 �%����. Consider the in-
ference system which only consists of the previous rule, and additionally, that
2�� � � � � �� � � for some �� �� �. Then, � � � � ��
� � ���, but 2�� �
� �� � � � � � 0 ��
2�� � � ��� � ��
�� � ��� � �.

In our context, anytime a random message is generated, it is brand-new; there are no
relationships between new random messages and the others existing in the system.
The latter two assumptions on the inference system ensure that, when analyzing
the secrecy of an initial message, it is not necessary to look for a certain sequence
of random messages, it is sufficient to generate a sequence of messages with the
appropriate types. The following example may help.

27

Example 4.2 Consider an inference system having only one inference schema:

� � �

3��4��� � 3��4�� �
��!�"!�

which might model one-way functions, i.e. functions that are easily computed but
whose inverses are computationally hard. The inference system leaves out a rule
to infer � by knowing 3��4���. Hence, the 3��4 function cannot be formally
inverted.

Consider the system � which receives a value � on the channel . Then, it commu-
nicates a secret message � �� depending on 3��4��� � 3��4��� or not. Thus,
we will have:

� � �� � ��

�� �!�"! . � 3��4�� ����. � 3��4���� ����� ��

� �

where � is a confidential message of �. We analyze the context ���
�
� where � �

 �. Let’s assume the initial knowledge of the intruders � is empty. Thus, intruders
can only infer a new message and send it to the system. So, consider the set:

1��
(��� �
� � ��� ����� � ����� s.t. �

����� � �� �
������ � �� �� ��

� ���
(�����

This set is infinite, because there is an infinite number of messages in ��� . How-
ever, each derivative � � in the quadruples of 1��
(��� has the following form:

�� �!�"! . � 3��4�� ���. � 3��4���� ����� �

where � is a random value which differs from any initial value of �. Thus, 3��4���
will always be different from 3��4��� and so � will be never sent on the channel
 . The results of the analysis do not depend on a specific random value. We can
simply choose one of them, representative of all the others.

Note that the computations of a system � do not significantly differ when � receives
a random message instead of another one, provided these are both newly created.
The only difference is the “renaming” of the two random values in the messages ex-
changed during the computation. So, if we are interested in studying the secrecy of
an initial value �, which does not contain any random message, then we can safely
limit ourselves to consider only a subset of the quadruples existing in 1��
(���,
without considering every possible random message generation sequence.

To make formal this idea, we define a relationship among the random messages
sequences. Then we illustrate it through an example.

28

Definition 4.2 Consider two sequences ���� �������� and ����� ��
�
� ����� , each con-

sisting of distinct random messages. If there exists a type preserving bijection 2 s.t.
2�
������� �
������� and 2��� � � if � 0
������ �
������� , then we say the two
sequences are related by 2, i.e. ���� �������� "# ����� ��

�
� ����� .

Example 4.3 Consider the sequences ���� ��� �� �� �� and ���� ��� �� �� ��. Then,
we have that ���� ��� �� �� �� "# ���� ��� �� �� �� where 2���� � ��� 2���� �
��� 2���� � �� and 2 is the identity elsewhere. Note that two sequences may be
related even if they have some values in common.

We can prove that, if �
�
�� then 2���

#���
�� , i.e. two systems related by a bijection 2

perform computations which are related by this bijection 2. The assumption 4.4 is
required to prove this result.

Lemma 4.2 Consider a system � and assume that ���� �������� "# ����� ��
�
� ����� .

Assume also that in � there is no subterm ��
�
�� s.t. ��� �"� is equal to �� ��� or
��� ��

�
� for some 	 � . Then, we have:

�
�
�� �� �# 2���

#���
�� 2�����

The next lemma shows that if an intruder performs a successful secrecy attack on
the system after a sequence of guessing actions +, then another attack exists with
a sequence +� related to + by a bijection 2. This implies that we need to consider
only one of these sequences in our secrecy analysis.

Lemma 4.3 Let ���� �������� "# ����� ��
�
� �����; consider a system � and a se-

quential agent � , with ��������� � �, and let no subterm ��
�
�� in ���
be s.t. ��� �"� is equal to �� ��� or ��� ��

�
� for some 	 �; furthermore, assume

�%���� � �
�� ������� �
��� ��
�
������ � �. If � �� is an initial message, then:

���
�
���� 	���� �� �+ � � �

��� 	����
�
�

��

2�����
�
2�������

	� �

��� �� �+ �� �

���� 	�
�

 ���
#���
� �

This result provides us with the technical guidance required to perform a translation
from the formula � , obtained through the partial evaluation functions in Tab. 7, to
another one, denoted by �� , in such a way that � is satisfiable �� �� is satisfiable.
This translated formula �� shows only finitary disjunctions. The idea is to quotient
1��
(��� and take only a representative for each class of tuples whose sequences
of random message generation can be related to each other through a bijection.

Definition 4.3 The relation "� over tuples of 1��
(��� is defined as:

� �� ��� ���� ��������� �
�� "� � �� �� �� �� ����� ��

�
� ������ �

�
��

29

��

 � �� � � � �� �2 � ���� �������� "# ���
�
� ��

�
� ������ �

�
� � 2�� ��� �� � 2���

Intuitively, two tuples of 1��
(��� are related by "� if, whenever they have the
same typed channel, then the two sequences of random messages are related by
a bijection 2 and also the messages and the derivatives of � are related by this
bijection. Note "� is an equivalence relation. The quotient of 1��
(��� w.r.t. the
relation "�, namely 1��
(���0�� , turns out to be finite.

Lemma 4.4 1��
(���0�� is a finite set.

The translation �� is simply the partial evaluation function in Tab. 7 where 1��
(���
is replaced with 1��
(���0�� .

The next lemma states that we can just study the satisfiability problem of �� instead
of that of � .

Lemma 4.5 Under the hypothesis of Proposition 4.3, let � � �+ � �� �
�
�00�.

Then, we have:

�� s.t. � �� � �� �/ s.t. / �� �� �

The two agents � and / are related by a bijection. Thus, the main difference is
that they guess different sequences of random values, yet related by type preserving
bijections.

Finally, we have reduced the checking of the existence of an agent � s.t. ���
�
� ��

�+ � � �
�
� to a satisfiability problem for a finitary formula in a sublogic of �.

The main result of this paper is the following.

Theorem 4.1 ([35]) Consider a system �, with ������� � �, a finite set of typed
messages � and an initial message � �� . It is decidable if there exists �, with
������� � �, s.t.:

���
�
� �� �+ � � �

�
��

Moreover, if �+ � � �
�
�00� is satisfiable, then we can build an agent (the

attacker) which is a model of such a formula.

So far, in our analysis, we only considered sequential agents as possible intruders.
However, this is not a significant restriction. As a matter of fact, if there is an attack
performed by a compound system, then there is an attack by a sequential agent
whose knowledge is the union of the knowledge of the agents of the compound
system. There is only a technical restriction which prescribes that the system �
under investigation must not use the eaves-dropping action (as the intuition suggests

30

since � should consists only of honest agents).

Theorem 4.2 Consider a system �, with ������� � � and no construct #��
� oc-
curring in it, a system / � �����
���
��/

�
�

consisting of a set of sequential agents
/� with �����/ �

�
� � � for "
�� � � � � '�, and an initial message � �� . Suppose

that, for some 	
�� � � � � '�, we have:

���
�
/ �� �+ � � �

�
�

then there exists a sequential agent �, with � � �����
���
����, s.t.:

���
�
� �� �+ � � �

�
��

4.4.1 About the complexity of the procedure

Our decision procedure consists of building the formula through partial model
checking and studying its satisfiability. This check can be done in linear time in
the size of this formula. (Furthermore, this can be done on-the-fly, i.e. during the
construction of the formula itself �.) However, the size of the formula depends on
the specific inference system used. Thus, the complexity of the procedure cannot
easily be estimated.

Nevertheless, we will try to roughly estimate the size of the formula in the simple
case where � is a sequential agent and the inference system only consists of a basic
type and the pairing function. This should provide the reader with an idea of the
efficiency of our procedure (see also Subsection 5.2 for a significant example).

Let
 be the max length of a computation of �. Let ' be the max height of the types
used in �. Let " be the maximum number of different prefix constructs that can be
enabled in each state of �. Then, the size of the formula after partial evaluation is
bound by:

"����� �� ��� ����
��
���

If we do not consider the intruder able to guess new random messages, then the size
of the formula is bound by:

"����� �� ��� ���
���

Usually, ' is very small (e.g., 3 or 4). However, if we consider compound systems,
then
 grows linearly with the number of sequential agents. Thus, as expected, our
procedure suffers the state explosion problem.

� Thus, we are able to find an attack, if any, even without building the whole formula.

31

5 Examples

We show two examples of analysis using our method. The first is simple and will be
explained in the details. The second one is more complex and has been checked by
using our verification tool PAMOCHSA, which implements the approach described
in this paper (e.g., see [30]).

5.1 Example 3.1

First, consider the simple system of the Example 3.1.

An agent � is going to send a confidential message �� to the agent �. The sender
�	 , with �� �
��� -�����, is the following:

��� -���� �
 � �!����� � ��� �������� �

The receiver �
 , with �� �
-�������, is the following:

 ���� �!����� � ����� -������ �� . �� ��� ��

We study whether or not there is an intruder which can interact with our system and
retrieve the message ��, i.e.:

��� ��� ��	��
���� �
 ��� �� �+ � �� ��
�
�

The initial messages of � � ��� are ��� -������ and -����. It is reasonable
to assume that the initial knowledge �� of � is simply the public key -����.
(Other messages can be guessed by the intruder during the attack.) We apply the
partial evaluation rules in Tab. 7 (along with the reduction for infinitary disjunc-
tions).

Note 2 In the remainder of this section, we state that a formula � reduces to a
formula � � whenever � �

�
��� ��� �

� �
�
���� �� and � � $ �; moreover, we require

that � is satisfiable iff � � is satisfiable.

� First, we consider �+ � �� ��
�
�00� where � � �	��
 . To calculate

this formula, we need to calculate ��
(��� and 1��
(���$�� (see Tab. 7). In
particular, we have:
� ��
(��� � �. Indeed, note that ��
(��� represents the possible messages

that the intruder may generate from its knowledge and the system is willing to
synchronize with. However, the system � may only receive messages of type
!����� � � whereas the intruder can derive no messages of that type from �� .

� 1��
(���$�� �
� ��� !�-����� ��� �!����� � �� ���� �� ��� ���� � ���
!���� ��� �!����� � �� ���� ��� �� ������� ���� where �� and �� are given in

32

�� �	� � ��
�
����

�

��$�������

�����		���� 	��+��,�� ���	��� � 	� � �
������
�
� �����

� ��$�������

����� � ���		���� 	����� ���	��� � 	� � �
�����
���
�
� �����

� � ����%����

����
��+��,��	��	��� � 	� � �
���%�&����
�	��
�
� �����

� ���%���! "&&����

���	

%�&����
�	�	��� � 	� � �
���%�&����
�	��
�
� ���
�

� ��!�����

�� � 	� � ��
�
����

� ��"����� �" !"�

�

 �� � �

�� �	����+��,�� ��� +��,���
� - �
 ����

�� �	������� ��� +��,���
� - �
 ����

�� �����
� �������
 ��� +��,���
� - �
 ����

�
 �����+��,��	�� +��,���
� - �
 ����

Table 8
Unfolding of �� �	� � ��

�
����.

Tab. 8. The first tuple of 1��
(���$�� represents the intruder, which guesses a
message �� of type � and uses it in a communication with �. The second tuple
of 1��
(���$�� represents the intruder which guesses a message �� of type �
and a message �� of type ��� and builds the encryption of �� with ��.

So we obtain the formula in Tab. 8. We can make a first reduction by noticing that
the eavesdropping behaviour of the intruder is more dangerous than the idling
one; i.e. if the formula corresponding to idling is satisfiable then also the formula
relative to eavesdropping is satisfiable. Thus, the disjunction of the eavesdrop-
ping and the idling formula reduces to the eavesdropping formula. Moreover,
note that the formula 5 � � is equivalent to 5. Thus, the last three subformulas
reduce to

�#�	

%�&����
�	����+ � �� �
���%�&����
�	��
�
� 00�
�

In addition, note that �
 �
�

�� for every action � (so � � �	'); thus, by definition

33

�� �	� � �
������
�
� ����

�

� ����%����

����
��+��,��	��	��� � 	� � �
���%�&����
�	�
���
�
� �����

� ��"����� �" !"�

�

 �� � �

�� �����+��,�� ��� +��,���
� - �
 ����

Table 9
Unfolding of �� �	� � �

������
�
� ����.

�� � 	� � �
���%�&����
�	��
�
� ����

�

��$�������

�����		���� 	��+��,�� ���	��� � 	� � �
���%�&����
�	�
���
�
� �����

� ��$�������

����� � ���		���� 	����� ���	��� � 	� � �
���%�&����
�	�
��
���
�
� ����

� ��"����� �" !"�

�

 �� � �

� �������� ��� +��,���
� - �
 ����

Table 10
Unfolding of �� � 	� � �

���%�&����
�	��
�
� ����.

in Tab. 7, ��+ � �� �
���%�&����
�	��
�
� 00�
� is � because �� � ���� �

!�-����� �����.
� Next, we analyze: �+ � �� �

������
�
� 00��. We have that ��
(���� � � and

1��
(����$�� � � because �� �
���
�� for every action ��. So, we obtain the

formula in Tab. 9. This formula reduces to its first argument, i.e.:

� ���!�-����� ������+ � �� ����%�&����
�	�
���
�
� 00���

However, note that �� �
�

�� for every � � �; thus, by definition of the partial
evaluation function, �+ � �� �

���%�&����
�	�
���
�
� 00�� is F because �� 0

���� �
!�-����� ���� ����. Thus, the whole formula in Tab. 9 reduces to �.
� Next, we analyze: �+ � �� ������
���

�
� 00��. This formula reduces to �. The
reasoning proceeds as above.

34

�� �	� � ��
�
����

�

��$�������

�����		���� 	��+��,�� ���	�

� ��$�������

����� � ���		���� 	����� ���	�

� � ����%����

����
��+��,��	��	�

� ���%���! "&&���� �!����� �"����� �" !"�

�

Table 11
Final unfolding of �� �	� � ��

�
����.

� Next, we analyze: �+ � �� �
���%�&����
�	��
�
� 00��. We first compute ��
(����

and 1��
(����. In particular, we have:
� ��
(���� �
� ��� !�-����� ���� �
��, because !�-����� ��� �����

!�-����� �����.

� 1��
(����$�� �
� ��� !�-����� ��� �!����� � �� ���� �� ��� ���� � ���
!���� ��� �!����� � �� ���� ��� �� ������� ��� where � is given in Tab. 10.

Note that �� and � are equal to �	', i.e. they can perform no actions. Thus, by
definition of the partial evaluation function, �+ � �� �

���%�&����
�	�
���
�
� 00��

and �+ � �� �
���%�&����
�	�
��
���
�
� 00� are F, because �� 0 ���� �

!�-����� ���� ��� ���� (and so �� 0 �����
!�-����� ���� ����). Thus,
the whole formula in Tab. 10 reduces to F.

� Next, we analyze: �+ � �� �
���%�&����
�	��
�
� 00�
� This formula reduces to

�. The reasoning proceeds as for �+ � �� �
�����
���
�
� 00��.

To summarize, we obtain that �+ � �� ��
�
�00� reduces to the formula in Tab.

11 and finally to �. Thus, there is no intruder with initial knowledge �� which can
discover the exchanged message ��.

5.2 Needham Schroeder Public Key protocol

This protocol has became paradigmatic for testing analysis tools for cryptographic
protocols. It has a subtle flaw discovered by Lowe [27] which arises in the presence
of a malicious agent.

In Tab. 12, we show the intended execution of the protocol by using the notation

35

which is commonly found in literature. In the flawed version, the sender � com-
municates to � a fresh nonce �� (i.e. a randomly guessed value) and its name
encrypted with the public key of � (thus only � can decrypt this message). Next,
the receiver � communicates to � the just received nonce �� and a fresh nonce ��,
both encrypted with the public key of �. Finally, the sender � communicates to the
receiver the nonce �� encrypted with the public key of �. At the end of a successful
run between a sender � and a receiver �, only these two processes should know
�� and ��

 .

� �� , � �'�� ��&����

, �� � � �'�� '��&����

� �� , � �'��&����

� �� , � �'�� ��&����

, �� � � �'�� '�� ,�&����

� �� , � �'��&����

"� �� ������� #� ��� ������$�� �������

Table 12
Needham Schroeder Public Key protocol.

We analyzed the Crypto-CCS specification in Tab. 13 which consists of three agents:

 These nonces could be used to establish a new communication channel with a new shared
key that is a function of these values.

Let NSPK be ��,��
�
�� , where �� ���,� +������� +����� +����� +��,���

� ���� � ��� � ����� � �� ��� � , ,� �,� with:

�� �'� �
� ���� +��,�

 ���

���	��

���
 � �������'"��� �'"����

� � +������
� ������
� ���

��� '��

���
� �
���
 +��,�

 ���

���	��

,� ���
 � �������'"���� �!�

� � +��,���
� -���-�
� -��

�-� ��

�-�
� -���-� '�
� -
�

�-
 +����

 -��

��� 	-����
 � �������'"����

� � +��,���
� -��- '��

and

�� �� �'
�
� �'�� +�����+��,�� ������� �

,� ,��'
�
� �'�� +�����+����� ������� �

Table 13
Description in Crypto-CCS of the Needham Schroeder Public Key protocol; where the
tailing � is omitted, i.e. �	 	���� stands for �	 	������ (similarly for the deduction
constructs).

36

�� � �� � � ��+����� �'�� ���

�� ���� �� , � ��+��,�� �'�� ���

�� , �� ���� � ��+����� �'�� '���

�� � �� � � ��+����� �'�� '���

�� � �� � � ��+����� '��

�� ���� �� , � ��+����� '��

Table 14
The Lowe’s attack described in common notation.

��� and � . The agent � may act as initiator both with � and �; the agent � acts
as responder, while the agent � may act as initiator or responder of the protocol.
The specification for � is not given, thus we check whether the system is secure
against whatever behavior the agent � could have. We only specified the intruder’s
initial knowledge, i.e. the public keys of � and �, the names of � and � and its
private and public key. We need not give the nonces to the intruder because it can
guess them by itself. We performed our analysis and, as expected, we found the
flaw in [27]: an intruder � masks as � to � and discovers both nonces �� and ��.

The attack is given in Tab. 14 (we use ���� as the intruder involved in the com-
munication as agent �): the attack consists of two concurrent sessions: in the first
one, the agent � initiates the protocol with �; in the second one, the agent � com-
municates with � pretending to be �. The steps of the attack can be summarized
as follows: the agent � starts a run of the protocol with the agent �; then the agent
� can simulate � in a run of the protocol with the agent �. The agent � sends
to ���� the message !�-����� ���� ����, which contains the fresh nonce ��,
encrypted with the public key of �. Now, the intruder cannot directly decrypt the
message, but can send the message to the agent �. The agent � correctly decrypts
!�-����� ���� ���� and resends the nonce �� to � , encrypted with the public
key of � , since it thinks it is the second message of its run with � . Eventually, �
discovers �� and sends it to �.

We corrected the protocol as done [27] (see Tab. 12) and checked that there are
no flaws. Indeed, the second message encodes also the name of the sender, i.e. �.
Thus, the presented attack is no more possible, because � would receive from � a
message whose sender is �. At that point, � should quit the session with � .

Note that, in our analysis, we can guarantee there are no attacks only in the system
configuration we analyzed, i.e. only a session between a single sender and a single
receiver. In principle, we cannot extend the results to systems consisting of more
users and sessions. Moreover, it is interesting to remark that the Lowe’s attack is
possible only in the presence of a legitimate user which acts maliciously against the

37

Spec name Significant stored nodes User time (sec) Attack?

NSPK-flawed 18623 3.58 YES

NSPK-correct 267659 58 NO

NSPK-flawed-no-gen 319 0.06 YES

NSPK-correct-no-gen 793 0.19 NO
Table 15
Experimental results about Needham-Schroeder Public Key protocol with PAMOCHSA.

other users of the system. Indeed, if we consider the agent � as an external one,
i.e. a legitimate agent does not start a session with it, then the attack is not possible.

5.2.1 Experimental results with PAMOCHSA

The current implementation of our verification tool PAMOCHSA is in the ocaml
v3.0 language. The tool receives as inputs: the description of the system under
investigation, the intruder’s initial knowledge, and a predicate on the knowledge of
the intruder, e.g., if a message may be deduced from it. The tool looks for possible
attacks on the specification, i.e. if an intruder, by interacting with the system, is
able to reach a configuration where its knowledge satisfies the predicate. If the tool
discovers a possible attack, then it outputs its description.

In Tab. 15, we report the experimental results about the verification of the Needham-
Schroeder Public Key protocol (NSPK, for short) on a Pentium III (750 Mhz, 772
Mb) with Red-Hat 6.2 operating system. The first column lists the name of the file
with the Crypto-CCS protocol specification, the intruder initial knowledge and the
predicate to be checked; the second column lists the number of the stored nodes
of the formula obtained during the partial model checking phase; the third column
reports the user time for the whole analysis and finally the fourth column reports
the results of the analysis (if the system is not correct, then a successful attack se-
quence is given). The last two lines list the cases where intruders cannot generate
any new names.

6 Concluding remarks and related work

We proposed a novel approach for modeling and checking the security properties of
cryptographic protocols. This relies on the observation that security protocols may
be naturally described as open systems, i.e. systems which may have some unspeci-
fied components. These may be used to represent a hostile intruder whose behavior
cannot be predicted or else a malicious agent which may not follow its program
to obtain an advantage for itself. The verification phase consists of checking that,

38

for any instance of the unknown component, the resulting system satisfies a prop-
erty expressed in a formula of a suitable temporal logic. We argue this paradigm is
fit for specifying and analyzing both network and system security. As a matter of
fact, we have currently applied partial evaluation techniques to the analysis of such
properties as non interference ([36]), timed non interference ([15]), secrecy ([35])
and authentication ([30]). All the results rely on the following schema:

(1) design suitable languages for system description and property specification;
(2) develop corresponding partial evaluation techniques;
(3) develop a satisfiability procedure for the logic used.

The application of the previous steps to a specific setting requires some efforts
(just like in the secrecy analysis of this paper). Nevertheless, this method has a
wide range of applications, because the techniques used are general and flexible. In
particular, partial model checking has been defined for expressive temporal logics,
e.g. 6�calculus [22], and for a class of system description languages based on
certain formats of Structural Operational Semantics (SOS) [5,25,34].

Partial evaluation functions ideally describe the behaviour and abilities of the un-
known component, i.e. the enemy. This is a main feature of our method: when you
assume that the enemy may be a process definable in the calculus, then enemy’s
abilities are directly inferred. It is interesting to note that this also provides a sort of
formal justification of the enemy’s abilities in the so-called most powerful intruder
method by Dolev and Yao (e.g., see [11]). The idea is to consider a fixed intruder
which can eavesdrop, tap into and fake messages exchanged in a network. Tab. 7
shows that our intruders have precisely these abilities.

The main contributions of this paper can be summarized as follows:

� Security properties can be naturally described as properties of open systems.
Our method provides a uniform approach for the definition of both network and
system security. We used a single context, i.e. ���

�
� , since several security prop-

erties can be defined using a similar context (see [17]). However, the same ideas
may apply to more complex contexts (open systems) as well.

� Partial model checking techniques are flexible and may be applied to several
analysis frameworks. These techniques might also be used to formally infer po-
tential intruders’ abilities also for other computational models and analysis sce-
narios (e.g., different contexts).

� We provide a decidability result for the secrecy analysis of protocols with a finite
number of sessions. In particular, we allow intruders to guess new random values
but we consider messages of bounded size.

� A suitable process calculus for describing security protocols has been proposed.
This calculus is equipped with a construct to model in which way messages can
be inferred from other messages. The presence of this construct is justified by
the observation that, in the description of security protocols, we need to model

39

several different cryptographic functions. These might have specific algebraic
features which can be conveniently encoded in an inference system. Our analy-
sis theory is completely parametric with respect to the given inference system,
provided this relies on some (mild) assumptions.

We can highlight (at least) two limitations of our technique:

� We consider only protocols with a limited number of parties and sessions. (Note
that the secrecy analysis for general protocols is undecidable because it can be
reduced to the halting problem.) However, in [28,47], preliminary results have
been obtained about how, for a large class of protocols, the correctness with
an unbounded number of participants and sessions can be inferred from the re-
sults of the analysis of a system with a finite number of parties and sessions.
Hopefully, the combination of this method with ours may contribute to the de-
velopment of fully automated analysis approaches for a large class of security
protocols.

� We consider communications over typed channels, i.e. processes cannot receive
messages unless they do comply with the type imposed on the channel. Hence,
our approach does not take into account the so-called type flaw attacks which are
based on a misunderstanding of the structure of the received messages. In [19],
however, under some mild assumptions on the protocols, it has been shown that,
if a system is secure against attacks which do not exploit type flaws, then that
system is secure also against type flaw attacks. This result has been obtained by
considering the strand spaces ([48]) as security protocol models. Whether this
holds in our framework will require further study.

We plan also to extend our approach by admitting a restricted form of recursion
and adopting a method to symbolically represent the knowledge that the intruders
would obtain during the computation with an unlimited system. (Such symbolic
techniques could be also useful to avoid bounds on the message size, e.g., see [4].)
Moreover, we believe that the security analysis method explained in this paper is
flexible and may be suitable for other languages and analysis contexts as well, e.g.
for such mobile languages as ambient calculus [9] or 7�calculus [39] (for some
preliminary results see [32]).

6.1 Related work

The literature on security properties analysis and verification of cryptographic pro-
tocols is wide. For an impressive overview of cryptographic protocols and cryp-
tographic systems, see [44]. Here, we briefly recall some approaches related to
process algebra and logic theory.

The most powerful intruder approach has been recasted in the process algebra set-
ting by many authors, e.g. Lowe [27], Roscoe [43] and Schneider [45]. The idea is

40

to analyze the system under investigation only against a single process which de-
scribe the behavior of the most powerful intruder. Marrero et al. [31] use a model
with sequential agents where the intruder’s behaviour is implicitly assumed. Al-
though it is not necessary to give an explicit description of the intruder’s behaviour,
yet this is fixed a priori through some axioms that represent its capabilities. It is
worthy noticing that, at least for the trace properties used here (also called safety
properties), our approach based on the universal quantification over possible intrud-
ers and the one based on the most powerful one are equivalent (see [17]). However,
there are more complex security properties which mix several aspects as, e.g., dead-
lock detection, branching points, liveness and/or fairness, where the most powerful
intruder approach is not directly applicable and the quantification over all possible
intruders seems unavoidable. For instance, see the discussions in [12,36] about the
BNDC property, i.e. a non-interference property based on the notion of bisimula-
tion, and about non-repudiation [17,23]. Note that our verification method has been
useful to check BNDC-like properties [36].

In [13,16,17], an attempt is proposed to analyze information flow and cryptographic
protocols within the same conceptual framework. A general schema for defining
security properties is given ([17]). This schema is called Generalized NDC and it
is a suitable extension of a non-interference property, i.e. NDC, defined in [12].
The main idea is that a system is secure whenever its normal execution behavior
cannot be “significantly” altered even in the presence of an intruder (or a malicious
agent). The schema relies on the quantification over any possible enemy as ours, but
the specification of the “correct” behavior is given through a process. The analysis
method is the most general intruder approach and a systematic way of constructing
such intruder is proposed. A sufficient condition (see [17]) is given that shows how
considering only this process is enough for a large class of security properties.
One of the main goals of such approach is to provide a uniform framework for the
comparison of security properties (e.g., see [14]).

Some authors found the 7�calculus [39] suitable for describing security protocols.
This is mainly due to its management of names, some of which can be seen as secret
messages. In [2], Abadi and Gordon proposed an approach based on proof theoretic
tools for a variant of the 7�calculus, namely the spi-calculus, which embodies
some constructs for modeling cryptography. The innovative idea was to model the
intruders using the testing equivalence theory for 7�calculus (e.g., see [7]). In [1],
Abadi proposed a type system for secrecy properties for the spi-calculus; Boreale
et al. (e.g., see [8]) provided a compositional proof system for equivalence testing
which may be used to deal with both secrecy and authenticity properties. Another
approach relies on control flow analysis techniques of the 7�calculus [6]. By con-
trolling how the information is exchanged along channels, confinement properties
can be studied, i.e. whether the information is sent via a particular channel or re-
mains enclosed in a system. This approach has also been extended to mobile am-
bients [9] (possibly with an unbounded number of states) by Nielson and Nielson
[41].

41

Other approaches are based on proof theoretic methods (e.g., see [2,3,18,21,42,45]).
Some of them use temporal and modal logic concepts and make it possible to prove
that a system, even without a finite behavior, enjoys security properties. In gen-
eral, these methods are not fully automated and need non-trivial human efforts to
analyze systems, while counter-examples are not directly feasible. An interesting
exception is the work by Kindred and Wing in [21], where the authors propose
a fully automated approach for checking that a protocol enjoys some properties
expressed in a logical language � (which has to satisfy some requirements). The
protocol is represented through a set of formulas - . From this set - , by using the
rules and axioms of the logic, it is possible to infer all formulas which the protocol
enjoys (the “theory” of -). This set is finitely representable and the membership
problem is decidable. Thus, the verification that the protocol satisfies a property
expressed by a formula � corresponds to check whether the formula � belongs to
the “theory” of - .

In [23], Kremer and Raskin analyze the non-repudiation properties of security pro-
tocols using ATL logic. This logic has been specifically developed to describe the
properties of open systems, so this approach and ours are somehow related to each
other. However, both the computational model and the solution methodology dif-
fer. (Nevertheless, it would be very interesting to extend our framework for the
treatment of non-repudiation properties and then compare the efficiency of the two
approaches.)

Acknowledgments.We would like to thank the anonymous referees for their help-
ful comments. Thanks are also due to Marinella Petrocchi for checking our speci-
fication of the NSPK protocol with PAMOCHSA.

This work has been partially supported by Microsoft Research Europe (Cambridge);
by MIUR project “MEFISTO”; by MIUR project “Strumenti, ambienti ed appli-
cazioni innovative per la società dell’informazione”; by CNR project “ Tecniche e
strumenti software per l’analisi della sicurezza delle comunicazioni in applicazioni
telematiche di interesse economico e sociale” and finally by CSP with the project
“SeTAPS”.

References

[1] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM, 46(5):749–
786, Sept. 1999.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi calculus.
Information and Computation, 148(1):1–70, 1999.

[3] M. Abadi and M. R. Tuttle. A semantics for a logic of authentication. In Proceedings
of the 10th Annual ACM Symposium on Principles of Distributed Computing, pages
201–216. ACM Press, 1991.

42

[4] R. M. Amadio and D. Lugiez. On the reachability problem in cryptographic protocols.
In CONCUR ’00, number 1877 in Lecture Notes in Computer Science. Springer-
Verlag, 2000.

[5] H. R. Andersen. Partial model checking (extended abstract). In Proceedings of
10th Annual IEEE Symposium on Logic in Computer Science, pages 398–407. IEEE
Computer Society Press, 1995.

[6] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Static analysis for the pi-calculus
with applications to security. To appear in Information and Computation.

[7] M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Information
and Computation, 120(2):279–303, 1995.

[8] M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. In Forteenth Annual Symposium on Logic in Computer Science (LICS)
(Trento, Italy), pages 157–166. IEEE, Computer Society Press, July 1999.

[9] L. Cardelli and A. Gordon. Mobile ambients. In Proc. Foundations of Software Science
and Computation Structures, volume 1378 of Lectures Notes in Computer Science,
pages 140–155, 1998.

[10] P. Degano and C. Priami. Enhanced operational semantics: A tool for describing and
analysing concurrent systems. To appear in ACM Computing Surveys.

[11] D. Dolev and A. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(12):198–208, 1983.

[12] R. Focardi and R. Gorrieri. A classification of security properties. Journal of Computer
Security, 3(1):5–33, 1995.

[13] R. Focardi and R. Gorrieri. The compositional security checker: A tool for the
verification of information flow security properties. IEEE Transactions on Software
Engineering, 27:550–571, 1997.

[14] R. Focardi, R. Gorrieri, and F. Martinelli. A comparison of three authentication
properties. Accepted for publication in Theoretical Computer Science.

[15] R. Focardi, R. Gorrieri, and F. Martinelli. Information flow analysis in a discrete-
time process algebra. In Proceedings of 13th IEEE Computer Security Foundations
Workshop, pages 170–184, 2000. IEEE Press.

[16] R. Focardi, R. Gorrieri, and F. Martinelli. Non interference for the analysis
of cryptographic protocols. In Proceedings of 27th International Colloquium in
Automata, Languages and Programming, volume 1853 of Lectures Notes in Computer
Science, pages 354–372, 2000.

[17] R. Focardi and F. Martinelli. A uniform approach for the definition of security
properties. In Proceedings of World Congress on Formal Methods (FM’99), volume
1708 of Lecture Notes in Computer Science, pages 794–813, 1999.

43

[18] J. W. Gray, III and J. McLean. Using temporal logic to specify and verify
cryptographic protocols. In Proceedings of The 8th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1995.

[19] J. Heather, G. Lowe, and S. Schneider. How to prevent type flow attacks on security
protocols. In Proceedings of 13th IEEE Computer Security Foundations Workshop,
pages 255–268, 2000. IEEE Press.

[20] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, NJ, 1985.

[21] D. Kindred and J. M. Wing. Fast, automatic checking of security protocols. In Second
USENIX Workshop on Electronic Commerce, pages 41–52, Oakland, California, 1996.

[22] D. Kozen. Results on the propositional .�calculus. Theoretical Computer Science,
27(3):333–354, 1983.

[23] S. Kremer and J.-F. Raskin. Formal verification of non-repudiation protocols: A game
approach. In Proceedings of Workshop in Formal Methods for Computer Security,
June 2000.

[24] O. Kupferman and M. Y. Vardi. Module checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Proceedings of the Eighth International Conference on Computer
Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages 75–86.
Springer Verlag, 1996.

[25] K. G. Larsen and L. Xinxin. Compositionality through an operational semantics of
contexts. Journal of Logic and Computation, 1(6):761–795, 1991.

[26] G. Leduc and F. Germeau. Verification of security protocols using LOTOS - method
and application. Computer Communications, 23(12):1089–1103, 2000.

[27] G. Lowe. Breaking and fixing the Needham Schroeder public-key protocol using
FDR. In Proceedings of Tools and Algorithms for the Construction and the Analisys of
Systems, volume 1055 of Lecture Notes in Computer Science, pages 147–166. Springer
Verlag, 1996.

[28] G. Lowe. Towards a completeness result for model checking of security protocols.
In Proceedings of the 11th IEEE Computer Security Foundations Workshop, pages
96–105. IEEE, 1998.

[29] G. Lowe and B. Roscoe. Using CSP to detect errors in the TMN protocol. IEEE
Transactions on Software Engineering, 23(10):659–669, 1997.

[30] D. Marchignoli and F. Martinelli. Automatic verification of cryptographic protocols
through compositional analysis techniques. In Proceedings of the International
Conference on Tools and Algorithms for the Construction and the Analysis of Systems
(TACAS’99), volume 1579 of Lecture Notes in Computer Science, 1999.

[31] W. Marrero, E. Clarke, and S. Jha. A model checker for authentication protocols. In
H. Orman and C. Meadows, editors, Proceedings of DIMACS Workshop on Design

44

and Formal Verification of Security Protocols. DIMACS Center, Rutgers University,
September 1997.

[32] F. Martinelli. About compositional analysis for (finite) /�calculus processes.
Technical Report IAT-B4-2001-19. Submitted for publication.

[33] F. Martinelli. Encoding several security properties as secrecy ones. Technical Report
IAT-B4-2001-20. Submitted for publication.

[34] F. Martinelli. Formal Methods for the Analysis of Open Systems with Applications to
Security Properties. PhD thesis, University of Siena, Dec. 1998.

[35] F. Martinelli. Languages for description and analysis of authentication protocols. In
Proceedings of 6th Italian Conference on Theoretical Computer Science, pages 304–
315. World Scientific, 1998.

[36] F. Martinelli. Partial model checking and theorem proving for ensuring security
properties. In Proceedings of 11th Computer Security Foundations Workshop, pages
44–52. IEEE Computer Society Press, 1998.

[37] C. Meadows. The NRL Protocol Analyzer: An Overview. Journal of Logic
Programming, 26(2):113–131, Feb. 1996.

[38] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[39] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information and
Computation, 100(1):1–77, 1992.

[40] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using murphi. In Proceedings of the Symposium on Security and Privacy,
pages 141–153. IEEE Computer Society Press, 1997.

[41] H. R. Nielson and F. Nielson. Shape analysis for mobile ambients. In Proc. POPL’00,
pages 142–154. ACM Press, 2000.

[42] L. C. Paulson. Proving properties of security protocols by induction. In Proceedings
of The 10th Computer Security Foundations Workshop. IEEE Computer Society Press,
1997.

[43] A. W. Roscoe and M. H. Goldsmith. The perfect spy for model-checking crypto-
protocols. In H. Orman and C. Meadows, editors, Proceedings of DIMACS Workshop
on Design and Formal Verification of Security Protocols. DIMACS Center, Rutgers
University, September 1997.

[44] F. B. Schneider. Applied Cryptography. J. Wiley & sons, Inc., 1996.

[45] S. Schneider. Verifying authentication protocols with CSP. In Proceedings of The
10th Computer Security Foundations Workshop. IEEE Computer Society Press, 1997.

[46] C. Stirling. Modal and temporal logics for processes. In Logics for Concurrency:
Structures versus Automata, volume 1043 of Lecture Notes in Computer Science,
pages 149–237, 1996.

45

[47] S. Stoller. A reduction for automated verification of authentication protocols. In
Workshop on Formal Methods and Security Protocols (FMSP’99). Trento, Italy., 1999.

[48] J. Thayer, J. Herzog, and J. Guttman. Honest ideals on strand spaces. In Proceedings
of the 11th IEEE Computer Security Foundations Workshop, pages 66–78. IEEE Press,
1998.

A Proofs

Lemma 3.1 Consider a formula � �, which consists only of the logical con-
stants, disjunctions and the possibility modality, and a finite set of closed messages
�. It is decidable if there exists a sequential agent � s.t. � �� � .

Proof: We prove the thesis by structural induction on � ; furthermore, if � is satis-
fiable, we construct a model �� for such a formula.

� �=F. Then, no sequential agent models � , and thus � is not satisfiable.
� �=T. Then, every sequential agent models � . Let ��� � be ���.
� � � �����. Then, � is satisfiable iff �� is satisfiable or �� is satisfiable. If both

�� and �� are not satisfiable then also � is not satisfiable. Otherwise, suppose
that �� (or ��) is satisfiable. Then, by structural induction, there is ����� which
models ��. Let ��� � be �����.

� � � �����. By inspection of the action �:
� ��. If � 0 ���� then � is not satisfiable. (Recall that whenever an agent

sends a message, then this message must deducible from its knowledge.) Oth-
erwise, assume � ����. If �� is not satisfiable then also � is not satisfiable.
On the other hand, by structural induction, let ����� be a model for ��. Then,
let ��� � be � �������, if � �, otherwise let ��� � be ��� ���� �

���,
where: 1) � is a proof of � from � whose root is an assignment to the variable
�; 2) � is a variable that does not appear in ���; 3) � �

��
is the term ��� where

� is replaced with �.
� ��. If �� is not satisfiable by a sequential agent whose knowledge is ��
��

then also � is not satisfiable. Otherwise, by structural induction, let ���������
be a model for ��. Then, let ��� � be � �� � ��� �

��
�, where : 1) � is the type

of �, 2) � is a variable that does not occur in ��� ; 3) � �
��

is the term ���

where the message � is replaced with �.
� &�. This case is similar to the previous one, with the appropriate prefix construct
��
�
�� .

� #�
�. This case is similar to the previous one, with the appropriate prefix con-
struct #��
� .

46

Proposition 4.1 Given a system �, an agent � and a logical formula � �, then:

��� �� � �� � �� �00��

Proof: The proof is performed by structural induction on the formula � . We de-

scribe only one case, the others are similar.

� � � ���� �, with � �� &�
�� &�. We have ��� �� ���� � iff ���
�

�� � ��� �

and � ��� � �� � �. Since, � �� &�
�� &�, the unique rules to derive the transition
���

�
�� � ��� � may be �� and the symmetric of ��. So, ��� �

�� � ��� � iff
either � �

�� � � for some � � and � � � � or � �
�� � � and � � � �. By, induction

hypothesis, we have that � ��� �� � � iff � �� � �00� �, and ��� � �� � � iff � � ��
� �00�. So, we eventually obtain that ��� �� ���� � iff � �� �

��	�
�
�	��

� �00� � or
� �� ����� �00�� and the thesis follows.

Proposition 4.2 Given a set of channels � and a logical formula � �, we have
that:

��� � � �� � �� � �� �00��

Proof: The proof is performed by structural induction on the formula � . We de-

scribe only one case, the others are similar.

� � � ���� �. We have that � � � �� ���� � iff � � �
�

�� � � � � and � � � � �� � �.
Note that � � �

�
�� � � � �, for some � �, only if 4�

�'��� 0 � and, in this

case, by induction hypothesis, we have that � � � � �� � � iff � � �� � �00�. So if
 4�

�'��� 0 � then ��� �� ���� iff � �� ����� �00��. When 4�

�'��� �,
for no � we may have � � � �� ���� , or equivalently, � �� �.

Lemma 4.1 Given a system � and an initial message �, suppose that there exists
a sequential agent � s.t. ��������� � � and ���

�
� �� �+ �� �

�
� . Then, a

well behaved agent � �
 exists s.t. ���

�
� �
 �� �+ � � �

��
� .

Proof: Assume that ���
�
�

��
�� and � �

�
�� , i.e. � ��� � �����+�� where

+� �� �� � � � �	 � +. We must have �
�
��. Thus, the formula ���� � � � ����� is

satisfiable by an agent whose knowledge is �. Then, by the proof of Lemma 3.1,
we can find a process / s.t. /

�
��, and whose structure is as follows:

/ � � ��� �� � � �

'� �� 	
�� � �� � � � �� � � � �� � � � � � �� 	���� 	��

where � � are prefix constructs and � represents a proof of �. Note that each prefix
construct � � corresponds to action �� in +. Deduction constructs may only appear

47

before a sending action. Moreover, note that the prefix construct which immediately
follows the end of a proof must be the sending of the inferred value, e.g., � � � ��.

We will build a well behaved agent � � s.t ���
�
� � �� �+ � � �

��
� . The agent
� � is obtained by iteratively reordering the prefix constructs of � , until we obtain
a well behaved agent. In particular, we move each generation action just before the
first place where the generated value is necessary, i.e. before the proof of the first
sent message �� s.t. � occurs in ��.

Let �� be � . We construct a sequence of agents �� s.t. ���
�
��

��
���, +�� �� +�

and �����+�� � �����+�. Moreover, the relative order between communication
actions with � is never changed. Thus, also �� is a successful attacker of �.

Assume that in �� we can find a prefix construct � � � ��
�
�� , whose corresponding
action in +� � �� � � � �	 is �� � &� and:

� � ��� � #(�
� � �� � � , then we simply let ���� be the agent �� where � � and
� ��� are swapped. Note that the generation action �� has no influence on the
action ����, thus the agent ���� executes a computation +��� where �� and ����

are inverted with respect to the sequence +�.
� We have that �� � ��� and � does not occur in ��, where ' 8 	 is the smallest

index s.t. �� � ���, for some ��, and �! � &�� , for all 4 s.t. 	 9 4 9 '.
Note that �� can be deduced by ��������� � � � �����. Note also that � does not
appear as submessage of � � �������� ��� ����� since it is newly created and it
cannot be received (or eaves-dropped) as submessage in every action in �! with
� 9 4 � 	�� since it is never sent as submessage and the other processes cannot
deduce it. (Indeed, � is a random value of basic type which can be only guessed
by �� and by Assumption 4.2 this message cannot be deduced by no other agent
in �.) Note also that � 0 ��������� � � � ����� since these are guessing actions
of new random messages. Thus, we have that �� ��� � ������� � � � ������,
and � does not occur in � � ������� � � � �������� � � � �����. We can thus apply
Assumption 4.1, and we get �� ��� � ������� � � � �������� � � � ������. Let ��

a proof of � from ��������� � � � �������� � � � ����� whose root is an assignment
to the variable �. Note that � does not appear in ��. Thus, its guessing it is not
necessary in the proof ��. Note also that the generation action �� has no influence
on the successive generation action �!, for 	 9 4 9 ' � �. So, let ���� be the
process �� where each construct � !, with 	 9 4 � ', is shifted left of one
position, the proof �, that precedes � � in ��, is replaced with �� and furthermore
the � � construct of ���� is � � of ��.

Finally, we obtain an agent whose guessing actions are grouped together and in-
serted just before the sending of a message which contains the guessed values as
submessages. Actually, it is also possible that the tail of the agent consists of a se-
quence of guessing actions followed by the � term. We can safely remove them and
we obtain a well behaved agent. Call this agent � � and the result follows.

48

Proposition 4.3 Given a system � and a well behaved sequential agent � where
� is finite and ��������� � �, then if � is an initial message we have:

���
�
� �� �+ � � �

�
� �� � �� �+ � � �
�
�00��

Proof: By induction on the max length of the computations of �.

Base case: �
�
� �	'. We observe that � can only guess new random messages

during its future behaviour. But, by Assumption 4.1, this does not significantly im-
prove its capabilities for the deduction of initial messages. Thus, � is a successful
attacker iff � ����.

Induction step:

���
�
� �� �+ � � �

�
� ��

�+ � ���
�
� �� � �

�
� ��

���
�
� �� � �

�
� �

�+� + � �+� � ���
�
� �� � �

�
� ��

� �� � �
�
� �

��� ���� �� � � ����
�
�

�
�� � ���

�
� �
� � � ���

�
� �
� �� �+� �� ��

��
�� �

(Interactions between � and � through rules��� �� and symm.)

��� ���� � ����
�
�

�
�� � ���

�
� � � ���

�
� �� �+� �� �

�
�� �

(� only acts through rule ��)

��� ���� � ����
�
�

�
�� ���

�
� �
� � ���

�
� �
� �� �+� �� ��

��
��

(� only acts through rule ��symm.)

Condition (1) takes into account every possible synchronization between � and �;

these are (from the point of view of � agent):

� Receiving a typed message on a channel . Because only a finite set of messages
can be sent from � on every channel and the number of channels is finite, we can

consider only a finite number of actions �. So we have that �
����

�� � �
���� 	� ��

and � ���
�
� �
���� 	� �� �� �+� � � �

���� 	� ��
��
�� . By induction hypothesis we have

that � �
���� 	� �� �� �+ � � �

���� 	� ��
��
� 00� �. So considering all the possible �

actions of this kind we obtain:

�
����

�	��

� ������+ � � �
���� 	� ��
��
� 00� ��

49

� Sending of a typed message. By induction hypothesis, the following disjunction
takes in account these cases:

��
��
�����������

� ������+ � � �
��
�00�

��

where ��
(��� �
� ���� � ����
����

�� � � ��� �� �����.
� Eaves-dropping of a communication internal to the system �. Such communica-

tions can be in a finite number, and hence by induction hypothesis these cases
can be treated as:

�
�
����

�	 ��

�#�
�����+ � � �
���� 	� ��
��
� 00� ��

Condition (2) takes in account actions performed by the system � without inter-
action with the agent � , by induction hypothesis these actions can be taken into
account using the following formula:

�

�
�	���������
���

��+ �� �
�
�00�

��

The last condition (3) is more difficult to translate than the previous ones. As a
matter of fact, this formulation does not directly permit us to use the induction
hypothesis on �. However, our restriction to the analysis of well behaved processes
and our requirements on the ���� of � and � help us. In particular, we will prove
that the unique interesting possibility, for this condition, is that the initial part of
the successful computation + between � and � consists of a sequence of guessing
actions by � , followed by an internal action which corresponds to the sending of a
message �� from � to �.

First, note that � � &�� for some random message ��. Next, let + be + � ; then,
since � is well behaved, + � �+�� ��

�+��� , where +�� � &�� � � � &�� ; moreover the
random values �� occur in ��. By definition of well behaved process, we have that:

�
������ ��

��"�"������
����

�� � �
��"�"������

������

Now, consider the computation + of ���
�
�. We can re-write it as +�&�
��+� where

in �+� there are no interactions between � and � . So, we have:

���
�
�

����� ������
�
�����

�� ������
� ����

The sequence �+� must be the interleaving of two sequences of actions: the ones
of � , i.e. �+��, and the ones of �, say +� . We may have two cases depending on +�
empty or not:

50

� If +� is not empty, then we have also the following computation:

���
�
�

���� ������

�����������
��

and � �
�
����

�

��������
. Thus, we can now apply the induction hypothesis, and

we get � �� �+ � � �
�
�00��. But, note that �+ � � �

�
�00�� is a

disjunct of �+ � � �
�
�00�, which is already taken into account by condition

(2) because actions in +� may be only internal or guessing ones.
� If +� is empty, then:

���
�
�

���������

�� � ���
�
� �
��"�"������

and
� ���

�
� �
��"�"������

�� �+ �� �
��"�"������
��
�

We can now apply induction hypothesis and so we obtain:

� �
��"�"������

�� ��+ � � �
��"�"������
��
� 00� ��

and finally

� �� �&��� � � � �&���� ��
����+ � � �

��"�"������
��
� 00� ��

By the other hand, if

� �� �&��� � � � �&���� ��
����+ � � �

��"�"������
��
� 00� ��

then it can be proven that a computation + exists s.t. ���
�
� �� � �

�
� .

So, by considering all possible initial sequences of random generation actions we
have:

��
��

�����
���� �������

��&������� ��
����+ � � ��

��
�00�
��

where �� � � � ��������� and

1��
(��� �
� ���� ���� � � � � ���� �
����� s.t. �

���
���
����� � �
�� �

����

�� � ��

�� ������
�������
���
�� � �%����� � ��%���� � ��
(�����

Lemma A.1 Consider a system � and assume that ���� �������� "# ����� ��
�
� ����� .

Assume also that in � there is no subterm ��
�
�� s.t. ��� �"� is equal to �� ��� or
��� ��

�
� for some 	 � . Then we have:

�
�

�� �� �# 2���
#���
�� 2�����

51

Proof: By structural induction on � and by inspection on the rules used to infer the
transitions of �.

First, we consider that � is a sequential agent. Then we may have the following
cases:

� � � �. Trivial.
� � � � ��. Then we may have the following cases depending on � :

� � � ��. Thus �
���
�� � and similarly 2��� � �2����2���

��#���
�� 2���.

� � � �� �� . For whatever � ������� � we have �
���
�� ���0��. Since

2��� � �� ���2���, we have that 2��� ���
�� 2�����0�� for whatever �

������� �. Thus, also 2���
��#���
�� 2����2���0�� � 2����0���.

� � � #��
� � Similar to the case above.

� � � ��
�
�� � We have that �
��
�� ���0��, where � � ��

� �	�, and 2��� �
��
�
�� �2���. Due to our hypothesis, � is different from the random messages
in
�� ������� �
��� ��

�
����� . Hence, 2��� � � (by our assumptions on 2) and

2���
��
�� 2�����0�� � 2����0���.

� � � �� � ��. If � �
�� �� it means that either ��

�
�� �� or ��

�
�� ��. In both

cases, by structural induction, the thesis follows.
� � � �� � ��������. We have that 2��� � �2��� � 2�����2����� 2����.

If �
�

�� ��, it must be that either � � �� and ��
�

�� �� or � �� �� and
��

�
�� ��. Now, if � � �� then also 2��� � 2���� and by structural induction

the thesis follows. If � �� �� then we have also 2��� �� 2���� and once again
the thesis follows by structural induction.

� � � ���������� ��� � �� ������. We have that 2��� � ���2��������� ���
� �� �2����� 2����. If �

�
�� ��, it must be that either ��������� ��� � �� and

����0��
�

�� �� or for no � �� we have ��������� ��� � �� and ��
�

�� ��.
Now, if ��������� ��� � �� then, by Assumption 4.4, we have ��2��������� ���
2���; by structural induction the thesis follows since 2����2���0�� � 2����0
���. Analogously, if for no � �� we have that ��������� ��� � �� then for no
2��� we have ��2��������� ��� 2�� �� � and the result follows by structural
induction.

The case where � is � � � � is trivial. Now consider that � � �����.

� If �
�

�� � � by means of the operational rule �� (or its symmetric) the result
trivially follows.

� If �
����
�� � � by means of the rule �� (communication) then it means that ��

���
��

� �
� and ��

���
�� � �

�. By structural induction, we get 2����
��#���
�� 2�� �

�� and

2����
��#���
�� 2�� �

��. Thus the thesis follows since, by the operational rule ��,

we have 2���
�������
�� 2�� ��. The symmetric case is similar.

� If � �
�� � � by means of the rule �� (or its symmetric) the result similarly follows

as above.

52

Lemma 4.2 Consider a system � and assume that ���� �������� "# ����� ��
�
� ����� .

Assume also that in � there is no subterm ��
�
�� s.t. ��� �"� is equal to �� ��� or
��� ��

�
� for some 	 � . Then, we have:

�
�
�� �� �# 2���

#���
�� 2����

Proof: By induction on the length of the computation + and by exploiting Lemma

A.1.

Lemma 4.3 Let ���� �������� "# ����� ��
�
� �����; consider a system � and a se-

quential agent � , with ��������� � �, and let no subterm ��
�
�� in ���
be s.t. ��� �"� is equal to �� ��� or ��� ��

�
� for some 	 �; furthermore, assume

�%���� � �
�� ������� �
��� ��
�
������ � �. If � �� is an initial message, then:

���
�
���� 	���� �� �+ � � �

��� 	����
�
�

��

2�����
�
2�������

	� �

��� �� �+ � � �

���� 	�
�

���
#���
� �

Proof: If ���
�
���� 	���� �� �+ � � �

��� 	����
�
� then there exists + such that

����
�
���� 	����

�
��� �� +

with � �� ��� �
�� ������� � �����+��. We are in the hypothesis of Lemma

4.2 so we have 2�����
�
2������� 	� �

���

��
�� with + � � 2�+�. Hence we can see that

�2�����
�
2������� 	� �

���

��
��� #���� +� � 2�+�. So we have:

� �� ��� �
�� ������� ������+�� �� ����� ����

2�� �� � ��2�� �
�� ������� ������+��� ��

2�� �� � ��2��� � 2�
�� �������� � 2������+���� ��

� �� ��� �
��� ��
�
����� ������+����

Finally, we have 2�����
�
2�������

	� �

��� �� �+ � � �

���� 	�
�

���
#���
� . The other

direction can be proved by using a symmetric reasoning.

Lemma 4.4 1��
(���0�� is a finite set.

Proof: Consider two tuples �� �� 1��
(���, i.e.:

� � � �� ��� ���� ��������� �
��� �� � � �� �� �� �� ����� ��

�
� ������� �

�
��

53

Assume that � �� � � � �� � � � � and that the sequences of the types of the
random values guessed, i.e. ��������� ��� ��� �

� ����� , are equal up to permutations

(they represent the same multi-set of basic types). Moreover, assume that � ���
�� � �,

because in � there is an agent � � �� � ����, which performs the action �
���
��

����0��, and � �
� is equal to � � where ����0�� is replaced with �����0��. (Roughly,

the two derivatives � � and � �
� are due to the same sequential agent which performs

a receiving action.)

Note that, if two messages, say � and ��, with the same type differ, it means that
at least an occurrence of a basic value of � is replaced in �� with an occurrence of
a different basic value (but with the same type).

Now, we decorate the term representing the type � (� �) of � (��) as follows:

� We color '� "� each basic type in the term of � , whose corresponding message
of basic value in � (��) is not in
������ (
�������).

� We color :4	��� each basic type in the term of � , whose corresponding message
in � (��) is the basic value �� (���) in
������ (
�������).

We say that two colored terms � , � � representing the same type are compatible iff

� (black condition) if �� is a term of a basic type occurring in � , which is colored
'� "� for some , then the corresponding term in � � is colored '� "�, and vice-
versa;

� (white condition) if two occurrences ��� �� of terms of basic types have the same
color in � then the corresponding occurrences ���� �

�
� in � � have also the same

color (even if it could be different from the one of ��� ��), and vice-versa;

The black condition ensures that the two messages ����, which originate the col-
oring of the two terms �� � � of the same type, agree on basic values which are not in

��� ������� . The white condition ensures that equal random values in � correspond
to equal random values in ��.

Eventually, under the previous assumptions and by assuming also that the colored
terms of � and � � are compatible, we can find a bijection 2, s.t.:

(1) ���� �������� "# ����� ��
�
� �����;

(2) 2��� � ��;
(3) 2���� � � �

�.

We build 2 as follows. For �
������ let 2��� � �� if �� is the corresponding
value of � in ��. For ��
������� let 2���� � � if 2��� � ��. Let 2��� be � if
� 0
��� ������� . Clearly, 2 is a type preserving function. We can also prove that
2 is injective. In particular, consider ��� �!
������ , with " �� 4, then clearly,
:4	��� is different from :4	��!. (Recall that the sequence of guessing consists of
distinct random values.) Thus, since � and � � are compatible, the color of the term

54

corresponding to 2���� and the one of 2��!� are not equal, but this means that
2���� �� 2��!�. This proves the first of the above points. To show that (2) holds,
note that �� is the term � where each occurrence of � is replaced with 2���, thus
2��� � ��. To show that (3) holds, note that �� and � �

� differ because there is an
agent is �� which is ����0�� whereas the corresponding agent in � �

� is �����0��.
The random values in
��� ������� do not occur in �, by construction. Thus, 2�� �� is
� � where � is replaced with 2��� � ��, and so 2�� �� � � �

�. From the previous
facts we get � "� ��.

On the other hand, if � "� �� then it is possible to prove that the colorings of the
type of the exchanged messages, say � and ��, are compatible.

From this follows that, in order to establish if two tuples in 1��
(��� are equiv-
alent, we simply need to establish that, the channels, the type of the messages,
the multi-sets of basic types guessed are the same in the two tuples. Moreover, the
derivatives of � are obtained through an action of the same sequential agent; finally,
the colored terms of the type of the exchanged messages � and �� are compatible.

Note that the channels and types in � are finite. Fix a channel and the corre-
sponding type � . Now, we may have only a finite number of possible multi-sets of
basic types which represents the occurrences of newly guessed random values in
the message � with type � . Fix a sequence, and so the index set � is fixed. Then,
we may have only a finite number of ways of coloring the term of the type � , with
colors in '� "�, with basic value and ����, and :4	���, with 	 � and �
finite, because the term of � is finite and the possible colors are finite. (Recall that,
even though not explicitly represented, the set 1��
(��� depends on �. This set is
finite by Assumption 4.3; moreover, by Assumption 4.2, it is not possible to deduce
basic values which are not in �.) Thus, the compatibility relation among colorings
of types, which is an equivalence relation, may have only a finite set of equivalence
classes. Thus, it follows that we may have only a finite number of equivalence
classes in 1��
(����� .

Lemma 4.5 Under the hypothesis of Proposition 4.3, let � � �+ � �� �
�
�00�.

Then, we have:

�� s.t. � �� � �� �/ s.t. / �� �� �

Proof:

By induction on the depth of the nesting of infinitary disjunctions in � .

(�#)

If �� �� � then either � models a formula in the finite part of � and, in this case,
also of �� , or there exists � � � �� ��� ���� �������� � ��� 1��
(��� �� �� �),

55

where �) is:
��&������� �����+ ��� �

�

� 	�����
�
� 00����

This fact implies that there exists � s.t.:

�

���
���
����� � �
�

���
�� � ��

� �� ��
� �� �+ ��� ��

�
�00��

with �
���
�� ��� �

� � � �
�� ���� � � � � �� ����� � �� ����� and
�� ������� �
�%��� �� ��

There must be the case for some �� � � �� �� ��� ����� ��
�
� ������ �

�
�� ����� that �)�

appears as a disjunction in �� . Thus, we will show that there exists a process � �
 s.t.

��
 �� �)� and consequently ��

 �� �� .

Let 2 be a type preserving bijection between s.t. ���� �������� "# ����� ��
�
� ����� , with

� �
�� � � � �
� (such bijection must exist by construction, since � � "� �). Hence it
is possible to construct a process � �

 such that:

��

���
�

���
����
�� � ��

��

and � ��
��

� 2�� �
��. By Lemma 4.1 we can freely assume that � is in the form:

��
*�
���� � � � � ���
*�
���� �;

We simply consider ��
 as:

��

*��
�

�

�

� �

�
� � � � ���

*��
�
�
�

� �
�

�;

where �� �

��	��� � ��� and)�� �)	 when 2��	 ��	� � ��� ��
�
�.

Since, � �
�

���
�� � ��

� and � ��
��

� 2�� �
�� it must be that for some � ���

��
we have

� ��
��

����

�� � ���
��

, with � ���
��

� 2�� ��
��. We also have 2���� � � �

�� 2��� � ��

and 2����������� � ���������� . The hypothesis of Lemma 4.3 are fulfilled and so

���� ��
� �� �+ � �� ��

�
� implies � �
�����

���
��

�� �+ � �� �
��
�
� and by Proposi-

tion 4.3 we get � ���
��

�� �+ � �� �
��
�
�00�

�
�. The depth of the nesting of infinitary

disjunctions in the latter formula is smaller than in the formula �+ � �� �
�
�00�,

hence by applying the induction hypothesis, we get �/ �
��

��
�

�+ � �� �
��
� �
�00�

�
�.

Finally, the thesis follows by considering / as:

��

*��
�

�

�

� �

�
� � � � ���

*��
�
�
�

� �
�

��� ���/ ��

where � is a proof of �� from � �
��� ��
�
����� whose root is an assignment to

the variable �, and each value ��� is replaced with)��; similarly, / �� is the process

56

/ �, where each value ��� is replaced with)�� and �� is replaced with �. Note that

/
���

�
������

�
����

�� / �
��

.

(%�) The other direction is trivial.

Theorem 4.1 Consider a system �, with ������� � �, a finite set of typed
messages � and an initial message � �� . It is decidable if there exists �, with
������� � �, s.t.

���
�
� �� �+ � � �

�
��

Proof: By using Proposition 4.3 and Lemma 4.5 we can reduce the decidability of
the existence of such � to a satisfiability problem of the reduced formula �� �

��+ � � �
�
�00�. Note that such formula consists only of the logical constants,

disjunctions and the possibility modality. Thus, we can apply Lemma 3.1 and the
result follows.

Theorem 4.2 Consider a system �, with ������� � � and no construct #��
�
occurring in it, a system / � �����
���
��/

�
�

consisting of a set of sequential agents
/� with �����/ �

�
� � � for "
�� � � � � '�, and an initial message � �� . Suppose

that, for some 	
�� � � � � '�, we have:

���
�
/ �� �+ � � �

�
�

then there exists a sequential agent �, with � � �����
���
����, s.t.:

���
�
� �� �+ � � �

�
��

Proof: By induction on the minimal length
 of sequences +, s.t. ���
�
�����
���
��/

�
�

�
��

and + � � +�, with � �������+ �� � ���.

�
 � . Then, let � be / �.
� Induction step. Then, consider + � �+� s.t.:

���
�
�����
���
��/

�
�

�
�� � ���

�
�����
���
��/

��
�
�

���� � ����
�
�����
���
��/

���
��
�

and + � � +�, with � �������+ �� � ���. By induction hypothesis, we have
that there exists � �

� with �� � �����
���
�����, s.t. � ���
�
� � �� �+ � � ��

��
� . We
may have different cases depending on the agents involved in the execution of �.
� Only agents in � participated on the execution of �. Then, note that �� � � and

let � be � �.
� Only agents in �����
���
��/

�
�

participated on the execution of �. We may have
two cases:

57

� � &�� Then, for some � � we have � � �� ���. Let � be ���
�
	� ����,
where �� is the agent � � where each occurrence of the random value �
replaced with �. (We assume that � does not appear in � �.)
� � &�
�� . Then, note that �� � �. So, let � be � �.

� One agent of � and one of �����
���
��/ �
�

, say / �� , synchronize. We may have
several cases depending on the action performed by / ��:

 ���. Then, note that �� � �. So, let � be ����� �.
 ��� �� �. Then, let � be � �� �� �����, where �� is the agent � � where
each occurrence of �� replaced with �. (We assume that � does not appear
in � �.)
#�
�� 	� � . Then, let � be �#��
� �����, where �� is the agent � � where each
occurrence of �� replaced with �. (We assume that � does not appear in
� �.)

58

