
UNIVERSITÀ DEGLI STUDI DI SIENA

DIPARTIMENTO DI MATEMATICA

DOTTORATO DI RICERCA IN LOGICA MATEMATICA E INFORMATICA

TEORICA

PH.D. THESIS

Formal Methods for the Analysis of Open
Systems with Applications to Security

Properties

Fabio Martinelli

COORDINATOR

Prof. Franco Montagna

February 1999

Dipartimento di Matematica, Via del Capitano 15, I-53100 Siena
E-mail: martinel@di.unipi.it

Abstract

This thesis concerns the formal verification of open systems. The behaviour of an open
system may be not completely specified and may present some uncertainty due to the
environment in which it operates.

In particular, we study the module checking problem for several temporal logics, as
defined by Kupferman and Vardi. A module is a Kripke model refined in order to take
into account a possible interaction with an environment. Every environment induces a
particular behaviour of the module, which may be considered as a standard Kripke model.
Hence, given a module � and a temporal logic formula �, the module checking problem
is the verification whether every induced behaviour of the module � satisfies the property
�. We show how to use compositional analysis techniques developed in concurrency
theory for the solution of this problem, in particular for modal ��calculus.

Then we show how computer security properties may be defined through underspeci-
fication. It turns out that it is very natural to consider the verification problems that arise
in security property analysis as module checking problems. In particular, we study in-
formation flow security properties, as proposed by Focardi and Gorrieri, together with
security protocol properties. We define suitable compositional analysis techniques in or-
der to study these kinds of properties. The resulting approach may be regarded as a new
methodology for the analysis of security properties.

Finally, we study a synthesis problem that arises when we consider systems which
may have an unspecified component, i.e. subsystem construction. We show how to im-
prove algorithms for solving this problem for particular cases in the context of process
algebra.

Acknowledgments

First of all, I would like to thank my advisor Andrea Masini, for his helpful suggestions
and in particular because he accepted to follow me in a field that was not in the mainstream
of his research interests.

Thanks are due to Andrea Maggiolo-Schettini for many stimulating discussions and
encouragements over these years.

I thank my external referees Pierpaolo Degano and Roberto Gorrieri, for their careful
reading of an earlier draft of this thesis, and for their helpful comments and criticisms.

I would like to thank the Department of Computer Science of Pisa for the support
given me during the completion of my Ph.D. course.

At last but not least I would like to thank Maria Rosaria, without her presence this
work could never have been completed.

to my parents

Contents

I Formal Methods for the Analysis of Open Systems 1

1 Temporal logics 13

2 SOS and partial evaluation 31

3 Analysis of Open systems 57

4 A synthesis problem 81

II Applications to Security Properties 93

5 Analysis of non interference 95

6 Analysis of cryptographic protocols 117

Bibliography 141

A Proofs of chapter 6 151

B A verification session 163

Part I

Formal Methods for the Analysis of
Open Systems

Introduction

This thesis concerns the study and the verification of complex systems with unspecified
components. We investigate many situations and problems that may be described through
underspecification.

In particular we deal with so called reactive systems as originally defined by Pnueli
in his seminal work (see [80]). This kind of systems keeps an ongoing interaction with
the environment by receiving and emitting stimuli. Many computer systems can be de-
scribed by means of this paradigm, for example operating systems, monitoring programs
and network protocols. In contrast with transformational systems, which generally given
an input produce an output, their semantics should rely on their behaviour and on their
capabilities of interaction during their progress.

A typical situation where underspecification arises is during the development of com-
plex systems. This activity involves at least three steps: specification, implementation and
verification. In the first step the requirements of the system are written in some language,
in the second step the implementation is provided in some executable language, and in the
third step the consistency of the implementation with the specification is checked. One of
the major challenges of computer science is to find suitable formalisms and methods to
perform these activities correctly.

Formal methods can be considered as a set of mathematical tools and notions used
to reason rigorously about the behavior and the properties of systems. The language for
the description of the properties of these systems and the language for the description
of systems must have a clear formal semantics. Once a formal model of a system has
been given, the proof of the coherence between the specification and the implementation
can be performed. While in general the specification language can be descriptive, the
implementation is given in a prescriptive language.

When the specification language is different from the implementation one, the ver-
ification is called heterogeneous, otherwise homogeneous. In this thesis we will show
applications of both kinds of verification.

Semantics

The semantics of languages for the description of (sequential and concurrent) systems can
be defined in several ways; the following classification is widely accepted (see [107]):

4

Operational semantics. This assumes the notion of an abstract machine where programs
are executed and shows the transitions of states of the machine, possibly together
with some information about the activity that caused the changes. This approach
was formalized by Plotkin in [79] in the so called Structured Operational Semantics
(SOS, for short), where states of the machine represent terms of the language, and
transitions are obtained by an inference system. Moreover the semantics of terms
is generally given by means of the semantics of their subterms.

Denotational semantics. Every program has an associated mathematical object (its deno-
tation). This way of providing semantics for programming languages has been very
fruitful for the sequential programming paradigm, where the meaning of programs
can be identified by the function they compute.

Axiomatic semantics. The semantics is not given directly, but a proof system for terms
of the language is provided. The characteristics of the constructs of the language
are expressed implicitly by the axioms and rules of the proof system.

Formal semantics for programming languages should abstract from irrelevant aspects
of the language. From a formal semantics designers, implementers and programmers of
the language can benefit.

Designers may give unambiguous definitions for their languages. Moreover they may
establish relationships among operators of the language and also between operators of
different languages (but with the same formal model).

Implementers can have a clear guide for their work, hence they can easily produce
implementations of the language that are machine-independent.

Programmers benefit from formal semantics since they can get a clear “mental” model
of each functionality of the language, and so they can program their applications (almost)
independently of the machine in which the language is implemented.

Verification

One of the most important activities of software�hardware developers should be the cer-
tification that their programs�systems meet the requirements, as expressed by the specifi-
cation. If the languages for specification and implementation have formal semantics, then
the certification can be carried out in a formal setting. Moreover this verification may
be computer-aided. There are two main approaches in the field of formal verification of
reactive�concurrent systems (see [20]):

1. proof theoretic,

2. model theoretic.

The proof theoretic approach uses proof systems, which consist of axioms and rules,
for inferring properties of programs. Generally, a proof system is divided into two parts:
1) a logical part 2) a specific part for program reasoning (see [27]). Theorem proving is

5

the activity of finding a proof of a property within the proof system. In this approach it is
possible to deal directly with infinite domains, for example by exploiting structural induc-
tion principles. Hand made proofs are usually error-prone and tedious, hence automated
theorem provers and proof checkers are needed. The former permit one to automatically
find the proof of the correctness of the system. The drawbacks of theorem proving result
from the intrinsic complexity of the problem thus automated tools work well for small
systems while, in general cases, require non trivial human efforts.

The model theoretic approach simply considers a program as a model for the interpre-
tation of a logical formula, which represents the requirements of specification. Thus the
verification of the consistency of the program and of its specification consists in checking
whether the semantics of the program is a model of the formula (model checking). In
particular this approach has been advocated for the analysis of concurrent systems. In
a landmark paper Clarke et al. (see [19]) introduce the notion of model checking as an
automated method for the analysis of protocols.

The protocols are modeled as Kripke models, i.e. triples ��� �� ��, where � is a
set of worlds (or states), � is a relation on � and � is a labeling function. A Kripke
model may be considered as a simple computational model. States represent possible
configurations of the machine. The labeling function � expresses the basic properties that
hold in a state, and the accessibility relation � shows the possible next computation steps
of the system.

The specification is expressed in a temporal logic, for example Computational Tree
Logic (CTL, for short). This logic permits us to reason about the temporal relations of
events. If the Kripke model is finite then the model checking problem can be solved with
a complexity that is polynomial in the length of the formula and in the dimension of the
model (see [19]).

Among the positive aspects of model checking, we recall the following ones: it is au-
tomatic (so it can be used by non experts of formal methods) and fast, it can find errors
and produce evidence of errors of systems, which may subsequently be exploited for de-
bugging. Among the drawbacks of model checking, we recall: generally the system to be
checked has to be completely specified; infinite state systems are not directly manageable
(instead suitable abstractions must be provided).

In a certain phase of the implementation, it is possible that decisions which have al-
ready been taken about the design of a component, make impossible the design of other
components in such way that the whole system could satisfy the specification. By ap-
plying model checking techniques, this situation can be detected only at the end of the
development stage. This problem has been tackled by many researchers. A possible ap-
proach is to study the system in a compositional way, i.e. by deriving properties of a
system starting from the properties of its subcomponents.

Compositional analysis

Compositional analysis techniques have been developed for many concurrent languages
(see [4, 40, 55, 56, 106]). Suppose that 	 sat � means the system 	 satisfies a specification

6

�, expressed in some logical formalism. Moreover assume that � is an operator of the
language. A typical rule for compositional reasoning is the following:

	� ��� �� 	� ��� ��

	� � 	� ��� �

The rule should be read upward i.e. in order to verify that a composed system 	� � 	�
satisfies a property � check that components 	� and 	� verify the two properties �� and ��,
respectively. The problem is reduced to two subproblems, hopefully both simpler than the
previous one. The choice of a right decomposition of the property � in the two properties
�� and �� is usually a difficult task.

In [55] Larsen and Xinxin tackle a problem related to the correct decomposition of
properties. They study how to compute the properties that unspecified subcomponents of
a system must verify so that the whole system satisfies a certain requirement. Moreover,
they address the problem of finding properties of subcomponents that are as weak as
possible, in order not to restrict unnecessarily the choice of further implementation steps.

They introduce the notion of context. Roughly a context �����

 � ��� is a system
that presents some non specified components ���

 � ��. Suppose we have the following
problem: find a property
���� �� such that ��� � sat � iff � sat
���� ��. In other words
we search for a formula such that a subsystem satisfies this formula iff the complete
system (obtained by the insertion of the submodule � in the context ����) satisfies the
formula �. It is worthwhile noticing that the requirements, expressed by the formula � are
changed into the ones expressed by the formula
���� ��, in order to correctly take into
account the behaviour of the components already defined (i.e. the context ����).

In this way, after defining a partial implementation, it is possible to find the mini-
mal properties that the unspecified components must ensure in order to build a complete
system with particular requirements. A similar problem was analyzed by Andersen (see
[4, 5]) but instead of using the abstract notion of context (with its operational semantics)
he prefers to start his analysis from a very general process algebra (see [43, 44, 69]). In
Andersen’s terminology the formula is a partially evaluated, or rather, reduced formula.

We study a slight extension of their work. The idea is to define the function that per-
forms the reduction of the formula (or the partial evaluation), according to the components
already specified, directly from the SOS definition of the language in which the semantics
of systems is given, instead of using a specific language, even though very powerful, such
as context systems. The underlying motivation indicates SOS definitions as a suitable
basic language for which general theories may be developed (see [3, 12, 26, 90]).

Module checking

Part of this thesis is dedicated to the study of open systems as defined recently by Kupfer-
man and Vardi in [50, 51, 101]. Open systems heavily depend on the environment in
which they operate. The environment is thus able to influence the behaviour of systems.
These systems are called open, in contrast with closed systems, whose behaviour is not in-
fluenced by the environment. If we consider an open system then it is possible that in cer-

7

tain states it requires interactions with the environment in order to evolve. Hence certain
potential capabilities of the system may be exploited or not depending on the interaction
with the environment in which the system operates. Generally, different environments
may induce different behaviours of the system.

Kupferman and Vardi define the following verification problem: check whether the
induced behaviours of an open system with respect to any possible environment satisfy a
certain property (generally it involves an infinite number of verifications).

Assume we have a machine that has to gather food for two kinds of pretty animals,
for example goldfish and green parrots. It could work as follows. First it prompts the
environment with a request for food for the goldfish or for the green parrots. Next, it
sends food to the chosen group of animals and returns to ask the environment for food. For
example, we may ask if wherever we place the machine, it is always possible to give food
to the goldfish. Clearly, the answer depends on the environment in which the machine is
inserted. Imagine an environment which loves animals but dislikes goldfish, then it would
only give food to the second group of animals! Kupferman and Vardi argue that model

 goldfish
green
parrots

Food?

1

2 3

SS

E

Figure 1: Module for the example.

checking approach cannot correctly tackle the above verification problem, since model
checking assumes the so called possible world semantics of Kripke Models, namely that
every world, which is accessible from another, may actually be accessed. The underlying
assumption of model checking is that the system is checked w.r.t. an environment that
enables every behaviour. Hence, model checking algorithms defined for reasoning about
Kripke models do not work correctly for the analysis of open systems. There is a need to
define different model checking problems for open systems.

Kupferman and Vardi define the structure of module. A module is a refined Kripke
model, such that the set of worlds is partitioned into two sets: the environment worlds
where an interaction of the system with the environment is necessary in order to proceed,
and the system worlds, where the system can proceed autonomously. Every environment
in composition with the module induces a particular computation tree, which depends
on the choices made by the environment in the environment worlds. Figure 1 shows
a possible definition for the module of our food gathering machine. It is worthwhile
noticing that if we consider the module as a Kripke model then the answer to our question
on goldfish is YES. In fact in this case from every world a path exists that reaches the
world representing the delivery of food to the goldfish.

Given an open system, modeled by a finite module, and a temporal logic formula

8

expressing the desired requirements, module checking is the verification whether, for any
environment, the induced system satisfies the formula. Kupferman and Vardi propose an
algorithmic approach to the solution of module checking for many temporal logics, such
as ���� ���, ����, by applying constructions on infinite tree automata (see [98]).

In this thesis, we study the module checking problem as a situation of underspecifica-
tion. We give a uniform alternative solution to the module checking problem for several
temporal logics. In particular, we solve this problem for modal ��calculus (see [49, 92]).
The underlying idea relies upon compositional analysis concepts.

Moreover, while module checking is an interesting theoretical problem in itself, we
believe that its paradigm is well suited for modeling interesting real problems, such as
security property analysis.

Synthesis problems

When considering systems with an unspecified component, one may wonder if there exists
an implementation that can be plugged into the system replacing the unspecified one, by
satisfying some properties of the whole system. Following an analogy with top-down
design methodology, at a certain point in the development it is possible to automatically
derive the implementation of subcomponents, that have still to be designed. In this way, it
is possible to avoid the final verification step since the system is correct by construction.

This problem was first analyzed by Merlin and Bochman in [68]. Their specifica-
tions are given as transition systems and the subcomponents are considered correct if the
combined system has the same execution sequences (traces) as the specification. In [86],
Shields reformulated the problem in the CCS process algebra ([70]) by calling it interface
equation. This name depends on the fact that the problem can be restated as follows (see
chapter 4 for a complete overview) :

� a process � such that �
����� � �

where
� � and � are processes, � is the parallel composition operator and � is an equiv-
alence relation. The term interface follows from the fact that the component (process)

can actually be seen as being composed by two components that have to communicate
by exploiting the communication features of � . Since programs can be represented by
models of some temporal logic, it appears reasonable to use classical satisfiability pro-
cedures for the automatic synthesis of programs. By using partial evaluation techniques,
we can use satisfiability procedures to solve also interface equations (obviously when the
two systems
 and � are finite-state).

On the other hand, in this thesis we prefer to perform our analysis by using more
specific methods. We study the theory proposed by Shields and we find a property that
we exploit to improve existing algorithms. Under certain conditions, we can achieve
a better computational complexity and we can synthesize better solutions than through
temporal logic satisfiability procedures.

9

Security analysis

In the second part of this thesis we apply the ideas developed in the first one for the anal-
ysis of security problems. In the last few years, research on the definition of formal meth-
ods for the analysis and the verification of security properties of systems has increased
greatly. This is mainly due to the practical relevance of these systems and moreover to
preliminary encouraging results achieved by the application of formal methods to security
property analysis.

There are many definitions of security properties, among which information flow
properties. Generally, information flow in complex systems must respect a particular
policy. Many notions of information flow security properties exist, in particular Focardi
and Gorrieri have defined the so called Non Deducibility on Composition (NDC, for short)
in the CCS process algebra. The problem consists of modeling a system where there are
several levels of confidentiality, and information flow should be directed from lower to
higher level processes, only.

The intuition behind ��� is that for every high level process that the system is
composed with, the resulting system always has the same behaviour with respect to low
level processes. This means that no high user can downgrade information to low level
processes, since if a system is ��� then low level processes always perceive the same
behaviour of the system. Formally it can be stated as follows (see chapter 5 for a complete
overview):

	 high processes � we have ������� � ��� .

After the above discussion, the relationship between this problem and the module check-
ing one should be clear. The intuition of the relevance of properties that must be specified
with respect to many environments was identified in the area of information flow analysis
by Focardi and Gorrieri in ([33]).

We have followed the same ideas we used for solving module checking for the analysis
of ��� like properties. So we have defined a decision procedure for NDC like properties
(when restricted to finite-state systems). Then we have pushed the analogy further and we
have tried to model other security properties by following the module checking schema,
in particular security protocol properties. Among these protocols we recall the authenti-
cation ones. These are used in distributed systems, where each process must identify the
others during a communication session.

Authentication is a mandatory task also for accessing remote services by users, in
particular for services managing security-sensitive information. These protocols involve
at a conceptual level only a few steps of interaction among parties nevertheless they are
very difficult to be designed and moreover to be proved correct. This is testified by the
great number of erroneous protocols found in the literature (see [17, 18, 59, 60, 61]).
Concepts and tools from logic and concurrency theory have recently been exploited for
the analysis of these protocols. As in the classical verification problems we have two
possible approaches:

10

A proof theoretic approach relies on authentication logics, i.e. knowledge or belief
logics with axioms and rules for specifically reasoning about authentication protocols (see
[2, 48, 78, 96]). As usual, the initial assumptions of the protocols and an “idealization”
(namely, a reduction of the protocols to a set of formulas) are used to infer properties that
must hold at the end of a run of the protocol. Unfortunately, as observed by many authors,
the “idealization” step is very difficult (and not formally defined) in authentication logics,
hence it sometimes causes unintentional modifications to the protocol semantics, that
may lead to inferring the correctness of protocols that actually present some errors. A
notable example is the so called Needham-Schroeder Public Key protocol (see [73]). It
was proven correct in [17], but later in [59] a non trivial error in the protocol was found
and fixed (about twenty years after the publication). The problem was in the “idealization”
step.

A model theoretic approach is based on the use of the process algebra theory for the
analysis of authentication protocols. One advantage is the possibility to reason on a rep-
resentation of the protocols which is near to an actual implementation. Moreover the
concepts and the tools already developed in this area can be fruitfully exploited. In [59],
Lowe shows how to use a verification tool for checking properties among processes for
findings flaws in protocols. He formally describes a model of verification of these pro-
tocols, which assumes the presence of an agent that does not correctly take part in the
communications, by trying to leak secrets or to impersonate other agents in order to ac-
cess information or services that he is not legitimate for accessing. This agent acts as an
intruder that can listen, fake and intercept messages exchanged during the communica-
tions.

The presence of an environment (i.e. the intruder) in which the systems operate must
be taken into account in the definition of correctness of protocols. This is one of the main
differences with standard protocols, and the source of many misunderstandings about the
proof of correctness of protocols.

Our proposal is to consider the intruder as an unknown, or rather unspecified, com-
ponent of the system and to reason about the correctness of the protocol with respect to
each unspecified component. So we feel natural to consider the verification problem as an
example of module checking (obviously in a different theoretical framework). Naturally,
the next step is to apply the compositional analysis concepts also for the solution of this
problem in this setting. We have successfully followed the previous idea, by producing a
new approach for the analysis of cryptographic protocols.

An implementation of this approach has been developed. Preliminary experiments
show that these ideas may be fruitfully exploited in practice.

We believe that the analysis methods given in the second part of this thesis may be
regarded as a unified framework for the analysis of computer security properties.

Furthermore, security analysis seems to be an appropriate example for the necessity
of a study of practical applications of the module checking paradigm.

11

Organization of the thesis

In the first two chapters we provide the reader with a background tailored for treatment of
the remainder of the thesis. The original contributions are above all in chapters 3,4,5 and
6.

The thesis consists of the following chapters:

 Chapter 1. A brief introduction to temporal logics and fixpoint logics (��calculi)
is given. A slight variant of Walukiewicz’s axiomatization (see [103, 104]) for
��calculus is shown, where formulas interpreted over deterministic Labeled Tran-
sition Systems. Some other variants of the ��calculus are described.

 Chapter 2. An introduction to SOS formats is presented, together with CCS pro-
cess algebra. We recast the theory of [4, 40, 55] for defining partial evaluation
functions for languages whose semantics is given by means of a GSOS definition.

 Chapter 3. A uniform approach is proposed for the solution of the module checking
problem for modal ��calculus, and other temporal logics. The approach relies on
compositional analysis techniques.

 Chapter 4. A synthesis problem is studied, namely finding the solution of the
interface equations. We show how to improve algorithms for solving this problem.
In particular, we improve an algorithm that produces “good” solutions.

 Chapter 5. An application of compositional analysis techniques for establishing
information flow security properties is proposed. Moreover, an extension of ���
theory of Focardi and Gorrieri is given for treating with real-time systems. A pro-
totype tool is provided to the reader for computer aided analysis.

 Chapter 6. A new methodology is proposed for analyzing security properties of
cryptographic protocols. It is based on compositional analysis concepts. A tool
which implements the theory is presented.

Some results of this thesis have been already published (see [62, 65, 66, 67]) or are
under consideration for publication (see [64]).

12

Chapter 1

Temporal logics

In this chapter, we briefly recall some basic definitions about (propositional) temporal
logics. In particular we follow the treatment of Emerson in [27]. Then we describe in
more detail an expressive branching time logic, called modal ��calculus, that subsumes
all the others presented in this thesis. Walukiewicz’s proof system (see [103]) that com-
pletely characterizes the logic is presented. We slight modify this system in order to deal
with deterministic Labeled Transition Systems. A particular attention is given to variants
of ��calculus, that have received a great deal of interest for their technical convenience
w.r.t. standard ��calculus (see [5, 10, 55, 92]). These concepts will be used later in this
thesis for program verification purposes.

1.1 Introduction

Temporal reasoning is tied to the necessity to deal with assertions whose truth value may
change during time. It is reasonable to observe the behaviour of complex reactive systems
during their activities. Hence, we can imagine to express properties like “after performing
the activity � the system eventually performs an activity �”, or “the system is able in any
possible future moment to perform some activity”. These assertions express a temporal
relation among events. In his landmark work (see [80]) Pnueli proposed temporal logics
as a well-suited formalism to reason about reactive system behaviour. His intuition has
been followed by many researchers. Since non termination is, usually, one of the main
characteristics of concurrent systems, it is reasonable to search for a formalism whose
operators can express properties about possibly non terminating executions of systems.
Temporal logic modalities permit to reason about executions (computations) of systems.

Temporal logics may differ about the underlying nature of time which is assumed: if
time has only a single possible future moment we call them linear time logics, otherwise
if there may be many possible future moments, we call them branching time logics. Tem-
poral operators of the logic typically reflect the underlying nature of time, so linear time
temporal logics have operators for expressing properties about a single time line, while
branching time logics have also operators that permit to quantify along possible time lines

14 CHAPTER 1. TEMPORAL LOGICS

�

�

�

�

�� � � ��
� � � � �

� �

�� � �

� � �

�
� � � � �

� � � � �

� �� �

� � � � �

�

� �

� �

� �

�� �

Figure 1.1: Intuition for linear-time operators. In the figure, the black states satisfy for-
mula � and the crossed state satisfies �.

(also referred to as computation tree) that may start from a time point.

1.2 PLTL

In this section, we recall the linear time structures that formalize the notion of time line,
and we present a simple (propositional) linear time logic (����, for short). Let �� be
an underlying set of atomic propositions.

Definition 1.1 A linear time structure is a triple � � ��� �� ��, where � is a set of states,
� � � �� � is an infinite sequence of states, and � � � �� ��� is a labelling of each
state with a set of atomic propositions in �� true at the state.

For the infinite sequences we sometimes use the more convenient representation � �
���� ���

� � ������ �����

�. The state ���� is referred to as initial state of the time line
�.

The basic temporal operators of this logic are � � (“sometimes �”), � � (“always �”),
� � (“next time �”) and �� � (“� until �”). A graphical explanation of these operators
is shown in figure 1.1. In the sequel we informally say that a formula ���� holds in a
state of a time line by intending that it holds in the time line that starts from this state. The
formula � � is true in a time line if and only if there is a reachable state (future) where �
holds. � � is true in a time line if and only if at every future time � holds. � � is true in
a time line if the formula � holds in the next time. Finally � � � holds in a time line if
a state is reachable s.t. � holds in this state, and the crossed states satisfy the property �
(excepted, possibly, the last one).

The formulas of ���� logics are built using the following grammar:

� �
 �
� � �� � �� � � � � �� � ��

1.2. PLTL 15

�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

1

7

Figure 1.2: A branching structure, where the black states are labeled by the proposition
.
Hence, the ���� formula � � 	�
 is true in the state 1, since in the state 7 the formula
	�
 holds and 7 is reachable from 1.

where
 � �� and �� is a set of propositional symbols. We can then define the other
temporal operators as derived ones:

�
�
�
 �

�
�
�
�

�� � ��
�
�
�
�� �
���

� �� �
�
�
� � �

� �� �
�
� �� �� �� � �� �� ��

� �
�
� �� �

� �
�
�
 �
�

Among the derived temporal operators there is also � � � (“� before �”), which expresses
the fact that during a time line the formula � is true before the formula �, this abbreviates
the formula
�
� � ��.

The formulas of ���� are interpreted over linear time structures � � ��� �� ��. The
notation �� � �� � means that the formula � is true in the time line � of the structure �
(�� � ��� � on the contrary). When � is clear from the context we usually write � �� �.
For notational convenience we write �� for the suffix ��� �����

 of the time line �. The
truth relation (��) is defined inductively in the structure of the formula �:

� ��
 �	
 � �����
� �� �� � �� �	 � �� ��
�� � �� ��

� ��
� �	 �
� � �� �
� �� � � �	 �� �� �
� �� � � � �	 ����� �� �
�� 	� � ���� �� ���

We say that a ���� formula � is satisfiable iff there exists a linear-time structure
� � ��� �� �� s.t. �� � �� �. We say that any such structure is a model for �. We say �
is valid, and write �� �, iff for all linear structures � � ��� �� �� we have �� � �� �.

16 CHAPTER 1. TEMPORAL LOGICS

Below we give some simple equivalences among ���� formulas:

��� �� � � ��� � �
��� �� � � � �� � �
��� �� � �� � �
��� �� � � �� �
��� �� � ��� � � � � �
��� �� � � �� � � � � �
��� �� � � � �� � � �� � � �� � ���

The last three equivalences are called fixpoint characterization of temporal operators
in terms of “nexttime” operator and “until”. For example the equivalence 5 can be ex-
plained by noticing that if � � holds in a time line then � holds at the first instant of time
or � holds at a future moment and hence � � holds in the time line that starts from the
next time. On the other hand, if � holds at the first instant of the time line or � � holds in
the time line that starts from the next instant then obviously � � holds in the time line.

An analogous reasoning is possible for � and � operators. This characterization
is useful to study the relative expressiveness among temporal logics, in particular with
respect to fixpoint calculi. It is possible to express several interesting properties in this
logic, in particular that along a time line a property � holds infinitely often (� � �), which
is useful for expressing a typical fairness condition.

1.3 CTL�

In this section we show a branching time logic, namely ����. The syntax of ����

allows quantification on paths and states.
We distinguish between state formulas, i.e. formulas that are evaluated on states of the

structure, and path formulas, i.e. formulas that are evaluated over paths in the structure.
We define the set of state formulas (�� ���

) and the set of path formulas (�� ���

)

as the languages generated by the following grammar:

� ���
 � �� � �� �
� � �� � 	�
� ��� � � �� � �� �
� � � � � �� � ��

where
 � �� and �� is a set of propositional symbols. The formal semantics of ����

formulas is given w.r.t. a branching time structure � � ��� �� ��, where � is a set of
states, � is a relation on � and � � � �� ��� . A full path of a structure � is an infinite
sequence ��� ���

 of states of � s.t. 	 ���� ����� � �. For technical convenience it is
assumed in the treatment of this section that the relation � of the structure � is total
(this ensures that a full path can always be found). We write �� � �� � (respectively
�� � �� �) to mean that the state formula � (respectively the path formula �) is true at
the state � (respectively in the full path �) of the structure � . The truth relations are
inductively defined as follows:

1.3. CTL� 17

��� �� �� ��
 �	
 � �����
��� �� �� �� �� � �� �	 �� �� �� ��
���� �� �� ��

��� �� �� ��
� �	 �
��� �� �� �
��� �� �� �� �� �	 ������
�� � � ���� ��

� ��� �
�
 �� � �� �
��� �� �� �� 	� �	 	�����
�� � � ���� ��

� ��� �
�
 �� � �� �
��� �� � ��
 �	 �� �� ��

��� �� � �� �� � �� �	 �� � �� ��
���� � �� ��

��� �� � �� � � �	 �� �� �� �
��� �� � �� �� � �� �	 � ��� �� �� ��
�� 	��� � ������� �� �� ����

Following [27] we say that a state formula � (respectively a path formula �) is valid
provided that for every structure � and every state � (respectively fullpath �) we have
�� � �� � (respectively �� � �� �). A state formula � (respectively a path formula �) is
satisfiable provided that for some structure � and for some state � (respectively fullpath
�) in � we have �� � �� � (respectively �� � �� �).

In figure 1.2 is shown a simple use of the quantification over paths for expressing
properties of systems. In particular the formula � � 	�
 expresses the fact that there
exists a path that leads the system to a state where in every path which starts in that state
the proposition
 always holds.

1.3.1 CTL

In this subsection we present a simple branching time logic, namely Computational Tree
Logic (CTL for short). It is a sublogic of ����. The basic temporal operators of this
logic permit to check if a path (or all paths) satisfies a property expressed by a linear time
operator whose subformulas can be CTL formulas (so the nesting of temporal operators is
forbidden). This restriction and the alternation between branching modalities and linear
time make model checking problem (i.e. establishing whether �� � �� �) for this logic
solvable in polynomial time in the dimension of the structure and in the dimension of the
formula (see [19]). CTL formulas are generated by the following grammar:

� ���
 � �� � �� �
� � �
� ��� � � �� � � ��� � �� � 	� � � 	�� � ��

Every quantification on path must be tied to a linear time operator. Since the nesting of
linear time operators is not allowed it is not possible to express properties like “along some
path � holds infinitely often” (which can be expressed by the ���� formula (�� � �).
This limits the expressiveness of this logic also w.r.t. ����, when ���� formulas are
interpreted over linear-time structures derived from branching time structures.

18 CHAPTER 1. TEMPORAL LOGICS

1.3.2 ECTL�

����� is an extension of ����, which exploits the expressive power of automata on
infinite string (or words, see [98]). Here we follow the treatment of Dam (see [22]). First
of all we recall the definition of automata on infinite words.

Definition 1.2 A !�"	# Automaton� is a ��tuple �$������ ��� % � where $ is the set
of states, � is the alphabet, ��� $ � � � $ is the transition relation, �� is the initial
state and % � $ is the set of final states.

A run of � on an infinite word (&�word) ' � � �� �, is a &�word (� � �� $ s.t.
(��� � �� and (� � � '� � � (� �� ��� for every � �. Then a !�"	# automaton
� accepts an &�word ', if there is a run (of � and a state � � % s.t. (� � � �
for infinitely many and the language recognized by � is ���� � �' � ' ��
� & �
!
"�
�� �
##���� '�.

The syntax of ����� formulas is defined by the following grammar:

� ���
 �
� � �� � �� � ����

where
 � �� and �� is a set of propositional symbols, � is a !�"	# automaton over
an alphabet � � ����	���	��� and �� is a ����� formula, for � ���

 �)�. It is worth-
while noticing that all formulas are state formulas and the linear-time dependencies are
accounted by the automata. The semantics clauses for propositional constants and boolean
connectives are the usual ones:

� ��
 �	
 � ����
� �� �� � �� �	 � �� �
�� � �� ��

� ��
� �	 �
� � �� �

To explain the interpretation of a formula ����we need some auxiliary technical def-
initions. Given a full path � � ��� ��

 on a branching time structure � and an automa-
ton � with alphabet ����	���	��� we have the &�word *(�)����� � � �� � ����

 � ��� �
�� �� ��. The intuition is that the formula ���� is true in a state � if there is an &�word
in � � � ��� ��

 starting from � such that the &�word over ����	���	��� that encodes the
satisfaction of ����

 � ��� along �, is accepted from�. More formally:

� �� ���� �	 �
 �����
�� � �
�
 �*(�)���� � �����

1.4 HML

In this section we present ��� (Hennessy-Milner Logic, see [70]) which is a temporal
logic well suited for specification and verification of systems whose behaviour is natu-
rally described by state changes through actions. The syntax of ��� formulas is the
following:

� ��� � �
� � �� � �� � ����

1.4. HML 19

�

�

�

�

{p},{q},{p,q}

{p},{q},{p,q}

��
��
��

��
��
��

φ

{p}

��
��
��

��
��
��

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

{p},{p,q}

φ

φ

φ ,

,
{q}

Figure 1.3: The automaton in the upper part accepts infinite paths that satisfy � �
. The
automaton in the lower part accepts infinite paths where
 holds only at the even instants
of time. Final states are black colored.

where � � �	* and �	* is a set of actions (or labels). The basic notion of information
is no more an atomic proposition that represents a fact that is true or not in a world, but
the notion of action or transition between worlds. The semantics of Hennessy-Milner
formulas is given w.r.t. Labeled Transition Systems.

Definition 1.3 A triple ��� �� �

���
��� is called Labeled Transition System (���),

where � is a set of states, � is a set of actions and �

���
�� is a set of relations on

�.

LTSs are mathematical objects used to give formal (operational) semantics to concur-
rent programming languages (see section 2.2 for a discussion).

Informally a formula ���� holds in a state if there exists an �–labeled transition from
this state to another one where � holds. Hence it expresses a possibility. The formula $�%�
holds in a state if � holds in each state that is reachable through an �–labeled transition.
Hence it expresses a necessity.

The satisfaction for a formula w.r.t. a state of an ��� is defined inductively as follows:

� �� � �
" �&�"' �
� ��
� �	 �
� � �� �
� �� �� � �� �	 � �� ��
�� � �� ��

� �� ���� �	 �����

�� ��
�� �� �� ��

We give a simple example that shows how ��� formulas may be used to distinguish
between two ����, whose initial states have a different branching structure. Consider
the two ���� in figure 1.4. In particular let �� be ��������� � �����	��� and let �� be

20 CHAPTER 1. TEMPORAL LOGICS

�

�

	

�
� � �

� �� �

�
�

�
��

�
��

�
��

�
��

� �

a
a a

b c

1

b c

2

Figure 1.4: The state 2 satisfies ��, while the state 1 does not satisfy ��.

��������� � �	���. Then the state 2 of the rightmost ��� satisfies �� and ��, while the
state 1 of the leftmost ��� satisfies �� but not ��.

1.5 Modal ��calculus

Modal ��calculus is a process logic which extends ��� with fixpoint operators in order
to reason directly about recursive definitions of properties. It permits us to analyze non
terminating behaviour of systems.

Let � be in �	*, � be a variable ranging over a set of variables + �(�. Formulas are
generated by the following grammar:

� ��� � � � � % �
� � �� � �� � �� � �� � ���� � $�%� � ��
� � ,�
�

We consider the usual definitions of bound and free variables. There is a syntactic re-
striction on the formulas ��
'��� and ,�
'���, namely the variable � must be under
the scope of an even number of negations (
). This restriction is due to the fact that the
interpretation of a closed formula � w.r.t. an LTS � is the set of states where � is true. In
particular the interpretation of a formula '��� with a free variable � is a function from
set of states to set of states. Hence the interpretation of ��
'��� (,�
'���) is the least
(greatest) fixpoint of this function. The syntactic restriction ensures that the interpretation
of a formula with free variables, is indeed a monotonic function and so a least (greatest)
fixpoint exists.

Formally, given an ��� � � ��� �� �

���
��� the semantics of a formula � is a

subset $$�%%� of the states of �, defined as below, where - is a function (called environ-
ment) from free variables of � to subsets of the states of �. The environment -$� ��
�%�. � is equal to -�. � if . �� � , otherwise -$� ���%��� � � �.

1.5. MODAL ��CALCULUS 21

$$� %%� � �
$$% %%� � �
$$�%%� � -���
$$
�%%� � ��$$�%%�

$$�� � ��%%� � $$��%%� � $$��%%�
$$�� � ��%%� � $$��%%� � $$��%%�
$$����%%� � ������ � �

�� ��
�� �� � $$�%%��

$$$�%�%%� � ���	�� � �

�� �� ������� �� � $$�%%��

$$��
�%%� �
�
�� ��$$�%%����
�� � � ��

$$,�
�%%� �
�
�� ��� � � $$�%%����
���

Given a model (LTS) � � ��� �� �

���
���, we write �� � �� � as notation for

� � $$�%%� when the environment - is evident from the context or � is a closed formula (i.e.
without free variables). Actually we have presented a slight variant of the propositional
��calculus as described by Kozen ([49]) or Walukiewicz ([104]). In our treatment, we
omit propositional symbols. As usual we consider ' �� / as an abbreviation for
'�/.

1.5.1 Examples and facts

Modal ��calculus allows to express a lot of interesting properties like safety properties
(i.e., nothing bad happens) as well as progress properties (i.e., something good happens).
Moreover equivalence conditions over LTSs may be expressed through this logic (see
[4, 91]).

Safety properties are usually defined by means of greatest fixpoint formulas, while
progress properties by least fixpoint formulas.

An example of safety property is the absence of deadlocks in the system, i.e. in any
state reachable from the initial one there is always the possibility to perform an action.
A ��calculus formula that expresses this property is ,�
$�	*%� � ��	*�� 1. Another
interesting formula is ,�
$0%� � $�	*�0%% which expresses the fact that only actions
in K can be performed by a process in any reachable state.

A progress property like “there exists a path for a state which satisfies �” is expressed
by ��
��	*�� � � (see figure 1.5 for a graphical interpretation of a similar property).
Figure 1.6 represents graphically an interpretation of the formula ��
$�%� � ����, that
expresses that a state where � can be performed is always reached by traversing arcs
labeled by �.

Modal ��calculus can express cyclic properties, e.g. “there exists an infinite path
such that the formula � is true at all even instants”. The ��calculus formula which
expresses the aforementioned property is the following:

,�
���	*���	*�� � ��

1We use an extended notation, with � � ��� let ���� be
�
��� ����, and ���� be

�
�������. Since

��� is finite the indexed disjunctions (conjunctions) can be expressed by means of disjunction (conjunction).

22 CHAPTER 1. TEMPORAL LOGICS

�

�

�

�

ba
a

a

a a

Figure 1.5: The crossed states satisfy ����. The root of the computation tree satisfies
��
���� � ����.

�

�

�

�

a

a

a

a
a

a

a

a

a

a

a

a

a

b

bb

b

b

b

a

a

a

a
a

Figure 1.6: The crossed states satisfy ����. The root of the computation tree satisfies
��
$�%� � ����.

1.6. DETERMINISTIC ��CALCULUS 23

The following lemma states some well known facts about ��calculus (see [21]) that
will be used later in the chapter.

Lemma 1.1 Let � be a ��calculus formula, - an environment and 1 � ��� ,�.

1. if � is not free in � then $$1�
�%%� � $$�%%�.

2. Let . be a variable that does not appear free in 1�
�.
Then $$1�
�%%� � $$1.
�$.��%%%�.

3. Let � be a formula, then $$�$���%%%� � $$�%%��������
��.

4. $$1�
�%%� � $$�$1�
���%%%�.

Modal ��calculus subsumes several temporal logics such as ���, ��� and ����

(see [10, 22]). But, despite its expressiveness, the satisfiability problem (namely finding
a structure and a state where the formula holds) still remains EXPTIME-complete (see
[94]).

Moreover ��calculus enjoys the finite model property, i.e. if a closed formula is
satisfiable then there exists a finite model (a finite state process) for that formula (see
[94]).

A finitary axiom system has been proposed by Walukiewicz in [103, 105].

1.6 Deterministic ��calculus

In the remainder of this thesis we are interested in studying validity problems with respect
to specific classes of LTS. In particular, we consider the class of ��deterministic LTS
(A–det, for short), where � is a set of actions. Roughly, for ��deterministic LTS, the
relations

��
�� are actually functions. We parameterize this class by means of a set of
actions, since this permits us to have a more flexible theory. For example, in chapter 5
we are interested in the investigations of LTS that are deterministic only with respect to a
specific action. Let us see formally the definition of these classes.

Definition 1.4 An LTS L=��� �	*� �

���
����� is called �–deterministic (� � �	*) iff

	� � � 	� � � if �

�� �� and �

�� ��� then �� � ���.

The formulas of deterministic ��calculus are interpreted over �–deterministic LTS.
In the remainder of this section we present a slight modification of the deductive system
for the ��calculus proposed by Walukiewicz in [104], for dealing with formulas inter-
preted over �–det structures.

Walukiewicz’s proof system for modal ��calculus is based on a sequent calculus.
A sequent is a couple of sets of formulas, written (�), that should be logically in-
tended as

�
��� 2 ��

�
Æ�� Æ (i.e. the conjunction of premises implies the disjunction

24 CHAPTER 1. TEMPORAL LOGICS

of consequences). Let us suppose to have � � �	*, hence �� ��' is an abbreviation for
��
�� �� � ', and �� ��) � ��� ��Æ � Æ �)�.

The proof system �� consists of the following set of axioms and rules:
Axioms:

���
' � $�%' '�(� '�)
$�%
' � ���'

,�
'��� �
��

'�
�� ��
'��� �
,�

'�
��

Rules:

�
�
(� '�)

(�
' �)

(� ' �)

(�
'�)

���
'� /�(�)

' � /�(�)

(� '�) (� /�)

(� ' � /�)

���
'�(�) /�(�)

' � /�(�)

(� '� /�)

(� ' � /�)

�������
'� �' � ���' � (� � �/ � $�%/ � (� � �2 � ���2 �)�

���'�(�)

��������
'� �/ � $�%/ � (� � �2 � ���2 �)�

���'�(�)

�	"*�
(�)� ' �� ' � *

(�� �)�*

���
(� '���
'�����)

(� ��
'����)

�)3�
��% � �) ��'���
4 � '����� �)� �� �����
4 � '����

����
'���� � �� ��)

where 4 �� %+ �����
'�����)�

The only difference with the system proposed in [105] is the rule ��� � �. We have
inserted this rule for reflecting the fact that if � � � then ����� ����� �� ������ ���, is
valid over ��det structures.

A proof for a sequent (�) is a finite tree, whose root is labeled by (�), con-
structed by using the above rules, where leaves are labeled with axioms.

The induction rule (ind) is quite cumbersome. Walukiewicz needs this rule for show-
ing the completeness of his finitary axiomatization. Alternatively, one could use the more
intuitive rule suggested by Kozen:

'��� � �

��
'��� � �

The next proposition states the soundness of the proposed axiomatization for deter-
ministic ��calculus.

1.6. DETERMINISTIC ��CALCULUS 25

Proposition 1.1 All the rules of the proof system �
� are sound and the axioms are valid,

w.r.t. �–deterministic Labeled Transition Systems.

Proof: For rules and axioms, excepted ���� � ��, it follows from theorem 3.1.3 of [104]
over general structures. Let us study the rule ���� � ��.

By contradiction. We assume that the premise of the rule ���� � �� is valid and we
suppose that the conclusion is not valid. Thus there exists a structure� � ��� �	*� �

��

�
����� and a state � � � such that for all 2 � (� ����'� �� � �� 2, and for no Æ �)
we have�� � �� Æ.

First we note that�� � �� ���'. Hence it follows that there exists an ��successor of
�, say �� such that�� �� �� ' and for every formula 2� s.t. $�%2 � � (we have�� �� �� 2�.
Since the structure � is ���–deterministic then for every ���2 � � (if �� � �� ���2�

then �� �� �� 2�. By the hypothesis on the premise of the rule (��� � �), it follows that
there exists Æ� s.t. ���Æ� �) and �� �� �� Æ� (see the rule ���� � ��). This leads to a
contradiction since in this case�� � �� ���Æ � with ���Æ� �). �

We have proposed a slight variant of Walukiewicz’s axiomatization. With this modifi-
cation all the results in [75] may be restated also for deterministic ��calculus. Since these
results represent steps forward to the proof of the completeness of Walukiewicz’s axiom-
atization, we hope that the variant of the axiomatization we propose is also complete for
deterministic ��calculus. To our knowledge this problem is not yet solved. However
we leave the proof of the completeness of our axiomatization as a future work. In fact in
this thesis we use deterministic ��calculus as a technical tool and indeed we are more
involved with decidability results of the satisfiability (validity) problem for deterministic
��calculus, that fortunately can be obtained by means of standard arguments.

We recall the definition of a particular set of formulas, namely the positive guarded
ones.

Definition 1.5 A formula ' is called positive iff the only negations which occur in '
are applied to � of �. A variable � in ��
���� (or ,�
����) is guarded iff every
occurrence of � in '��� is in the scope of some modality operator ��� $%. We say that a
formula is guarded iff every bound variable in a formula is guarded.

The next proposition states that we do not loose in generality by restricting our atten-
tion to positive guarded formulas.

Proposition 1.2 (Kozen) Every formula ' is equivalent of a positive guarded formula.

The following result can be proved by putting together standard results for decision
procedures for mu-calculi (see [29, 93, 94, 95]).

Theorem 1.1 Given a positive guarded formula 2 it is possible to decide in deterministic
exponential time in the length of 2 if there exists an �–3�* structure which is a model of
2.

26 CHAPTER 1. TEMPORAL LOGICS

1.7 Variants of the modal ��calculus

In this section we show slight different versions of the modal ��calculus. These vari-
ants have been exploited by many authors (see [5, 10, 55, 92]) because of their technical
convenience. In particular these variants allow the sharing of subexpressions, hence the
formula which specifies the property can be more concise. For example, in [102] it is
given a linear translation from ��� to simultaneous ��calculus, while the translation
from ��� to modal ��calculus is exponential on the length of the formula. Usually,
these variants are used as specification languages in model checking problems.

Bhat and Cleaveland have given a number of translations for several temporal logics
(���� ���� and �����) into an equational variant of ��calculus (see [10]).

In particular we will use these logics in chapters 2,3 and 5.

1.7.1 Simultaneous fixpoint ��calculus

The first variant is the simultaneous fixpoint ��calculus (see [102]) that permits us to
reason directly about mutual recursive definitions. Semantically the two formulations
are equivalent, namely for every formula of the first language there is a semantically
equivalent formula of the second and vice versa. The key point is that the translation from
simultaneous to modal ��calculus is exponential in the length of the formula while there
is a linear translation from modal to simultaneous ��calculus (see [4]).

The set of �� of simultaneous fixpoint ��calculus formulas is defined by the follow-
ing grammar:

� ��� � � � � % �
� � �� � �� � �� � �� � ���� � $�%� � �� 5�
 5��� � �, 5�
 5���

where 5� is a vector of variables, and 5� is a vector of formulas. There is always the
syntactic condition on the nesting of negations of variables.

The only difference w.r.t. modal ��calculus is the interpretation of fixpoint formulas.
A vector 5� of formulas of dimension � with free variables 5� can be seen as a monotonic
function from !���� to !���� and the �� 5�
 5��� represents the � *# component of the
minimal fix point of this function that must exist by Tarski-Knaster theorem (see [97]).

In [94] the authors claim that their solution to the decidability problem for modal
��calculus leads to the same results for the simultaneous one, by pushing forward the
results of [102] where Vardi presents a decidability result for a limited class of formulas,
similar to the disjunctive ones of Walukiewicz (see [46]).

1.7.2 Equational ��calculus

Another variant of the modal ��calculus that permits the sharing of subterms is the equa-
tional one, is given by to Andersen (see [4, 5]). Let � be in �	* and � be a variable
ranging over a finite set of variables + �(�. Equational ��calculus is based on fixpoint
equations that substitute recursion operators. A minimal (maximal) fixpoint equation is

1.7. VARIANTS OF THE MODAL ��CALCULUS 27

� �� � (� �� �), where � is an assertion, i.e. a simple modal formula without recur-
sion operators. The syntax of the assertions (�) and of the lists of (�) equations is given
by the following grammar:

� ��� � � � � % � �� � �� � �� � �� � ���� � $�%�
� ��� � �� � � �� �� � � � 6

It is assumed that variables appear only once on the left-hand sides of the equations
of the list, the set of these variables will be denoted as ��7���. Since every equation
may be seen as a definition of a variable, the lists of equations are also called definition
lists. Let ��� �� �

���
��� be an LTS, - be an environment that assigns subsets of � to

the variables that appear in the assertions of �, but which are not in ��7���.
The semantics of the assertions is equal to the semantics of corresponding modal

��calculus formulas. The semantics of a list of equations �� $$�%%�
2 is an environment

that assigns subsets of � to variables in ��7���. A list of equations is closed if every
variable that appears in the assertions of the list is in ��7���. We use" to represent union
of disjoint environments. Let 1 be in ��� ,�, then 18
7�8� represents the 1 fixpoint of
the function 7 in one variable 8 . With the notation � # � , where � is the first variable
of the closed list �, we means $$�%%���.

$$6%%� � $%
$$� �� ���%%� � $$��%%���� ���� " $8

���%
!��"�

8 � � 18
$$�%%	����
�����	�

-��8� � $$��%%	����
��

It informally says that the solution to �� �� ��� is the 1 fixpoint solution 8 � of $$�%%
where the solution to the rest of the list of equations � is used as environment.

1.7.3 Another semantics for the equational ��calculus

Sometimes it is convenient to assume a slight different semantics for definition lists, based
on the notion of block, i.e. a list of equations with the same fixpoint operator. A definition
list � can be partitioned in a list !�

 !� of blocks. Now the semantics $$!%%�� of a block
! � ��� �� ���

 � �� �� ��� can be seen as the minimal (1 � �) or maximal
(1 � ,) fixpoint of a function +, i.e.:

$$!%%������ � 9��1+� � ���

 �)�

where

+�8��

 � 8�� � �$$��%%�����
��	���	��
����

 � $$��%%�����
��	���	��
����

2There is an overloading of the symbol �� �� used as semantic interpretation function for both formulas
and lists of equations.

28 CHAPTER 1. TEMPORAL LOGICS

and 9� is a projection on the � *# component of a vector. By the semantics of the
assertions, if follows that + is monotonic and hence a 1 fixpoint exists. Moreover + may
be seen as a function that given an environment which defines the variables in ��7���
returns an environment with defines the same variables, hence the semantics of a block
may be considered as the 1 fixpoint of a function from environments to environments.
Given a block ! � ��� �� ���

 � �� �� ��� we call 5����!� the vector of variables
$���

 � ��% and 5	���!� the vector of assertions $���

 � ��%. Now we can define the
semantics of a vector of assertions in the following way $$ 5�%%�� � �$$��%%��

 � $$��%%��. With

abuse of notation we write � � 5����!� if the variable � appears among the variables in
5����!�. For a list of blocks the semantics is defined similarly as for list of equations3:

$$6%%�� � $%

$$!�� !%%
�
� � $58 �� 5����!��% " $$!%%

�
����� �
 ����	��
�

!��"�
58 � � 158
$$ 5	���!��%%

�
	�����
 ����	��
����	��

-��58� � $$!%%�
	�����
 ����	��
�

The following theorem can be used to show that the simultaneous fixed point operators
do not increase the expressive power of the ��calculus (see [4, 7] for a full account of
the theorem).

Theorem 1.2 (!�� ,	’s theorem) Let D and E be two complete lattices, and 7 � ��� ��
� and : � � � � �� � monotonic functions, then:

���� ;�
�7��� ;�� :��� ;�� � ���
7��� �;
:��� ;��� �;
:���
7��� ;�� ;��

Given a definition list � � ��� ��� ���

 � �� ��� ���

 � �� ��� ���

 � �� ���
���, with ��	� we indicate the list ��� ��� ���

 � �� ��� ���.

The two semantics agree for a definition list which can be seen as a single block (see
[21]).

Lemma 1.2 Given a definition list � � ��� �� ���

 � �� �� ��� and an environment
- then:

$$�%%� � $$�%%
�
�

Furthermore, it is possible to prove:

3There is an overloading of the symbol �� �� � used as semantic interpretation function for both vectors of
assertions and lists of blocks.

1.7. VARIANTS OF THE MODAL ��CALCULUS 29

Lemma 1.3 Given a definition list � � �!��

 � !��, where !� � ���

 � <� are
blocks, then for every environment - we have:

$$�%%� � $$�%%
�
�

Proof: By induction on the length of the list �.

 � � �� �. Trivial,

 � � ��). By induction on � ���

 �)�.

– � �. Suppose that !� is equal to ��� ��� ��� !
�
��, with ! �

� � ��� ���
���

��� ��� ����. The case where �!�� � � is immediate. Now we have
$$�%%����� � 1�8�
$$��%%�����
������	��
, where -��8�� � $$��	�%%�����
���. Thus
we can consider the list � as a list of blocks, and �� belongs to ����!��, hence
we have:

$$�%%������ � 9��1�
58
$$ 5	���!��%%

�
��
�

where -� � - " $58� 5�% " -��58�� -��58� � $$!��

 � !�%%
�
�����
 ���

, and 5����!�� �

5� . By applying the !�� ,	’s theorem for binary fixpoints to 1�
58
$$ 5	���!��%%

�
��

we get that:
$$�%%������ � 1�8�
$$��%%�����
 ������	��

where:

�� �

�
9��1�8�

 8��
$$

5	���!�
��%%

�
��� � ���

 � ���

8� � �

Now we prove the following equality for every 8�, from which the thesis
follows:

- " $8����% " -��8�� � - " $5�� 5�% " -��5�� (1.1)

For the variables defined in - and for �� the above equality is true. Note that
for each variable �� with ����

 ���, we have ���$$!

�
��

 � !�%%

�
�����
���

����
by the definition of the semantics of the list of blocks. Since by inductive hy-
pothesis on) we know:

$$!�
��

 � !�%%

�
�����
���

� $$��	�%%�����
��� (1.2)

it follows that for every variable �� with � ���

 ��� the equality 1.1 holds.
Now consider a variable . in ��7�!��

 � !��. Then we have -��5���. � �
$$!��

 � !�%%

�
�����
���. �. Now we have:

$$!��

 � !�%%
�
�����
 ���

�. � � -' ����#��
�
�)

$$!��

 � !�%%�����
 ����. � � �"
� �
� �
" &
"�
-������ � ���

 � ���

$$!�
��

 � !�%%�����
����. �

30 CHAPTER 1. TEMPORAL LOGICS

from which follows that the equality 1.1 is true.

– � � �. Without loss of generality we can suppose that �� is the first variable
in 5����!�� for a block !� . Otherwise one can apply the !�� ,	’s theorem in
the appropriate way. Then there is a proof analogous to the one above, in
particular by noticing that by inductive hypothesis we have for every -�:

$$!��

 � !�	�%%
�
�� � $$��	�� %%��

�

A translation from equational ��calculus to modal ��calculus

In this section we give a translation from equational to modal ��calculus. Given a list of
equations � with) equations, the translation is the following:

*(���	�� � 1���
��

*(���	�� � *(���		�	�
$1���
�����%�

where �$1�
���% is the list � where every occurrence of � is replaced by 1�
� (we as-
sume that the list of equations are well named). In the following lemma, - is supposed not
to be defined for variables in ��7���. Moreover the semantics of equational ��calculus
must be consistently updated to deal with fixpoints in the assertions. A similar lemma is
stated in [4].

Lemma 1.4 For every variable � � ��7���		�	�
�, and for every environment - we get:

�$$��	�%%����� � �$$��		�	�
$1���
�����%%%�����

Given a closed definition list �, then by applying) � � times the above lemma we
can prove that � # �� � �$$��	�%%����� � $$*(���	��%%.

Chapter 2

Structural operational semantics and
partial evaluation

In this chapter we introduce a formal method for giving (operational) semantics to pro-
grams, namely Structural Operational Semantics (SOS, for short) proposed by Plotkin
(see [79]). This method has a logical flavor and permits to reason compositionally about
the behaviour of programs. As example language, whose semantics is defined in a SOS
style, we present the Calculus of Communicating Systems (CCS, for short [69, 70]). This
language belongs to the family of process algebras ([43, 44]), i.e. formalisms for the de-
scription of concurrent communicating processes. This kind of languages and the systems
they allow to describe will be used later in this thesis. Furthermore we rephrase the com-
positional analysis techniques proposed in [4, 5, 55] for languages described in a �=�
style.

2.1 Structural Operational Semantics

The method we are going to present is based on the notion of (Labeled) Transition Sys-
tem. The states of the transition system are the elements of some formal language. The
main notion is the transition between states, i.e. �

�� ��, which expresses the fact that

the system � has performed a step of an activity, identified by an action or label �, by
reaching a state ��. In general, transitions between terms can be inferred through a set of
(conditional) rules, based on the syntax of the language. The transition �

�� �� can be

derived by inspecting the transitional behaviour of subcomponents of �. In the wide range
of formats for SOS rules the general structure is the following:

�"������

#
�#����
��

where premises and conclusions are properties expressed on transitions of open terms
of the language. The semantics of terms can be inferred by the semantics of the sub-
terms. Many important facts about programming languages, whose operational semantics

32 CHAPTER 2. SOS AND PARTIAL EVALUATION

is given in terms of SOS rules, can be deduced simply by inspecting the format of these
rules. For example, it is possible to ensure that an equivalence relation among closed
terms is indeed a congruence w.r.t. the operators of the language (see [12]). Moreover a
lot of work has been carried out in order to automatically derive from SOS specifications
for (concurrent) programming languages complete equational theories (see [3]). In this
chapter we show how to apply compositional reasoning techniques for a generic language
defined by a system of SOS rules.

2.1.1 Preliminaries

Let + be a countable set of variables, ranged over by �� ;

, possibly subscripted. Let
�	* be a finite set of actions, ranged over by �� �� 	

, possibly subscripted.

Definition 2.1 A signature � is a pair �%� �(�, where:

 % is a set of function symbols, disjoint from + ,

 �(� % $� � is a rank function which gives the arity of a function symbol; if 7 � %
and �(�7� � � then 7 is called a constant symbol.

Definition 2.2 Let� be a signature. Let � � + be a set of variables. The set of��terms
over � , with notation � ��� � �, is the least set satisfying:

 � � � ��� � �,

 if 7 � % and *��

� *
�	�
 � � ��� � �, then 7�*��

� *
�	�
� � � ��� � �.

When � � �, � ��� �� is abbreviated by � ��� and � ��� + � is abbreviated by
���;
elements from � ��� �� are called closed or ground terms, elements from
��� are called
open terms.

Definition 2.3 Given a signature � � �%� �(�, an assignment is a function 2 from + to
� ���. An assignment 2 induces straightforwardly a mapping from terms to � ���:

2�7�*��

 � *
�	�
�� � 7�2�*���

 � 2�*
�	�
��

Given a term *, let + �(��*� (�>�(��*�) be the set (multiset) of variables in *. A term
* is closed if + �(��*� � �.

De Simone’s Format

Perhaps the first who has clearly identified the notion of format is De Simone in [89]. A
rule in the De Simone’s format is as follows:

���

��� ;�����

7����

 � ���

�� *

(2.1)

where:

2.1. STRUCTURAL OPERATIONAL SEMANTICS 33

 7 � %� �(�7� � � and ? � ���

 � ��,

 ���

 � �� and ;� for � ? are distinct variables,

 moreover, if we define the variables ��� � ;� if � ? and ��� � �� otherwise, then
each variable ��� occurs almost once in * and + �(��*� � �����

 � �

�
��.

Now we give the way of calculating whenever a closed term * can perform a transition
*

�� *�.

Definition 2.4 Let be a set of rules in De Simone’s format. A proof for a transition
*

�� *� is a well founded upward branching tree, whose nodes are labeled by transitions

*�

�
�� *�� s.t.:

 the root is labeled with *

�� *�,

 if *�

�
�� *�� is the label of a node � and @� for � ? is the set of labels of nodes

directly above � then there is a rule in :

���

��� ;�����

7����

 � ���

�� *���

(2.2)

and an assignment 2 s.t. 2����

��� 2�;�� � @� for all � ? and 2�7����

 � ����

��

2�*���� � *�

�
�� *��.

A simple language

Let us give a simple language defined by means of rules in the above format, which
permits us to describe finite labeled trees. The signature is composed by a constant �,
the choice operator with arity 2 (we use the infix notation), and a finite set of prefix
operators �
 where � � �	* and �	* is a finite set of actions. For every prefix operator �

there is an axiom, i.e. a rule without premises:

�
�

�� �

�

�

and moreover we have two more rules for the choice operator (for each � � �	*):

�

�� ��

� ;

�� ��

� �
�
;

�� ;�

� ;

�� ;�

� �
�

There are no rules for � since it represents a process that cannot perform any action
(terminated or deadlocked process). The following is a simple proof for the transition
��
	
� �� �
�

�� 	
�.

�
	
�

�� 	
�

 �

��
	
� ��

�� 	
�

 �

��
	
� �� �
�

�� 	
�

34 CHAPTER 2. SOS AND PARTIAL EVALUATION

GSOS Format

We recall the definition of �	��
�=� or GSOS format of Bloom et al. in [3, 12, 13], by
following the treatment proposed by Simpson in [90].

A A�=� rule (has the following format:

���

��
�� ;���

�
�
�
�
�
��

��� �
���
����
�
��
�
��

7����

 � ���
�
�� :�5�� 5;�

(2.3)

where all variables are distinct; 5� and 5; are the vectors of all �� and ;�� variables re-
spectively; B��)� % � and � is the arity of 7 . We say that 7 is the operator of the rule
(C
�(� � 7) and 	 is the action. A GSOS system & is given by a signature and a finite set
of GSOS rules.

Given a signature � � �%� �(�, an assignment 2 is effective for a term 7����

 � ���
and a rule (1 if:

1. 2���� � �� for � ' ' �;

2. for all � � with � ' ' � and � ' � ' B�, it holds that 2����

��
�� 2�;���;

3. for all � � with � ' ' � and � ' � ')�, it holds that 2���� �
���
��.

The transition relation among closed terms can be defined in the following way: we
have 7����

 � ���

�
�� � if and only if there exists an effective assignment 2 for a rule (

with operator 7 and action 	 such that:

� � 2�:�5�� 5;��

Bloom et al. in [13] proved that there exists a unique transition relation induced by a
GSOS system. Moreover another interesting peculiarity of this transition relation is that it
is finitely branching, namely for every closed term � we have ��� � �� � �	* �

�� ���

is finite.
Given a rule (in the GSOS format we call �C"(��(� � ��� � � ' ' ��, *�(:�*�(� �

:�5�� 5;�. For every rule (and for every variable �� in �C"(��(� let �C��(� ��� be ���� �
� ' � ' B�� and ��:�(� ��� be ���� � � ' � ')��. For every rule (and for every
variable �� in �C"(��(� let �"		�(� ��� be �;�� � � ' � ' B��.

2.2 Process Algebras

In this section we briefly recall CCS (or Calculus of Communicating Systems) of Milner,
a language defined in the SOS style for describing concurrent systems. This formalism is
called process algebra since it has a mathematical and algebraic flavor.

1In the rest of this chapter when we refer to a generic rule �, we consider it in the format in 2.3.

2.2. PROCESS ALGEBRAS 35

Rather than actual programming languages, process algebras are specification for-
malisms for system that have to cooperate and communicate to perform complex tasks
and computations in different settings and in different contexts. The universe of inter-
est is modeled by assuming the notion of processes that autonomously and concurrently
can proceed in their computation but which have also the possibility to communicate
and synchronize among themselves. Process algebra formalisms are built from the basic
operations of this framework. The processes can perform actions (which may represent
computation steps).

Let us see the CCS process algebra2. The main operator is the parallel composition
between processes, namely
��. The intuition is that the parallel composition of two
processes performs an action whenever anyone of the two processes performs an action.
Moreover, processes can communicate. The notion of communication considered is a
synchronous one, namely both the processes must agree on performing the communica-
tion at the same time. In CCS the communication between two processes composed in
parallel is modeled by a simultaneous performing of complementary actions. This event
is represented by a synchronization action (or internal action) D .

The complementary actions can be seen as ��)3): and (�	� >): activities on the
same channel.

The signature of CCS is defined as follows. Given a finite set of actions �, the set of
complementary actions � is �� � � � �� where 	 is a bijection with � � �. Let �	*
be � � � � �D�, where D is a special action that denotes an internal computation step (or
communication). . is a set of constant symbols that can be used to define processes with
recursion.

% � � ��� � �����
 � � � �	*����� � � � ������$7 % � 7 � ��� $� �����.

We have �(��� � � and for every 9 � . we have �(�9� � �. The symbols � and
 denote binary operators and we will use the infix notation for them. The symbol �

denotes a unary operator and we use the prefix notation for it. The $7 % and �� symbols
denote unary operators and we use the postfix notation for them. Let ���! be �% �� �(�.
The operational semantics of the CCS closed terms is given by means of the GSOS system
in figure 2.1, where for every action � � �	* we have the rules

�

�

�

�

� �

�

� �

�

; for every

subset � of � � � and for every action � not in � � � we have a rule (��
	"; for every
function 7 � � � � $� � � � and action �� s.t. �� � 7��� we have a rule (�<
	� . Moreover
for every action < � � � � we have a 	CB� rule.

Informally a (closed) term �

 represents a process that performs an action � and then
behaves as
.

The term
 � represents the non deterministic choice between the processes
 and �.
After the choice has been resolved, by choosing the action of one of the two components,
the other is dropped.

2Actually we present a slight different formulation of Milner’s CCS, since we deal with the restrictions
of GSOS format. In particular we do not assume an infinitary choice operator and we have only a finite set
of actions. Moreover instead of a recursion construct like �	�
�� we assume an infinite set of constants.

36 CHAPTER 2. SOS AND PARTIAL EVALUATION

�

�

�

�

�
�

�� �

�

�

�

�� ��

� ;

�� ��

� �
�
;

�� ;�

� ;

�� ;�

� �
�

�

�� ��

��;

�� ���;

���
�
;

�� ;�

��;

�� ��;�

���
�

�
�
�� �� ;

�
�� ;�

��;
#
�� ���;�

�	CB��

�

�� ��

���

�� ����

�(��
	"�
�

�� ��

�$7 %

�
�� ��$7 %

�(�<
	� �

Figure 2.1: GSOS system for CCS.

The term
�� represents the parallel composition of the two processes
 and �. The
rules ��
 and ��
 show that the compound term
�� can perform an action if one of the
two can perform an action, and this does not prevent the capabilities of the other pro-
cess. The rule 	CB is characteristic of this calculus, it expresses that the communication
between processes happens whenever both can perform complementary actions. The re-
sulting process is given by the parallel composition of the successors of each component,
respectively.

The process
�� behaves like
 but the actions in � � � are forbidden. To force a
synchronization on an action between parallel processes, we have to use the restriction
operator in conjunction with the parallel one.

The process
$7 % behaves like
 but the actions are renamed via 7 .

Examples

Some examples follow of systems described in ���. As a first simple example we show
how to serialize the activity of two processes that run concurrently. Since in general the
� operator does not impose a precedence among the activities of processes, i.e. if
 can
perform an action � and � can perform and action � then their parallel composition can
perform both the � and � actions. We need some way to synchronize the two activi-
ties. Suppose we want to give precedence to the first process. After the first process has
performed its activity (modeled by an execution of an action �) then a complementary
action is performed, namely �*�(*. The other process, before starting its activity (say �)
waits for a complementary action of �*�(*. To force the synchronization on this action
we prevent the whole process to perform �*�(* actions. Let us review this small system

2.2. PROCESS ALGEBRAS 37

��
�*�(*
���*�(*
�
�����*�(*�. Its behaviour is described by the following LTS:

��
��

�
��

	!�
�����!�
������
��!�
���

	
�!�
�����!�
������
��!�
���

	�����
��!�
���

	���
��!�
���

#

�

By following [39] we treat recursion by considering an infinite set of constant symbols
.. Every constant must be equipped with a constant definition, say �9 �

� *$ � 9 � .� * �
� �� ���. If 9

�
� * is a definition of constant then this means that the behaviour of the

process 9 is given by the behaviour of its body *$ (it is worthwhile noticing that the body
can contain other constant symbols). Formally this is expressed by adding the following
rule:

*$

�� *�

9

�� *�

Now suppose that we want to model a system where a user sends a file for printing to a
spooler, which in turn chooses the printer that will actually do this job and returns this
information to the user. We have four agents, the user represented by a constant 8 , the
spooler � and the two printers, say �� and ��. Let us see their ��� specifications:

8
�
� �(�
�():
��)3�
CC<�(
��()*�3�
8� �()*�3�
8��

�
�
� ��)3�
CC<�(
���)3�()*�(�
%) �#�3
�()*�3�
�

��)3�()*�(�
%) �#�3
�()*�3�
��

��
�
� ��)3�()*�(�
� ()*):�
%) �#�3
��

��
�
� ��)3�()*�(�
� ()*):�
%) �#�3
��

where 8� and 8� are the continuations of the process User, after it has received the infor-
mation about the Printer actually used. The system consists of the parallel composition
of the four elements, with the restriction on the communication actions. We can observe
that the set of actions:

�� � ���)3�()*�(�� ��)3�()*�(�� %) �#�3�

regards only communications between the Spooler and the printers, while ��)3�
CC<�(�
� ()*�3�� � ()*�3� are communication actions between the User and the Spooler. So
the system may be modeled in the following way:

�;� � �8�������������
�������)3�
CC<�(� � ()*�3�� � ()*�3��

The behaviour of the composed system, determined by the GSOS system, is represented
in figure 2.2. In the figure we have omitted the terms of the transition system, for example

38 CHAPTER 2. SOS AND PARTIAL EVALUATION

��
�� ��

����

�
�
�

� �
�

�

�

�
��

�
��

�

�%!
���&
���'

#

##

�������'� �������'�

2

3

6 7

4 5

8 9

11

#

##

10

Figure 2.2: The LTS of the process �;�, for sake of simplicity we have named only the
interesting states of the LTS.

the term relative to the state labeled with 4 is:

���()*�3�
8� �()*�3�
8�����%) �#�3
�()*�3�
��
��()*):�
%) �#�3
���������������)3�
CC<�(� � ()*�3�� � ()*�3��

while the term of the state 10 is:

�8���������������
������)3�
CC<�(� � ()*�3�� � ()*�3��

Auxiliary transition relations

Let us define some auxiliary transition relations, that will be used in the next sections.

Definition 2.5 Let * � ��

 �� � �	*� and � � �	* � �D�. Then

�
���

���

���

#
���

#
��

�

���

#
��

��

#
��

��� �
����

��

Given a process
 let ��(�
� � �� �
 ��� �� be the set of its derivatives. A process

 is said finite-state if ��(�
� is finite.

2.2.1 Equivalences

In general, it is interesting to study when two processes (terms) can be considered equiva-
lent, by abstracting from irrelevant aspects. The consideration of relevant aspects, mainly
depends on which way the process is used. Due to the huge number of different settings

2.2. PROCESS ALGEBRAS 39

that arise in the analysis of concurrent systems, not surprisingly, many different theories
of equivalence have been proposed in literature.

Labeled Transition Systems are used as models for reactive systems, hence we have
to consider not the internal state of the system but the behavioural capacity to react with
the outside world. Even though there is a general agreement on the behavioral nature
of equivalence, it is not always reasonable to take into account the same aspects as the
relevant ones. For example, it is commonly accepted that the two terms �
� and �
� �
�
(where � is constant process that does nothing and is the CCS choice operator) should
be regarded as equivalent, since both can perform an � action and then idle forever. But
some researchers have argued that in same specific situation they should be considered
different. In fact if we take into account the availability of resources in fault tolerant sys-
tems, we could consider the first process less “robust” than the other since it has only
one possible resource to perform the � action, while the second seems to have two re-
sources. Hence, it is important to identify which properties of the system must be an-
alyzed, and which properties are preserved by a certain equivalence notion. Here, we
briefly introduce some well known equivalences among processes (for a deeper discus-
sion see [13, 23, 24, 100]). A first attempt to give a reasonable notion of equivalence that
fits the general case may be the following:

 and � are trace equivalent iff 	* � �	*� we have

�
���� �

�
��.

This equivalence, even though rather intuitive, is not completely satisfactory from
several points of view. Concurrent systems may present deadlocks, i.e. the system cannot
proceed and cannot perform its task. The above equivalence does not take into account
deadlocks, i.e. the following terms are considered equivalent: �
� �
�
� and �
�
�. The
first can perform an � action and then reaches a deadlocked configuration, while the other
one cannot perform an � action by reaching a deadlock state.

Another negative consideration about trace equivalence is that it does not take in ac-
count the branching structure of the processes. In fact the following processes are trace
equivalent: �
�
� �
	
� and �
��
� 	
��. Their associated LTSs are presented in figure
2.3. The first process “chooses” to perform a � or 	 action at the beginning of its compu-
tation, while the latter after performing an � action; if this action can influence the choice
of the following behaviour of the process then it is reasonable to consider that the second
process has a more decisional power.

A possible solution is to imagine a game-like equivalence such as:

 and � are equivalent iff if

��
� then �

�� �� and
� and �� are equivalent

and vice versa.

More formally we can define the notion of strong bisimulation by following Park (see
[76]).

Definition 2.6 A relation (between states of an LTS � � ��� �� �

���
��� is a strong

bisimulation if for each �
� �� � (and for each � � �:

40 CHAPTER 2. SOS AND PARTIAL EVALUATION

� �
� � �

��
�

� � �
� �� �

�

�
��

�
�� �

��

�
�

��

�
��

�
��

�
��

� �

(�

a a a

b

&�

&� (�

a

b c

a a

b c

b

Figure 2.3: Example of trace equivalent processes.

if

��
� then there exists �� � �

�� �� and �
�� ��� � (

if �

�� �� then there exists
� �

��
� and �
�� ��� � (

Two processes
 and � are strong bisimilar if there exists a strong bisimulation (
s .t. �
� �� � (. The maximal strong bisimulation is) which is the union of every
strong bisimulation. It is easy to check that this relation is still a strong bisimulation and
moreover is reflexive, symmetric and transitive.

From the definition, it appears clear that the processes
� and �� are not strong bisim-
ilar. Analogously the processes
� and �� are not strong bisimilar. In fact �� after an �
action can reach a state where both � and 	 actions can be performed, while
�, after per-
forming an � action, can be in a state where � can be performed (but not) or else in a
state where 	 can be performed (but not �).

Strong bisimulation is the finest equivalence that is commonly accepted and enjoys
several good properties. First of all, this equivalence is also a congruence w.r.t. all CCS
operators and moreover Bloom et al. proved that strong bisimulation is preserved by all
A�=� definable operators.

Theorem 2.1 ([13]) Let & be a GSOS system. Then strong bisimulation is a congruence
w.r.t. the operations in &.

Another important aspect of bisimulation is that it can be logically characterized. In
fact if we consider as �)*" the set of HML logic formulas (see section 1.4) we have:

Proposition 2.1 ([70]) If
 and � are finitely branching processes then

) � iff 	� � �)*"�
 �� ��� � �� ��.

2.2. PROCESS ALGEBRAS 41

It is interesting to note that the previous proposition is true also for ��calculus formu-
las. This strong connection between modal logics and models of our concurrent languages
is one of the major advantages in considering interleaving semantics for concurrency w.r.t.
other models that take into account more realistic and peculiar aspects of concurrency
such as Petri nets and event structures. This connection plays a central role in our thesis
and in the next chapters, we show how results from temporal logic can be applied in con-
currency and results in concurrency can lead to new developments and ideas in temporal
logic theory.

Observational equivalence or bisimulation

Until now we do not have assumed a distinguished role for the D action, but actually this
action is used to model a communication internal to the system or an internal computation
step (not visible to the outside world). So we would like to abstract from those actions
when comparing two systems. This can be fruitfully exploited in a step-wise development
strategy because we are able to substitute concise specifications by larger ones without
affecting the overall visible behaviour of the system. For example, we can imagine to
substitute a process with two others that perform the same visible task, but committing
some internal communication. Actually, we cannot simply abstract the internal actions
since they can affect the visible behaviour of a system. Look at the following example:

�
�

�
� �

�
��

��
�
��

�
��

�
��

�

&� (�

 �

�

#

The processes
� and �� cannot be considered equivalent, since the second can perform
an internal action (and so independently of the environment) by reaching a state where an
action � is no longer possible. So the non visible behaviour of the system, represented by
the D action, can modify its visible behaviour.

The equivalence proposed by Milner (see [69]), namely observational equivalence or
bisimulation (or else weak bisimulation) is the following:

Definition 2.7 A relation(between states of an LTS � � ��� �� �

���
��� is a bisimu-

lation if for each �
� �� � (and for each � � �:

if

��
� then there exists �� � �

�� �� and �
�� ��� � (

if �

�� �� then there exists
� �

��
� and �
�� ��� � (

Two processes
 and � are bisimilar if there exists a bisimulation(s.t. �
� �� � (. The
maximal bisimulation is � which is the union of every bisimulation. It is easy to check
that this relation is still a bisimulation and moreover is reflexive, symmetric and transitive.

42 CHAPTER 2. SOS AND PARTIAL EVALUATION

Moreover bisimulation is a congruence w.r.t. all CCS operators, excepted for summa-
tion (+).

The bisimulation is a very interesting equivalence. It is decidable in polynomial time
for finite-state processes (see [47]). Moreover quite elegant proof techniques exist for
proving that two processes
 and � are bisimilar. Actually, it is sufficient to provide
a bisimulation (such that �
� �� � (. In this way we can prove bisimilarity among
possibly infinite state processes (see example 5.6).

2.3 Partial evaluation of requirements

In general in the construction of complex systems it is not convenient to build directly
the precise and complete description of every component. It is better to follow a top
down design methodology. It permits to detect in an earlier stage of the development
possible errors of the project and repair them, without wasting too much time. Moreover
the management of the whole project is easier.

In chapter 1 we have seen how properties of LTS can be expressed in a process logic.
We have seen that concurrent programs (i.e. processes) can be described through ����.
In the previous sections we have described a way for formally deriving the behavior of a
system, in a compositional manner, by inspecting of the behaviour of its subcomponents.

Since it is quite unusual to have all the requirements at the beginning of a project it is
common to leave unspecified some part of the system. We would like not to specify too
many things in an earlier stage of the development. Moreover, the specification of compo-
nents should not lead to a system whose subcomponents cannot be provided, because of
the already specified parts do not permit any possible implementation of the unspecified
ones. These problems have been tackled in several settings, in particular Larsen and
Xinxin (see [55]) and Andersen (see [4, 5]) have proposed an automated methodology
to find the minimal properties that unspecified components must satisfy in order that the
whole system can verify a certain property. We show how their ideas can be rephrased by
starting from GSOS definitions of languages.

The intuitive idea

First, we define the formal language in which the system properties are specified. For the
simplicity of operators and for its significance in the theory of LTS many authors argue
that ��calculus is a good specification language. Here we start our analysis from the
sublogic HML that, as we have seen in the previous section, has characterizing power
w.r.t. strong bisimulation.

We believe that the intuitive idea can be understood better in this limited framework.
Moreover the presence of fixpoint operators introduce some technical problems. We
briefly present how this approach works and the problems that must be tackled.

Consider a simple CCS term, i.e. * � �
� where � is a variable. Hence, we want to
get the minimal requirements on closed terms �, that can be substituted to � in the term *,

2.3. PARTIAL EVALUATION OF REQUIREMENTS 43

s.t. *$���% �� ������ � �$�%�����. First of all we note, by observing the interpretation of
the logical connective �, that this problem is equivalent to analyze the two subproblems
1) *$���% �� ���� and 2) *$���% �� $�%����. Let us study separately the two problems:

1. By looking at the definition of the A�=� rule for prefixing operator in figure 2.1,
we note that we can have �
�

�� � for every closed term �. Hence, the condition

on the terms � is T.

2. By observing the semantics of the $�% modality, we can note that it requires that for
every ��successor of *$���% holds ����. By looking again at the definition of the
A�=� rule for prefix operator in figure 2.1, we can have only an ��transition from
�
� in �. Then � must satisfy ����.

By putting together the conditions on � we get *$���% �� ������ � �$�%����� iff � ��
� � ����.

Let us consider the following CCS term * � �
� � and the formula $�%$�%�. As
before we have to ensure that every reachable term from *$���% through an � action must
satisfy $�%�, (that is to say that it cannot perform an � action). By looking at the definition
of the A�=� rule for the choice operator in figure 2.1 we can have that *$���%

�� �, by

means of the transition �
�

�� �, or else �

�� �� for some ��. In the former case there

are no requirements on � (since � �� $�%�) and in the latter it is required that �� �� $�%�.
By summarizing, the latter property can be equivalently expressed as � �� $�%$�%�.

The analysis proceeds in a compositional manner in the structure of the formula and
the only interesting case is the treatment of the capabilities of processes. Since the formula
is finite and the possible successors of each term are finite, in the case of HML formulas
this strategy always terminates.

2.3.1 Theoretical framework for the partial evaluation

We will consider a particular format of A�=� rules, i.e. the kind of rules that do not
permit copying.

Definition 2.8 A rule (of a GSOS system & is not copying if and only if for every variable
E in �C"(��(� the set ��"		�(� E���E���+ �(��:�5�� 5;�� is empty or it is a singleton �F�
and in this case we have �>�(��:�5�� 5;���F� ' �.

The necessity of restricting ourselves to this kind of rules relies on the fact that we
want that the number of unspecified components of the system cannot grow. This is clear
if we look at the following rule:

�

�� �� �

�
�� ���

7���

�� :���� ����

If we have a term with one unspecified component, say 7���, it is possible that after
a transition � we have to deal with a term with two unspecified components, since we

44 CHAPTER 2. SOS AND PARTIAL EVALUATION

cannot predict the successors of �. Even though it is possible to deal in some framework
(see [55]) with more than one unspecified component, we prefer to restrict ourselves to
this situation. Indeed, this analysis is sufficient for our purposes. Another property that
we impose to the format of the rules is the following:

Definition 2.9 A rule (of a GSOS system & keeps the nesting of terms if every variable
in *�(:�*�(� appears as argument of the top level operator, or target(r) is a variable.

The following rule shows an example of nesting:

�

�� ��

7���

�� 7�7�����

Assumption 2.1 We start our analysis under the assumption that every rule in & is not
copying and keeps the nesting.

The following rule violates both conditions:

�
�+��
�� ��

7���
#
��
�(�)*�����	# <3����

As notation we write *$5�% where * is a term and + �(��*� is a subset of the variables in
5�. We write *$E%� if the variable E may appear in * at most once, and as argument of the
top level operator or * � E.

Remark 2.1 In general for a context *$E%� we use a particular notation where E is equal
to the variable that is the formal parameter in the rules for the top level operator of * (we
implicitly assume that for every rule and every operator 7 always the same variables and
in the same order in the source are used)3.

Let us make some requirements on the contexts *$E%�.
Since we treat terms with one possible unspecified component, we are interested in

partial assignments for a rule (and a context *$�%�, that do not need to be defined for all
variables involved by the rule (. More formally a partial effective assignment 2 for a
rule (and a context 7�*��

 � �,�

 *�� is a function from variables to closed terms, not
defined for the variables in ��,� � �"		�(� �,� such that:

1. 2���� � *� for � ' ' �� �� #;

2. for all � � with � ' ' �� �� # and � ' � ' B�, it holds that 2����

��
�� 2�;���;

3. for all � � with � ' ' �� �� # and � ' � ')�, it holds that 2���� �
���
��.

3Alternatively one can assume as equality among context the
–equivalence.

2.3. PARTIAL EVALUATION OF REQUIREMENTS 45

�

�

�

�

�
�

�� �� �

�
�� ���

7���
�
�� :

�
;

�� ;�

��;

�� ��;�

�
�

�� ��

� ;

�� ��

Figure 2.4: Examples of rules of types 1,2 and 3 with respect to the variable �.

If the context *$�%� is actually a closed term then a partially effective assignment is
effective. Let !*���-�� be the set of partially effective assignments for a rule (and a context
*$�%�. Let �"<��+&	�

 be the subset of rules of & whose operator is C
�*�, and whose action
is �. For the sake of simplicity, if *$�%� is a closed term then let
C��(� �� �)�:�(� �� � �.
This notion permits us to give a definition of the transition relation between contexts. We
observe:

 *$�%� � *�$��%� iff �2� partially effective for the rule (and the context *$�%� such that
�$��%� � 2���(:�*�(��.

Definition 2.10 The set of derivatives w.r.t. the above transition relation for a context
$�%� is ��(��$�%�� � �*�$;%� � *$�%� �� *�$;%��.

In the sequel we will restrict ourselves to the class of well behaved contexts.

Definition 2.11 A context *$�%� is well-behaved iff ��(��*$�%�� is a finite set.

Please note that if in the previous definition we do not assume a unique representation
for contexts then we could have an infinity of derivatives of the term *$E% simply renaming
E.

By assumption 2.1 on the nature of the rules, we can divide them among three types
w.r.t. a variable � in the source of a rule (:

 Type 1: ���� � �"		�(� ��� � + �(��*�(:�*�(�� � �;

 Type 2: � � + �(��*�(:�*�(��;

 Type 3: �"		�(� �� � + �(��*�(:�*�(�� �� �.

The next technical lemma shows an alternative characterization of the transition rela-
tion between closed terms.

46 CHAPTER 2. SOS AND PARTIAL EVALUATION

Lemma 2.1 Given a context *$�%� and a closed term � we have *$���%�

�� *� iff one of

the following conditions holds:

 �(of type 1 s.t. �2 partially effective for (and *$�%� and 		 � �C��(� �� � �
�
��

and � �	 � ��:�(� �� � �
�
��, and 2�*�(:�*�(�� � *�,

 �(of type 2 s.t. �2 partially effective for (and *$�%� and 		 � �C��(� �� � �
�
��

and � �	 � ��:�(� �� � �
�
��, s.t. *� � �2�*�(:�*�(���$����%�,

 �(of type 3 s.t. �2 partially effective for (and *$�%� and 	 	 � �C��(� �� � �
�
��

and � �	 � ��:�(� �� � �
�
��, let ;�� be in �"		�(� �� � + �(��*�(:�*�(�� then

��� � �

��
�� �� and *� � �2�*�(:�*�(���$�����%�.

Proof:
Suppose that *$���%�

�� *�. By definition there must be a rule (with operator C
�*�

and action � and an effective 2 � for (and *$���%� s.t. *� � 2��*�(:�*�(��. We know
that (must be of one of the three types �� � or �. So we continue by inspection of the
type of (. First of all we note that in every case, since 2 � is effective, we must have
	 	 � �C��(� �� � � � 2����

�
�� and � �	 � ��:�(� �� � � � 2����

�
��. Please note that

if �C��(� �� or ��:�(� �� are empty the conditions are trivially fulfilled. As notation we
write 2 � $�% for the assignment that coincides with 2 with the exception of the variables
in � , where it is undefined.

Then let us consider the different types of rules:

1. Let 2 be 2��$��� � �"		�(� ��%, then 2 is partially effective.

2. In this case we have that � appears in + �(��*�(:�*�(��, so 2 ���� is defined and
� � 2���(:�*�(��, let 2 be 2� � $��� � �"		�(� ��% then *� � 2��*�(:�*�(�� �
�2�*�(:�*�(���$����%��.

3. In this case we have that ;�� appears in �"		�(� �� � + �(��*�(:�*�(��, then by
hypothesis on effectiveness of 2 � we have � � 2����

��
�� 2��;��� � ��. As above

consider 2 � 2� � $��� � �"		�(� ��% then *� � 2��*�(:�*�(�� � �2�*�(:�*�(���$���
��%��.

The other direction can be proved by similar arguments. �

The following proposition states the correctness of the partial evaluation function 1
given in figure 2.54.

4We use indexed disjunctions and conjunctions, with the usual semantics, in particular � ��� � � and
���� � �.

2.3. PARTIAL EVALUATION OF REQUIREMENTS 47

�

�

�

�

1��$�%�� �� � �

1�*$�%���� � �

1�*$�%�� �� � ��� � 1�*$�%�� ��� � 1�*$�%�� ���

1�*$�%��
�� �
1�*$�%�� ��

1�*$�%�� ����� �
�
��./��!

�����
�

�
���
	

��
��
��
�
��0�'	�	-

�	����

�
�
���+!	�	-
�	��� � 1��(� �� ���

!��"�� � �"		�(� �� � + �(��*�(:�*�(�� ��

1��(� �� �� �

��
� 1�2�*�(:�*�(��� �� (
� �'�� �
" �

�����1�2�*�(:�*�(��� ��� (
� �'�� �
�� ;�� � �

Figure 2.5: Partial evaluation function for ��� logic.

Proposition 2.2 Given a well behaved context *$�%�, and an HML formula �, then for
every closed term � we have:

$���%� �� � �	 � �� 1�$�%�� ��

Proof: By structural induction on �:

 � � �, we have *$���%� �� � for every closed term �, or equivalently � �� �.

 � � �� � ��, we have *$���%� �� � iff *$���%� �� �� and *$���%� �� ��. By
induction hypothesis we have that *$���%� �� �� iff � �� 1�*$�%�� ���, and *$��
�%� �� �� iff � �� 1�*$�%�� ���. Hence we have *$���%� �� � iff � �� 1�*$�%�� ��� and
� �� 1�*$�%�� ���, by definition of the semantics of �, this leads to � �� 1�*$�%�� ����
1�*$�%�� ���.

 � �
��, we have *$���%� �� � iff *$���%� ��� ��, and by inductive hypoth-
esis the latter statement is equivalent to � ��� 1�*$�%�� ��� and equivalently � ��

1�*$�%�� ���.

 � � �����, we have *$���%� �� ����� iff there exists *� s.t. *$���%�

�� *� and

*� �� ��. By using the lemma 2.1 we can have one of the following cases:

– �(of type 1 s.t. �2 partially effective for (and *$�%� and 	 	 � �C��(� �� �
�

�
�� and � �	 � ��:�(� �� � �

�
��, and 2�*�(:�*�(�� � *� �� ��,

– �(of type 2 s.t. �2 partially effective for (and *$�%� and 	 	 � �C��(� �� �
�

�
�� and � �	 � ��:�(� �� � �

�
��, s.t. *� � �2�*�(:�*�(���$����%�, and

*� �� ��,

48 CHAPTER 2. SOS AND PARTIAL EVALUATION

– �(of type 3 s.t. �2 partially effective for (and *$�%� and 	 	 � �C��(� �� �
�

�
�� and � �	 � ��:�(� �� � �

�
��, let ;�� be in �"		�(� ���+ �(��*�(:�*�(��

then ��� � �

��
�� �� and *� � �2�*�(:�*�(���$�����%� and *� �� ��.

The above conditions can be equivalently expressed by:

– �(of type 1 s.t. �2 partially effective for (and *$�%� and ����
�
��0�'	�	-

�	���

�
�
���+!	�	-
�	��� and *� �� ��. By induction hypothesis *� �� �� is equivalent

to � �� 1�*�� ���.

– �(of type 2 s.t. �2 partially effective for (and *$�%� and � ���
�
��0�'	�	-

�	���

�
�
���+!	�	-
�	��� and *� �� ��. In this case *� � �2�*�(:�*�(���$����%�, and

by inductive hypothesis we have *� �� �� iff � �� 1�2�*�(:�*�(��� ���.

– �(of type 3 s.t. �2 partially effective for (and *$�%� and � ���
�
��0�'	�	-

�	���

�
�
���+!	�	-
�	��� and *� �� ��. In this case, we have �

��
�� �� and *� �

�2�*�(:�*�(���$�����%�, and hence by inductive hypothesis we have *� �� ��

iff �� �� 1�2�*�(:�*�(��� ���.

So we have another condition � �� �����1�2�*�(:�*�(��� ���.

By grouping together the similar conditions w.r.t. �, we obtain the desired formula. �

2.4 Adding recursion to the logical language

In chapter 1 we have seen that the HML logic, without recursion, does not permit to
express properties on infinite computation of a system. Thus here we extend the previous
theory to handle this kind of properties. We use the equational ��calculus as specification
language5.

Given a well behaved context *$�%� let � be the set of its derivatives ��(��*$�%��.
Since *$�%� is well behaved then � is finite, in particular we assume in the following
� � �	��

 � 	��.

We start with a little example that highlights the necessity of using equational ��calcu-
lus, instead of modal ��calculus. Let us consider the ��calculus formula % � ��
�����
������. Since we want to perform the analysis in a compositional way in the structure of
the formula we need the translation of the subformula ����� ������ w.r.t. a context *$E%�.
During this translation it is possible that the same variable � (or better the properties
expressed by a variable) must be analyzed simultaneously in different contexts!

In fact, suppose to have the ��� process � � �
�
� �
	
�. Now consider the
context * � ���;�. Hence we get:

��(��*$;%�� � ���;� �
��;� 	
��;� ��;�

5Actually, we use an equational ��calculus with negation in assertions, since it has a smaller number
of operators and modalities. There is always the syntactic condition on the nesting of negations.

2.4. ADDING RECURSION TO THE LOGICAL LANGUAGE 49

Then the formula ����� � �����must be reduced, in particular we have to reduce the
two subformulas ���� and ����. Let us concentrate on the former formula. It follows
that if we apply the standard reduction for ���� we should get:

���1����;�� ��� 1���
��;�� �� � 1��	
��;�� ��

where 1�*$;%�� �� is the evaluation of a variable in a context (for a formal definition see
below).

Hence the properties expressed by � must be “simultaneously” evaluated in three
different contexts.

As Larsen and Xinxin, we avoid the problem of considering effectively every reach-
able context, simply by inserting an equation for every context! Andersen applies this
strategy only for the parallel operator of his generic process algebra. For the other oper-
ators he is able to analyze correctly only the strictly necessary part of the system. The
price he has to pay is a more complex translation function.

So every equation in the list � is substituted by a list of equations, one for every
context in the derivatives of *$E%�.

Let *(��� our syntactic translation function from definition lists to definition lists.

*(��� �

�
$% � � $%
��� ��� 1�	�� ���

 � �

�� ��� 1�	�� ��� *(
 �� �� � � �� ��� ��� � �

moreover we add the following clause for logical variables to the partial evaluation func-
tion of figure 2.5.

1�*$�%�� . � � . ��-��

Our goal is to prove that:

	$��E%� � $$�%%��. � �	 � � $$*(����%%�.
�� (2.4)

In particular we are interested in the case where - �+. Hence, the above statement
says that checking if a system satisfies an equational specification, when the unspecified
component is replaced by a closed term, is equivalent to check if the closed term satisfies
a translated equational specification.

First we introduce a semantic counterpart of the *(��� translation. Let , (�-�����
� �� � 	$��E%� � -���� be a semantical translation function from environments to envi-
ronments.

In the following proof we will use a technical lemma proved by Andersen in [4], the
so called reduction lemma.

Lemma 2.2 Suppose that � and � are powersets over countable sets, and) � � $� �
an &�continuous function with)�+1� �+2 . Moreover suppose to have : � � $� �
and 7 � � $� � both monotonic and with the property:

) Æ 7 � : Æ)

50 CHAPTER 2. SOS AND PARTIAL EVALUATION

We can conclude that
�: �)��7�

The) function can be seen as a decomposition function. Given a set of contexts, it
returns for every context the set of closed terms that fit in the unspecified component (see
definition in the proof below). The reduction lemma is used to reason about simultaneous
evaluations of ��calculus variables, which are evaluated in different contexts.

Instead of proving the equivalence 2.4 we prove the following result from which 2.4
follows.

Lemma 2.3 Let � be a list of equations, - an environment and � � ��(��*$�%��� then
we have:

, (�$$�%%�� � $$*(
 ���%%� ��	�

Proof: Let) be:

)�8� � �)���8��

 �)���8�� !���
)��8� � �� � 	$��E%� � 8� �
" 	 � �

We prove the thesis by induction on the length) of the definition list.

 � � �� �. The result trivially follows.

 � � ��� ��� ��� ���� �
� ��). By induction on � ���

 �)� and for 	 � � we

prove that:
, (�$$�%%����

�
� � � $$*(

 ���%%� ��	�
��
�
� �

– � �. We can see that , (�$$�%%����
�
�� � 9��)�$$�%%�������, where 9� is a

projection.

Let 7�8�� be $$��%%�����
������	��
 where -��8�� � $$�
�%%�����
���. Now we have

$$�%%����� � 1�8�
7�8��. We assume 1� � � in the sequel, otherwise one can
use a reduction lemma for maximal fixpoints.

Let :�8��

 � 8�� be �$$1�	�� ���%%�� �

 � $$1�	�� ���%%���where -� � , (
 �-�"

$8���
��
� �

 � 8���

��
� % " -���8��

 � 8�� and -���8��

 � 8�� is equal to

$$*(�� ��%%� ��	�
����
�
��
� 	���	��
�

��
� �. Hence we can observe that

, (�- " $8����%� � , (
 �-� " $)���8����

��
� �

 �)���8����

��
� %
 (2.5)

By inductive hypothesis on the length of � we have:

, (�$$� �%%�����
���� � $$*(
 �� ��%%� ��	�����
���

2.4. ADDING RECURSION TO THE LOGICAL LANGUAGE 51

We can look at the minimum fixpoint of : as the block semantics in the
equational ��calculus for the variables � ��

� �

 � ���
� . In particular let ! �

*(��� �� ��� then

�: � �8�

 8�
$$ 5	���!�%%���

Thus for 	 � �, we get 9���:� � $$!� *(�� ��%%�� ��	�
��
�
��. Hence, by lemma

1.3 we have:

9���:� � $$*(���%%�� ��	�
��
�
�� � $$*(

 ���%%� ��	�
��
�
��

In order to prove the thesis it is sufficient to prove)�$$�%%������ �)��7� �
�:. By using the reduction lemma we can restrict ourselves to prove:

)�7�8�� � :�)�8��

By structural induction on ��.

� �� � ��, then)�7�8�� �)�8�, while :�)�8��:
�$$���

� %%��	��	�

�

 � $$�
��
� %%��	��	�

� �

�)���8��

 �)���8�� �
)�8�

and the result follows.

� �� � .� . �� ��, then if -�. � is defined we have that)�7�8�� �
)�-�. ��, and :�)�8�� is equal to:
�$$. ��%%��	��	�

�

 � $$.

��%%��	��	�

� �
�, (�-��. ����

 � , (�-��. ���� �
�)���-�. ���

 �)���-�. ��� �
)�-�. ��

� �� � ��� then)�7�8�� �)�$$� �%%����
��������, and :�)�8�� is equal
to:
�$$���

� %%��	��	�

�

 � $$�
��
� %%��	��	�

� �

�$$*(�� ��%%����
��
� ��

 � $$*(

 �� ��%%����
��
� ��

	���

�

�!��"� -� � , (�-� " $)���8����
��
� �

 �)���8����

��
� %��

�$$*(�� ��%%� ��	�����
���
��
��
� ��

 � $$*(

 �� ��%%� ��	�����
���
��
��
� �� �

�, (�$$� �%%�����
������
��
� ��

 � , (

 �$$� �%%�����
������
��
� �� �

�)���$$�
�%%�����
���������

 �)���$$�

�%%�����
��������� �
)�$$� �%%�����
��������

� For �� �
��� �� � �� � �� or �� � ����� the proofs are similar to
those of proposition 2.2.

By applying the reduction lemma 2.2, we get)��7� � �: and the result
straightforwardly follows.

52 CHAPTER 2. SOS AND PARTIAL EVALUATION

– � � �,
, (�$$�%%����

�
����� �

�� � 	$��E%� � $$�%%��������� �
�� � 	$��E%� � $$�����	�%%���������� �
�!��"� -� � - " $$$�%%���������

 � $$�%%���������� %
, (�$$�����	�%%�����

�
����� � �)3
#

�

$$*(������	��%%� ��	��
��
�
����� �

$$*(������	��%%� ��	�
������
�
�����

where -�� � $, (�$$�%%����
��
� ���

��
� �

 � , (�$$�%%����

��
� ���

��
� �

 �

, (�$$�%%����
��
�� ���

��
�� �

 � , (�$$�%%����

��
�� ���

��
�� %.

By induction hypothesis on we know that

, (�$$�%%����
�
� � � $$*(

 ���%%� ��	�
��
�
� �

for � ' � ' � and 	 � �. So we can rewrite -�� as:
$$$*(���%%� ��	�
��

��
� ���

��
� �

 � $$*(���%%� ��	�
��

��
� ���

��
� �

 �

$$*(���%%� ��	�
��
��
�� ���

��
�� �

 � $$*(���%%� ��	�
��

��
�� ���

��
�� %.

Hence it follows that :

$$*(������	��%%� ��	�
������
�
����� � $$*(

 ���%%� ��	�
��
�
�����

and indeed the thesis.

�

The following proposition shows the correctness of our partial evaluation function for
list of equations with respect to contexts.

Proposition 2.3 Let � be a closed list of equations, and *$�%� a well behaved context,
with � � ��(��*$�%��, then for every closed term � we have:

$���%� � $$�%%���� �	 � � $$(���%%�� ��-��

� �

Proof: We recall the semantical translation from environments:

, (�-����� � �� � 	$��E%� � -�����

it follows that *$���%� � -��� iff � � , (�-��� ��-���.
By using the above equivalence with - � $$�%%, we can rewrite the thesis as:

� � $$*(���%%�� ��-��

� � �	 � � , (�$$�%%��� ��-��

� �

Since � is closed so *(��� will be closed. So let + be the void environment, we have
, (�+� �+. By lemma 2.3 we get:

, (�$$�%%� � , (�$$�%%�� �����
 ��� $$*(
 ���%%� ��	�
 � $$*(

 ���%%

This concludes the proof. �

2.5. EXAMPLES 53

2.5 Examples

In this section we show some simple applications of the partial evaluation function.

2.5.1 Bergstra and Klop’s priority operator

As first little example we consider the priority operator of Bergstra and Klop ([6]). It
permits to give priorities among the actions that a process can perform. More formally,
given a partial order ' among actions, then for every action � we have a rule:

�

�� �� �� �

�
��� � ' �� � �� ��

G���

�� G����

We study the case with two actions <� #, with '� ��#� <�� (< has a higher priority
than #) and so we have the following two rules which, as we can easily see, respect our
assumption 2.1 on the structure of the rules.

�G��
�

,
�� �� � �

�
��

G���
,
�� G����

�G��
�

�
�� ��

G���
�
�� G����

Let us see the requirements that a term � must satisfy in order to have G���$���%� ��
�<����#��. First of all let us note that the only partially effective assignment for both the
rules G� and G� and the context G��� is the void assignment. By applying our translation
function in figure 2.5 we get:

1�G���� �<�� � �#��� � 1�G���� �<��� � 1�G���� �#���
1�G���� �<��� � �<�1�G������ � �<��
1�G���� �#��� � �#�1�G������ �
�<�� � �#��
1�G������ � �

So 1�G���� �<�� � �#��� � �<��� �#�� �
�<�� � �#�� is equivalent to �. In other
words, there is no term � such that G���$���%� �� �<�� � �#��. This is effectively part of
the intended semantics of the operator.

Let us show an example involving the use of the recursion in the logical language.
The property we would like to analyze is the following, where � is a closed term:

G���$���%� � $$� �� �#��%%���

It expresses the fact that the process G���$���%� can perform an infinite sequence of # ac-
tions. Let us apply the partial evaluation function for the logical language with recursion:

*(�� �� �#��� � ��
3	-
 �� 1�G���� �#����

where 1�G���� �#��� �
�<�� � �#��3	-
. So it must be � � $$�3	-
 ��
�<�� �
�#��3	-
%%��3	-
�, intuitively it means that the process � must be able to perform an infinite
sequence of # actions, and during this sequence the process does not have the possibility
of performing an < action. It is worthwhile noticing that both the approaches of Larsen
and Xinxin and the one of Andersen cannot deal directly with this operator (see [39]).

54 CHAPTER 2. SOS AND PARTIAL EVALUATION

2.5.2 fictious clock parallel operator

The next example shows an extension of the CCS parallel operator that cannot be handled
by the approaches of Larsen and Anderson. This operator will be used in chapter 5 of this
thesis and it is called fictious clock parallel operator. This name follows from the fact that
it forces synchronization of both components in the * (or * 	�) actions, by modeling the
elapsing of one unit of time. Assume *� D �� � and �	* � ���*� D�, then a natural way to
give the operational semantics of the parallel operator w.r.t. the action * is the following:

�
�
�� �� ;

�
�� ;� 	� � �
��

�� �;

���

��;
�
�� ���;�

Unfortunately, the above rule does not respect the format of 2.3. We can give a set of
rules in GSOS format that model the intended behaviour of the parallel operator w.r.t. the
* action, by providing for every �� � ����

 ��� � � and �� � � � ����

 � ��� a rule
like:

��

��� ���

�
�
� �
�
�� �� ;

�
�� ;� �� �

������
�
� �; �

�����
�
�

��;
�
�� ���;�

Let us see the minimal requirements that a closed term � must satisfy in order to have
�
���$���%� �� �*�!. The partial evaluation for a formula �*�! is the following:

��*�!���
 �

�
�*�!��
� � �
��� $�%� 7

�
��
�� �� � �� � � �

���

� C*#�(F ��

2.6 Overcoming the restrictions on the structure of the
rules

In this section we show that our requirements on the structure of the rules of the GSOS
system permit us to analyze complex terms. Even though, we require rules to keep the
nesting of the parameters, this does not imply that we can analyze only terms where the
variable is a top level operand. Let us see an example with the ��� parallel operator
and the simple HML logic. Suppose to have the term * � �
���
���

������, where

��

 �
� are closed terms. We want the weakest condition on closed terms � s.t.:

�
���
���

��E���$��E% �� �

Our approach is not directly applicable to this term, but consider the term *� �
����,
hence we get:

�
���
���

��E���$��E% � *�$��
���

�����$��E%����%

2.6. OVERCOMING THE RESTRICTIONS ON THE STRUCTURE OF THE RULES 55

Evaluate�7�*��

 � *��� �� �
If7�*��

 � *�� is a context

Then
Let � � ��(��7�*��

 � *��� in
*(���

Else
�let *� be the sub term that strictly contains the variable �
Let � � ��(��7�*��

 � *�	�� �� *����

 � *��� in
Let �� � *(��� in

Evaluate�*�� � ��

Figure 2.6: Partial evaluation function for general terms with one variable.

Now we can apply the partial evaluation function to the context *� and let �� be
��
���

�����$��E%�, so we get by lemma 2.2:

�$�����% �� � �	 �� �� 1��� ��

We have almost completed our task, since by applying)� � times this reasoning we
can get the weakest condition on �. It is possible to generalize this strategy to all contexts
*$�%� s.t. the variable � is not a top level parameter.

To treat with the full equational ��calculus we need some technical tools to han-
dle variables. During the syntactic translation *(��, we supscript variables with con-
texts. In particular it is possible to supscribe more than once a variable � , for exam-
ple �����4������4��. We implicitly rename this variable as � ���	���4��

4��, please note that
	�$�	�$E�%��E�% is still a term with one variable E�.

In figure 2.6 we give the procedure that performs the partial evaluation for a generic
term with one variable. Its correctness is stated by the following proposition.

Proposition 2.4 Given a term * with one variable E, and a list of equations � � ��� ���
���

 � �� ��� ���, then we have for every closed term �:

$��E% � $$�%%��� �	 � � $$�>�<"���*$E%� ��%%�� ��4��

Proof: By induction on number) of recursive calls of the function �>�<"�*�.

) � �, then �>�<"�*��*$E%� �� � *(��� and the thesis follows by proposition 2.3.

) �)� �, then * � 7�*��

 � *��

 � *�� with E appears in *�. Let *�$E�%� �
7�*��

 � E

��

 � *�� and � � ��(��*�$E�%��. By definition of �>�<"�*� we get:

�>�<"�*��*$E%� �� � �>�<"�*��*�$E%� �
��

56 CHAPTER 2. SOS AND PARTIAL EVALUATION

with � � � *(���. Hence, we get:

*$��E% � $$�%%��� �	
�$��$��E%��E

�% � $$�%%��� �	 �
(C

�
��
*�$��E% � $$� �%%�� �� �4��� �	 �)3
#;

�
� � $$�>�<"�*��*�$E%� �

��%%��� ���4������4�� �	
� � $$�>�<"�*��*�$E%� �

��%%�� ��4�� �	
� � $$�>�<"�*��*$E%� ��%%�� ��4��

�

2.7 Related work

In this chapter we have rephrased the compositional analysis techniques, proposed by
some authors, for a variant of GSOS format (that subsumes De Simone’s format). In this
way we try to follow a line of research that is devoted to produce general tools for analysis
of systems, by starting from the semantic definition of their language.

In particular we refer to the work of Aceto et al. in [3], where the authors propose
a procedure for converting any GSOS definition in a complete axiom system (possibly
with one infinitary induction principle) which precisely characterizes (strong bisimula-
tion) equivalence. Similarly, Simpson in [90] gives a generic proof system applicable
to any language with an operational semantics defined in the GSOS format. The spec-
ification language is the so called ��� logic, less expressive than ��calculus. So it
seems that �=� systems, for specifying the operational behaviour of languages, can rep-
resent a foundational language from which several verification methods can be naturally
developed.

In [5] Andersen proposed the compositional analysis (or partial evaluation) techniques
for avoiding the so called state-explosion problem that arises in the analysis of concurrent
programs. In fact the size of the LTS which describes the behaviour of a term is exponen-
tial in the number of parallel operators that are in the term. He considers the following
verification problem: how to check efficiently that
��
� satisfies a formula �. It is easy
to prove that
��
� is strong bisimilar to
���
����. So by theorem 2.1 the formula � is
satisfied by the former process if and only if is satisfied by the latter. Hence, we can apply
many times the partial evaluation function for parallel operator. Moreover, at each time
the reduced formula is substituted by a semantically equivalent formula, but with smaller
size. Finally, we have the following verification problem: � �� �� and �� is the resulting
reduced and simplified formula. The key point is that is very simple to check if � satisfies
a formula, it is sufficient to change every possibility modality in F and every necessity
modality in T and then applying constant simplifications. Andersen named this technique
partial model checking.

Chapter 3

Analysis of Open systems

In this chapter we face the analysis of open systems. In particular we study the verification
problem called module checking by Kupferman and Vardi. We show how to reduce this
problem for several temporal logics to a validity problem in deterministic (equational)
��calculus. In particular we use the compositional analysis techniques recalled in chapter
2. We show a simple example of application of the proposed theory.

3.1 Introduction

In the field of formal specification and verification of systems, temporal logics have been
widely recognized as a valuable tool. In particular for the analysis of so called reactive
and non terminating systems.

By following [42] we can distinguish between closed and open systems. The be-
haviour of a closed system is not influenced by its external environment. While the be-
haviour of an open system may depend on the interaction with the environment. For
example, suppose to have a machine that serves drinks. A closed machine may work in
the following way: it boils water, and nondeterministically serves coffee or tea. An open
machine boils water, allows the environment to choose for a drink and then deterministi-
cally serves the chosen drink (see [44]).

A powerful automatic method for the verification of properties of (finite-state) sys-
tems is the so called model checking (see [19]). The idea is to consider a system as a
Kripke model for a temporal logic. The Kripke semantics, also known as possible worlds
semantics, propose a view of a system that we could refer to as closed. In fact a transition
of system is always considered possible, regardless of the environment. Alternatively, we
can imagine that this situation is equivalent to check the system in a setting where the
environment does not limit its possibilities.

Sometimes, we are interested in establishing properties that an (open) system must
satisfy when it operates in conjunction with arbitrary environments. This uncertainty
about the behaviour of the environment makes open systems difficult to be programmed
and analyzed.

58 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

In [50, 51, 101] Kupferman and Vardi have defined a simple and clear theoretical
framework for the analysis of open systems. It is based on a refinement of the structure
of Kripke model. The states (or worlds) are partitioned in two sets, the system states and
the environment ones; the former may actually access every successors, the latter have
a reduced set of possible worlds according to the environment. While this framework is
surely theoretical interesting, it has also a practical interest.

3.2 Module Checking

In this section we briefly recall some preliminary definitions by following the treatment
of [50]. A Kripke model is a tuple � � ���� �� �� F����� <� where �� is a finite set of
atomic propositions, � is a set of worlds (or states), � � � � � is the accessibility
relation (which is required to be total), F���� is the initial world, and < is a labeling function
from � to ��� . Here, we suppose to have an initial state because we want to state
properties that hold at the beginning of a computation.

A Kripke model is sometimes called program. A path on a program � is an infinite
sequence of states F�� F��

 such that for every � ' �, we have �F�� F���� � �. As
notation we write � �� � if a formula � is satisfied in F���� (see chapter 1 for the formal
definition of the relation �� for several temporal logics).

A closed system is a program whose behaviour is completely determined by the state
of the system, so every world related, via �, with the current state, can be effectively
accessed.

To describe open systems Kupferman and Vardi define the structure of a module, i.e.
a tuple � � ���� ��� �!� �� F�� <�, by dividing the set � of states of a Kripke model
in two sets �! and ��. For each state F � �! ��� let �"		�F� be the set of directly
accessible states, i.e. �F���F� F�� � ��.

The different behaviour of the system in the two kinds of states, is reflected by con-
sidering �*�
��� as the set of sets of states that can be accessed from a state �. In fact
for a state � in �! we define �*�
�F!� � ��"		�F!��, while for a state � in ��, due to
the intended nature of ��, we have to suppose that the environment can allow whatever
subset of �"		�F��. The only limitation is the (technical) necessity that the environment
has to permit at least a state to be accessible from F�. Hence let us define �*�
�F�� as
���� � �"		�F�� � � �� ��.

 goldfish
green
parrots

Food?

1

2 3

SS

E

Figure 3.1: Module for food gathering machine.

3.2. MODULE CHECKING 59

�

�

�

�

�
�
�
�

1

2 3

�
�

�
�
�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�

�
��

�
��

�
��

�
��

�
��

�
��

1 1

1

2 3

2

11

2 3

1 1

b)a) c)

3

3

Figure 3.2: Some labeled trees in Exec(M).

As example we recall in figure 3.1 the module for the food gathering machine ex-
plained in the introduction. The state 1 is an environment state and we have �"		��� �
��� �� and �*�
��� � ����� ���� ��� ���, while �"		��� � ��� and �*�
��� is �����.

Following [50] we consider an infinite tree as a set � � �
� (i.e. a set of finite se-

quences of naturals) such that if �
	 � � where � � �� and 	 � � then also � � � , and
for all � ' 	� � 	, we have that �
	� � � . Moreover �
�must be in � if � � � . The empty
word 6 is the root of the tree and the other strings are the nodes.

A ��labeled tree is a pair ��� + �, where � is a tree and + is a labelling function from
each node of � to � (in our case � will be � or ���).

We can unwind a module � in the tree ��* � +*� of its computations, by considering
it as a Kripke model. Actually, the tree ��* � +*� corresponds to a situation where the
module � is composed with the environment that allows the system to access every
possible world, via �. Every environment induces a particular computation tree when it
interacts with a module (open system). In order to consider all the possible computation
trees of a module � that arise when the module is composed with arbitrary environments,
one has to consider a forest of trees. Call this forest ���	���.

Informally every tree in the forest can be obtained from �* by pruning some subtrees,
whose root is a successor of an environment state F�. Roughly speaking this means that
the environment does not allow the system to access the state which is the root of the
pruned subtree.

More formally let us define ���	��� in the following way. With the notation ��

we mean the sequences of length) of naturals. Let � ��� be
�
�
�
� � � �� then we have

��� + � � ���	��� iff:

 6 � � and + �6� � F�,

 For all � � � , if + ��� � F then there exists �F��

 � F�� � �*�
�F� such that
�* � * � �� � � � �
�
 * � �
 � � ��
��

 � �
)� and for all � ' 	� '), we have
that + ��
	�� � F�� .

60 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

Moreover it is assumed that trees ��� + � � ���	��� can be also ����labeled trees,
whose label function is <�+ ���� for � � � . The appropriate labeling function will be clear
from the context. To every labeled tree ��� + � � ���	��� we can associate a Kripke
model ��� + �5 � ���� �� ��*� *
 � � *� *
 � �� � ��� 6� < Æ + �.

Remark 3.1 It is worthwhile noticing that, given a labeled tree ��� + � � ���	��� and
an order '
 on �, there exists always a labeled tree ��� +�� s.t. if *
 � *
� � � then ' �
iff +��*
 � '
 +��*
��. Moreover there is an isomorphism 7 between ��� + � and ��� +��
s.t. 7�6� � 6.

Some trees of ���	��� where � is the food gathering machine are in figure 3.2. In
the introduction we wonder if the food gathering machine can satisfy the CTL formula
�	� � � �:C<37 �#�� for every environment in which it operates. Clearly, by looking at
the tree 	 in figure 3.2 it turns out that the answer is NO, since there is no state labeled by
the proposition :C<37 �#.

The authors of [50] define the problem of checking that every tree ��� + � in ���	���
satisfies � (i.e. ��� + �5 �� �), where � can be a ���� ���� ���� formula, as module
checking (� ��� �). They prove that module checking problem is ����?�� and
�����?�� complete, respectively for ��� and ����.

3.3 Technical framework

Here, we show how module checking problems can be reduced to a validity problem in
the deterministic (equational) ��calculus. The idea is to “internalize” the environment.
Then we may treat the environment as an unspecified component of a system and hence
we apply partial evaluation techniques.

3.3.1 Partial evaluation technique

This technique relies upon compositional methods for proving properties of concurrent
processes, specified in terms of a process algebra (see chapter 2). It has been presented
in this formulation by Andersen in [5]. We follow his approach since Andersen has been
among the firsts to propose these functions and moreover a prototype implementation has
been produced ([58]) for performing partial evaluation. Together with our implementation
of a proof checker for modal ��calculus we have a prototype implementation of the
theory we are going to explain (see chapter 5).

First, we introduce explicitly an operator for parallel composition of LTS. It is clas-
sical CCS parallel operator, defined over LTS. Other parallel composition operators for
processes could be taken in account. The parallel composition ����� of two processes
�� � ��� �� �

���
��� and �� � �$� �� �

���
��� (i.e. their LTS) consists of the LTS

whose set of states is given by �
�� �
 �
� � � $� and for every action � � � the
relation

�� is given by the least relation induced by the following rules:

3.3. TECHNICAL FRAMEWORK 61

��
�

��

��
���

�

�� ��

��

��
���

��
� �

�� ��

��
#
��
����

Given a process � � ��� �� �

���
��� the restricted process ���, where � � �

consists of a set of states �
�� �
 � ��, and for every action � � � the relation

�� is

given by the least relation induced by the following rule:

��
� � �� �

��

��
���

The logical language for the specification of the properties is the equational ��calculus
(see section 1.7.2).

The intuitive idea is the following: proving that ����� satisfies % is equivalent to
prove that �� satisfies a modified specification %����, where ���� is the partial evalua-
tion function for the parallel composition operator (see table 3.1). Hence, the behaviour
of a component has been partially evaluated and the requirements are changed in order to
respect this evaluation. It is worthwhile noticing that, if we avoid the technical difficulties
due to the presence of fixpoint operators, the partial evaluation function for the modal
formulas can be seen as driven by the operational semantics rules (see chapter 2). This
appears clear if one analyzes the partial evaluation rule for the formula �D�� w.r.t. the
� operator. By inspecting the inference rules, we can note that the process
�� (with �
unspecified component) can perform a D action by exploiting one of the three possibilities:

 the process � performs an action D going in a state � � and
��� satisfies A; this is
taken into account by the formula �D�����
�,

 the process
 performs an action D going in a state
� and
��� satisfies A, and this
is considered by the disjunctions

�
&

	�&�

���
�, where every formula ���
� takes
into account the behavior of � in composition with a D successor of
.

 the last possibility is that the D action is due to the performing of two comple-
mentary actions by the two processes. So for every ��derivative
� of
 there is a
formula �������
��.

The following lemmas are given in [4, 5], where �� is a finite state process (we could
also use the results of chapter 2).

Lemma 3.1 Given a process ����� and an equational specification �#� we have:
����� �� ��# �� �	 �� �� ��# ������

The partial evaluation function for the restriction operator can be found in [58].

Lemma 3.2 Given a process ��� and an equational specification � # � we have:
����� �� ��# �� �	 � �� ��# ������

62 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

��# ����* � ����*�# ��

6��* � 6
�� �� �����* � ���! �� �����!�1��	�
������*

���* � ��

������� � ��������� �
�
!

�
	�!�

������ �� � �� D
�D����� � �D������� �

�
!

	�!�

����� �
�
!

�
	�!�

����������
[�]���� � [�](�//s) �

�
!

�
	�!�

������ �� � �� D
$D %���� � $D %��//s) �

�
!

	�!�

����� �
�
!

�
	�!�

$�](� �����
�� � ����� � ������� � �������
�� � ����� � ������� � �������

���� � �

���� � �

Table 3.1: Partial evaluation function for parallel operator �.

3.4 Solution of module checking for ��calculus

In this section we show how the deterministic equational ��calculus can be used to solve
the module checking problem for ��calculus.

3.4.1 The reduction to a validity problem in deterministic ��calculus

First of all, please note that there are several versions of temporal logics, that are inter-
preted over Kripke models and not directly on Labelled Transition Systems. Since our
analysis framework is based on the notion of ��� we need some encodings1. The states
of ���� do not carry information, i.e. states are not labeled by propositional symbols.
On the other hand, Kripke models assume a unique accessibility relation among worlds.
We can encode the accessibility relation of the Kripke model as a particular transition
relation, say #

��. Moreover we can encode the fact that a proposition holds in a state as
the capability of performing a certain action when the system is in that state.

For example we may define two functions #� and #�, respectively from Kripke models
to LTSs and from CTL formulas to modal ��calculus formulas interpreted over LTS
(without propositional symbols).

Let us define the function #� which, given a Kripke model � � ���� �� �� F����� <�,
returns the following LTS #���� � ��6 � ��� � �D�� �

���
������#��, where

1In [25], the authors propose the notion of Doubly Labeled Transition Systems, which are ���� with
information added in the states.

3.4. SOLUTION OF MODULE CHECKING FOR ��CALCULUS 63

�6 � ��7�F � ��
��� � ��&�
 � ���
#
�� � ���7� �7����F� F�� � ��

�
�� � ���7� �7��
 � <�F�� F � ��

Formally, #� is defined inductively below:

#��� � � �

#��% � � �

#��
� � ��&��
#��
�� �
#����

#��� � ��� � #���� � #���
��

#��� � ��� � #���� � #���
��

#������ � �D�#����
#������ � $D %#����

#����-��� � ��
#���
�� � �#���� � �D���

#��	�-��� � ��
#���
�� � �#���� � $D %��

Now we can state the following lemma:

Lemma 3.3 F� � �� � �	 �7� #���� �� #����

Similar encodings and corresponding lemmas can be stated for the propositional ��cal-
culus interpreted over Kripke models, ���� and �����.

Remark 3.2 In the sequel we are interested to study module checking problems for equa-
tional ��calculus defined over Kripke models. Hereafter we assume as given the se-
mantics2 of this logic and moreover that a function #�� is given s.t. for every equational
specification � and every Kripke model � we have F� � �� � iff �7� #���� �� #�����.

We now describe a translation from modules to LTSs.

Definition 3.1 Given a module � � ���� ��� �!� �� F�� <� we define the following LTS
�* � ��� �� �

���
��� where:

� � ��7�F � ��
� � ��� � �! � ��

��� � ��&�
 � ���
�! � ��!7	7���F� F�� � � � F � �!�
�� � ���7	7���F� F�� � � � F � ���

	
 � �� �

�
�� � ���7� �7� �
 � <�F��

	F � �! �

�
����

�� � ���7� �7�� � �F� F�� � ��

	F � �� �

�
����

�� � ���7� �7�� � �F� F�� � ��

2A similar definition can be straightforwardly obtained from the definition of equational ��calculus in
section 1.7.2, by considering a unique label (�) and the standard clause for propositional constants.

64 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

Characterization of Exec(M) as LTSs

Our intention is to describe the set of trees in ���	��� up to isomorphism as LTSs. To
achieve this aim we characterize a set of processes, that we call �)>����.

We will show that given a module � , the set ���	��� can be characterized by the
set �CB
��� � �/"���*�������� � �)>�����, where /" is an unwinding function
(see below) and � � �!�����!���. In particular, each tree in ���	��� is isomorphic
to /"���*������ for a process � in �)>���� and vice versa. We consider rooted LTS,
i.e. LTS with a distinguished initial state �����.

Let us see the constraints that processes in �)>���� must satisfy in order to obtain
the above characterization. Let C be in ��� �� and � � ��� �! � ��� �

���
������

� be a
process in �)>���� then:

(1) The set of actions that can be performed by processes in �)>���� is limited to the
complementary actions of the actions in �! � ��, namely �! � �� � �� � � �
�! � ���. There are neither actions tied to propositional symbols nor D actions.

(2) 	� � �, if �

�
����

�� �� � F� � �! �� 	� � ��!7�	7���F�� � �"		�F��� ��

��.

It states that after a complementary action that leads the other component to a system
state, the process � must permit, by offering a complementary action, every action
of the other component.

(2’) 	� � �, if �

�
����

�� �� � F� � �� �� ��� � ���7�	7���F�� � �"		�F���� �� �� � � 	� �

�� ��

��.

It states that after a complementary action that leads the other component to an
environment state, the process � must permit, by offering complementary actions,
a non empty subset of the actions that the other component could perform.

(3) If the initial state of �* is �7����
with F���� � �! then 	� � ��!7�	7�� � F� �

F����� F
�� � �"		�F��� �����

��.

It means that the initial state of a process � in �)>����, where F���� is a sys-
tem state, must offer every complementary action of the actions performed by the
translated module in its initial state �7����

.

(3)’ If the initial state of �* is �7����
with F���� � �� then ��� � ���7�	7���F� �

F����� F
�� � �"		�F���� �� �� � � 	� � �� �����

��.

It means that the initial state of a process � in �)>����, where F���� is a envi-
ronment state, must offer a non empty subset of the complementary actions of the
actions performed by the translated module in its initial state �7����

.

(4) The processes in �)>���� must be deterministic.

The requirements (1-3’) can be simply translated in a list of equations in the equational
��calculus as follows:

3.4. SOLUTION OF MODULE CHECKING FOR ��CALCULUS 65

.� �� �
	

������

$�%.�� � �
	

��������#�����

$�%�� (3.1)

.� �� �
	

������

$�%.�� � �
	

��
�
����

�7��6��

$�%�
	

��
�
�� ����

�7���!/��	7�
�

������ (3.2)

.�� �� �
	

������

$�%.��� � �
	

��
�
����

�7��6��

$�%�

��
�
�� ����

�7���!/��	7�
�

������ (3.3)

.� ��
	

��
�
�� ����

�7��7����	7���!/��	7�
�

���� (3.4)

.�� ��

��
�
�� ����

�7��7����	7���!/��	7�
�

���� (3.5)

Given a module � � ���� ��� �!� �� F����� <�, we associate to � a list of equations
�* defined in the following way:

if F���� � �! then �* consists of the equations 3.1, 3.2, 3.3 and 3.4,

if F���� � �� then �* consists of the equations 3.1, 3.2, 3.3 and 3.5.

For the requirement 4 we use the theory presented in chapter 1 for the interpretation
of (equational) ��calculus formulas over deterministic ����.

We formally define the unwinding function /". This simply unwinds the ��� along the
D actions. Consider the ��� � � ��� �� � �D�� �

���
�����#�� s.t. if � � �� � � ��

and �

�� �� then �� � �. Let � be a state of an ��� � then the unwinding of � by starting

from � is a tree like ��� /"��� � �� �� �� ��D�� �

����
����# � rooted in �8 where let the
relation "� be ��
�"

8	����, and with 2 � �� and) � � we have:

"�	���� � �
"�	������ � ����� D� ���!���

#
�� ��� �

�
!��!

	�!�

"�!	�����

and
#

���� ���� � ���!� � ��� � D� ���!� � "�� and

���� ����� ��� � �

�� �� for � � ��

and � � � ��� � �8 ���� ��� with ����
�

�����#�

���. Please note that "8	���� �
"8	������. Sometimes we refer to the unwinding of a process by meaning the unwinding
of the ��� associated with the process by starting from its initial state.

Moreover we can give the following lemma, that states that a formula is satisfied in a
state � of an ��� iff it is satisfied in its unwinding (see [27]).

Lemma 3.4 Given a (equational) ��calculus formula � and an LTS � � ��� �� �

��

�
��� then we have:
�� � �� � �	 /"���� �8 �� �

66 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

Suppose to have a module � � ���� ��� �!� �� F����� <� and an order '6 on � �
�� ��!. Hence in the rest of this section we refer to every set of worlds �F��

 � F��
in such a way that F� '6 F� iff ' �.

We define a function from processes in �CB
��� to labeled trees. Actually, the
codomain of this function is the labelling of a tree, from which a tree can be simply
derived3.

Given a state "� in the set of states of /"���*������ let �"		#�"
�� � �"��/ � "�

#
��

"��/�. We assume a derived order among the elements of �"		#�"
�� in the following way

���7�
��������/

�

'1 ���7�
��������/

�

iff F� '6 F�. As for set of worlds, in the sequel
we refer to set of derivatives ����7���������/

�

�

 � ���7���������/
�

� in such a way that
���7�

��������/
�

'1 ���7�
��������/

�

iff F� '6 F�.
Hence, given a process /"���*������ in �CB
��� whose set of states is � � then let

��/"���*������� be: �
�
�

�
!��!�����������

�����

where:

������7����
������8� � �6� F�����

��������7�������/
�

� � ��� �*�� F�� � ���"
��� ��

��� �"		# �"
��� � ����7���������/

�

�

 � ���7���������/
�

�
�� #
�� ���7������

�/� � ���7��������
�/� ����

�*�
	� F��

Remark 3.3 Suppose to have ���7������� in ��(�/"���*������� with � 2 ��), then
by observing the function � we note that ������7�������� � �*� F� for some * � ��.

The following lemma states that � returns a �–labelling of a tree.

Lemma 3.5 Given a process /"���*������ in �CB
��� then ��/"���*������� is a
�–labelling of a tree.

Proof:
Assume to have /"���*������ in �CB
��� whose set of states is � �. We show that

the functions �� for) � � are injective, that is to say for �� � ���
�

� � � if ������ � ������
�

�
then �� � ���

�

. At the same time we prove that ��/"���*������� is a function from �
�

to � .
The proof proceeds by induction on). For) � � it is obvious. For) H � sup-

pose to have ���7������� and ���7��� ������
�

such that ������7������
�� � �*� F� and

������7��� ������
�

� � �*� F�. Hence it follows from remark 3.3 that F� � F; moreover

we have 2 � 2�"� and 2� � 2��"
�
�. So let �*�� F�� be ��	��"��� � and �*��� F

�
�� be ��	��"

����
� �,

and it must be *� � *��. By inductive hypothesis on) we know that also F� � F�
�. Now

3Simply, one takes as tree the set of sequences of naturals where the labeling is defined.

3.4. SOLUTION OF MODULE CHECKING FOR ��CALCULUS 67

we get by inductive hypothesis on injectiveness of ��	� that "��� � "
����
� . So it follows the

thesis since the processes in �)>���� are deterministic and hence � � � �.
Now we prove that ��/"���*������� � + is actually a labelling of a tree. We have

that �6� F����� � + . Moreover suppose to have �*� F� � + with � * ��), hence there exists
a state "� � � � s.t. ���"�� � �*� F�. By definition of �� it follows that there are � (with
� H �) D successors of "� and so � couples �*
�� F���

 � �*
�� F�� in + .

�

In the sequel it is technically preferable to consider ��/"���*������� as a labeled
tree, since the following results can be more easily stated.

Assume to have a process /"���*������ in �CB
��� and let ��/"���*������� be
��� + �. Given "�� "��

�

� ��(�/"���*������� with � 2 ��) and � 2 � ��) � then it is
easily checked that:

"�
#
�� "��

�

�	
���"�� � �*� F�
��
�����"��

�

� � �*
 � F��
��
�F� F�� � �

Now consider ��� + � as a ��� labeled tree. We have for all
 � �� and for all "� �
��(�/"���*������� that if ��"�� � �*� F� then:

"�

�
�� "� �	
 � <�F�

This property is guaranteed since for every �7 in the set of states of �* we have �7

�
��

�7 iff
 � <�F�. Furthermore, we prevented processes in �)>���� from performing
actions in ��� , and the restriction operator �� does not avoid these actions.

Let � � �)>���� then we show that there exists a labeled tree ��� + � in ���	���
s.t. ��/"���*������� � ��� + �.

Lemma 3.6 For every � � �)>���� we have ��/"���*������� � ���	���.

Proof:
We show that ��/"���*������� � ��� + � is in ���	���. We follow the definition

of ���	��� and we see that 6 � � and + �6� � F����.
Suppose to have *� � � � �� with + �*�� � F�. Hence by definition of � there exists

"��
�

� ���7��� ������
�

� ��(�/"���*������� with � 2 � ��) s.t. ���"��
�

� � �*�� F��.
We may have the following cases:

 F� � �!, then if 2� � 6 then "� is the initial state of /"���*������ and the state in
�* is �7����

. So condition (3) on processes in �)>���� ensures that every possible
transition from �7����

will be allowed, i.e. � � must perform every complementary
action of the actions in � � ��!7�	7�� � F� � F����� F

�� � �"		�F���.

Let �"		�F����� be �F��

 � F��, by construction of �* we get �7����

����������� �7�

for � ���

 �)�. Hence let ����7���
�
�����

��/��

 � ���7���
�
�����

��/�� be the set
of D successors of ���7��� ������

�

.

68 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

Then by definition of the function ���� we have ��������7�
�� �

�����
��/�� � �*�
 � F��

for every ���7�
�� �

�����
��/� , hence it follows that �* � * � �� � � � �
�
 * �

*�
 � � �*�
��

 � *�
)�, and for every 	� with � ' 	� ') we have + �*�
	�� � F�� .

Analogous is the case that 2 � �� 6, simply by using condition (2).

 F� � ��, then if 2� � 6 then "� is initial is the initial state of /"���*������ and the
state in �* is �7����

. So condition (3’) may be applied, by ensuring that a non empty
subset of the transitions of �7����

will be allowed. The proof follows as before. If
2� �� 6 the condition (2’) help us.

�

Conversely, now we show that for every labeled tree ��� +�� � ���	��� a process
� in �)>���� exists s.t. ��/"���*������� is isomorphic to ��� +��. First of all note
that, by remark 3.1, we can find an a labeled tree ��� + � isomorphic to ��� +�� s.t. if
�*�
 � *�
 � �� * � *�� � �� � �*
��

 � *
)� then we have + �*
�� '6 + �*
�� '6

 '6 + �*
)�. Call well ordered this kind of trees in ���	���.

Lemma 3.7 Given a well ordered tree ��� + � � ���	��� we find a process � in
�)>���� s.t. ��/"���*������� � ��� + �.

Proof:
We build inductively such process � (whose associated LTS will be tree like). More-

over, by induction on)� we show that ��� + � and ��/"���*������� are equal up to depth
of)�.

For the root 6 of the tree with + �6� � F���� we have " � ��*�����, where
��(��� � ���, and the initial state of �* is �7����

.
Let us suppose to have built such a process � with a depth of at most) �.
Now consider * � � and �*� �)� with + �*� � F. So, by inductive hypothesis, there

exists a state "� with � 2 ��)� in the states of /"���*������� s.t. ��
�

�"�� � �*� F�.
Hence, "� will be of the form ���7�� ������ , where � � � ��(��� and ��(�� �� �
�� ��. Let us build its set of successors s.t. if �*�
 � *�
 � �� * � *�� � �� �
�*
��

 � *
)� and for every 	� with � ' 	� ') we have + �*�
	�� � F�� then �"		# �"

���
����7���

�
�����

�/�

 � ���7���
�
�����

�/�.
From the last observation we should have that for every D successor ���7�

�� �
�����

�/

of "� we get ��
�������7�

�� �
�����

�/ � �*
 � F�� from which follows that ��� + � and
/"���*������� are equal up to strings of length)� �.

We may have the following cases:

 if F � �! then let � � �
�

���

�
�
, this permits � � to enjoy condition (2). More-
over with this extension we have that ���7�� ������ can go, by performing a D ac-
tion, in one of the following states ����7���
�����

�����/�

 � ���7���
�����
�����/�,

where �F��

 � F�� is �"		�F�.

In fact by construction of �* we have �7

������� �7�

for every � ���

 �)�.

If 2 � 6 then F is F���� and so condition � is ensured.

3.4. SOLUTION OF MODULE CHECKING FOR ��CALCULUS 69

 if F � �� then let �F��

 � F�� � � such that �*
��

 � *
)� � �*�
 � *�
 �
�� * � *�� � ��, and + �*
 � � F� for � ���

 �)�. So we have �F� F�� � � for
 � ���

 �)�; let � � be

�

��� �
�
, where �� � ���7	7� � F� � �F��

 � F���.

Clearly, � � satisfies condition ��.

So, we have ���7�� ������ can go by performing a D action in one of the following
states ����7���
�����

�����/�

 � ���7���
�����
�����/�.

In fact by construction of �* we have �7

������� �7�

for every � ���

 �)�.

If 2 � 6 then F is F���� and so condition �� is ensured.

During the above construction, we defined a process � that performs only actions in
�! � ��, and so condition 1 is ensured. Moreover � is a deterministic process, since for
every action � in �! � �� we have defined only an �–successor for every derivatives of
� . So � satisfies the conditions of membership in �)>����. �

Hence we get:

Proposition 3.1 Given an equational ��calculus formula � and a module � we have:

	��� + � � ���	��� � #����� + �5� �� �
�	

	� � �)>���� � /"���*������ �� �

Proof: (��)
By contradiction. Suppose to have � � �)>���� s.t. /"���*������ ��� �. Then by

lemma 3.6 there exists ��� + � � ���	��� s.t. ��/"���*������� � ��� + �. It turns out
that #����� + �5� is equal (up to renaming of states) to /"���*������. Hence we get a
contradiction since by hypothesis #����� + �5� �� �.

The other direction can be proved by using a symmetric argument. �

Suppose to have a module � � ���� ��� �!� �� F����� <� and an equational ��calculus
formula � #9 that can be interpreted over Kripke models. Hence we can define the fol-
lowing list of equations:

% � �4 � �� ���� ���#���� #9����������
�� � (3.6)

where 4 � is a new variable not in ��7��� ���7��*� and �� is equal to

	
: �1��	 �

. �� 4��

It is worthwhile noticing that 4�� is in ��7����#���� #9����������
*��. Hence we can

state the following proposition:

70 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

Proposition 3.2 Given an equational ��calculus formula � #9 , and a module � , we
have:

� ��� � #9
�	

% #9� �� &
��� �� ����"�������# �0�
��
�
� �#
�#����

Proof:

� ��� � #9 �	
	��� + � � ���	��� � ��� + �5 �� � #9 �	 ���� "��
"1 �
��
	��� + � � ���	��� � #����� + �5� �� #���� #9� �	 �
(C

 �
��
	� � �)>���� � /"���*������ �� #���� #9� �	 �<�B
 �
��
	� � �)>���� � ��*����� �� #���� #9� �	 �<�B
 �
�� �
��
	� � �)>���� � � �� ���#���� #9����������*� �	 ���� ���� �
��
	�����"�������# � � �� % #9� �	
% #9� �� &
��� �3�*�(B) �* 	 ��"�* C)�< �� 	�<	"<"��

�

3.5 Complexity analysis

In this section we study the complexity of our approach for the solution of the module
checking problem. Let us give below the notion of simple assertion.

Definition 3.2 An assertion is simple iff it is of the form:

� �� � � � � �� ��� � �� ��� � ���� � $�%�

A list of equations � is simple iff every assertion in the list is simple.

The partial evaluation function for � has a good property, in fact if the structure of the
assertion is simple then the size of reduced assertion is polynomial in the size of the initial
assertion. The necessity to restrict ourselves to this kind of list of equations relies on the
following observation (see [4]):

Suppose to have an equation list � � �� �� ���$�%

 $�%����� (with < modalities).
� is a process whose associated LTS ��� ���� �

���� has) states and every state can

reach the others (and itself) by mean of an action �. By applying the partial evaluation
function for parallel operator with � as known component and by supposing that the
unknown component cannot perform D actions, we have:

���D�$D %

 $D %�D������ �
�
�

!��

����
	
!��

$�%

!��

����!�

Hence the size of the resulting assertion is .�)��.
Under the assumption that the assertion is simple Andersen has proved:

3.6. SOLVING THE MODULE CHECKING FOR OTHER TEMPORAL LOGICS 71

Lemma 3.8 If � is a simple assertion then for every state � of a transition system � �
��� �� �

���
��� we have � ��� � ���� �� .�� � �� � ��.

Since the translation *(�� for every assertion in � produces � � � assertions, we have
that size of the resulting list of assertions after the translation and the partial evaluation is
.�� � �� � ��.

To treat with modal ��calculus, we observe that Andersen has also given a linear
translation from ��calculus to equational one s.t. the resulting list of equations is simple.
Now we have the technical tools to state the main result of this chapter.

Theorem 3.1 The module checking for the ��calculus is decidable.

Proof: We can simply observe that given a ��calculus formula � and a module � , we
can translate � in a simple list of equations �� whose size is polynomial in the length of
�, and we can associate to � the LTS �* , whose size is linear in the size of � . The
partial evaluation of the equation list �� produces a list whose size is polynomial in the
length of the original formula and in the size of the LTS �* . Moreover the size of the
list of equations �* which is used to express the conditions on �)>� processes, is linear
in the size of � . Hence the problem is reduced to a validity problem in deterministic
equational ��calculus.

A simple decision procedure for equational deterministic ��calculus is translating
the list of equations in a ��calculus formula, by using the translation *(of section 1.7.3.
Then by applying the theorem 1.1 for the satisfiability (validity) problem of deterministic
��calculus, we obtain a complexity that is double exponential in the product of length of
the original formula and the the size of the module. �

3.6 Solving the module checking for other temporal logics

Bhat and Cleaveland proposed interesting translations from ���,���� and ����� into
equational ��calculus (see [10]). They exploited these translations for efficient temporal
logic model checking for branching time logics. In particular in this way the space-
efficient model checking procedures developed for ��calculus (see [5, 16]), can be used
also for ���� and �����.

Proposition 3.3 The following results are proved in [10]:

 for every formula � � ��� there is a simple list of equations � s.t. � # �� is
equivalent to �. The list of equations has size linear in the length of � and can be
calculated in linear time.

 for every formula � � ���� there is a simple list of equations � s.t. � # �� is
equivalent to �. The list of equations has size exponential in the length of � and
can be calculated in exponential time.

72 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

 for every formula � � ����� there is a simple list of equations � s.t. � # �� is
equivalent to �. The list of equations has size linear in the length of � and can be
calculated in linear time.

By means of our result on the decidability module checking problem for equational
��calculus we can state:

Proposition 3.4 Given a module � then:

 There is a procedure that solves the module checking problem in (deterministic
double) exponential time on the length of a CTL formula � and in the size of � .

 There is a procedure that solves the module checking problem in (deterministic
triple) exponential time on the length of a CTL� formula � and in the size of � .

 There is a procedure that solves the module checking problem in (deterministic
double) exponential time on the length of a ECTL� formula � and in the size of � .

Conjecture 3.1 Kupferman and Vardi have shown that module checking problem for
��� and ���� is respectively ����?�� and �����?�� complete. Hence, there
is an exponential blow up from the complexity of their procedure and ours. We conjec-
ture that is possible to find a suitable decision procedure for deterministic equational
��calculus (or simultaneous one) such that our procedure has a complexity that is expo-
nential in the size of the formula and in the size of the module for ��calculus. Hence we
could obtain optimal results for ��� and ����. We are encouraged in this supposition
since for simultaneous ��calculus, Street and Emerson claim the desired complexity in
[94]. We leave the proof of this conjecture as a future work.

3.7 An example

In this section we show a simple example of application of our theory. Since we have
reduced the module checking problem to a validity problem in deterministic (equational)
��calculus, we may use the proof system proposed in chapter 1 to perform the analysis.

We have used the partial evaluation theory for the CCS operator, as proposed by An-
dersen, for several reasons, in particular since a prototype implementation (called mudiv)
has been provided by Nielsen (see [58]). By starting from this tool we have developed a
software environment that offers some features which permit to solve the module check-
ing problem for simple properties without the necessity to implement the satisfiability
procedure for deterministic ��calculus (see chapter 5 for a better explanation of our
tool).

It is worthwhile noticing that our approach is not only algorithmic such as the one
of Kupferman and Vardi, but we can prove that a system satisfies a property simply by
exploiting our axiomatization for deterministic ��calculus.

3.7. AN EXAMPLE 73

�

�

�

�S S

S

E

 Boil

 Choose

 Tea Coffee

Figure 3.3: The module for a vending machine.

�

�

�

��
��	�
 ��	

	���

�
 ��	�
�

�

�
�

�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
���

������

�������

1

2

3 4

���� �������

����	

��
����

�
�
��

�
�
��

�
�
��

�
�
��

�
�
��

Figure 3.4: The translated module of the vending machine.

74 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

�

�

�

�

�
��	
�
 ��	

	���

�

�

�

�

� �
�

�
�
�
�
�
�
�
�
�
�
�
���

������

�

�
�
�
�
�
�
�
�
�
�
�
���

������

1

2

3

�

�

1

2

3

��
��

��
��

��
��

a) b)

����	

����

��
����

�

Figure 3.5: An environment process � and the composed system ��*��� � �.

Consider the module in figure 3.3. The system boils water and then it reaches a state
where it can accept an interaction with the environment, i.e. serving tea of coffee. The
choice is performed by the environment. After serving one of the two drinks, it returns
in its initial position. A minimal requirement is that the system can always reach a state
where it can serve a drink (tea or coffee), for every environment in which it operates. We
recall that every environment must allow at least one of the possible transitions that the
system has at a certain state. A CTL formula that expresses this property is the following

���� �
��� �*�� � 	C77�����

By using the translation #� we can get the equivalent ��calculus formula:

�� �
���

�#����� �*�� � 	C77����� � �� � �D���

where
#����� �*�� � 	C77���� � �.
�����
�� � ���+������� � �D�.

Since we want a positive formula we can consider the equivalent positive formula:

��� � ,�
��.
�����
�� � ���+������� � �D�. � � $D %�

This formula can be translated in an equivalent equational definition that is also sim-
ple:

� �� . ���

�� �� $D %�
. �� .� � .�

.� �� �D�.

.� �� .� � .�

.� �� ����
��

.� �� ���+������

3.7. AN EXAMPLE 75

The module � for the vending machine is the following tuple � � ���� ���
�!� �� F����� <� where:

�� � ��C <� 	#CC��� 	C77��� *���
�! � ��� �� ��
�� � ���
� � ���� ��� ��� ��� ��� ��� ��� ��� ��� ���
< � ���� ��C <��� ��� �	#CC����� ��� �*����� ��� �	C77�����
F���� � �

The associated LTS �* is shown in figure 3.4. The set of actions � is ��� � �! �
�� � �!�. We have used the program mudiv and the tool described in section 5.4 for
partially evaluating �* w.r.t. the previous equation list. After performing some simple
simplifications on the resulting list of assertions, that do not modify the semantics of the
list, this is translated in a ��calculus formula.

The output of the program is given in figure 3.6, where Vi is the , operator, Box and
Dia are necessity and possibility modalities, and ˜as12 is �!�	� (similarly for the other
actions).

Vi
("Xs1",
And
(Dia (["˜as12"], Or (Dia (["˜ae24"], True), Dia (["˜ae23"], True))),
Box
(["˜as12"],
And
(Or (Dia (["˜ae24"], True), Dia (["˜ae23"], True)),
And
(Box (["˜ae24"], Box (["˜as41"], Var "Xs1")),
Box (["˜ae23"], Box (["˜as31"], Var "Xs1"))))))),

Figure 3.6: Output of the tool.

The formula can be rewritten as follows:

���� � ,���
�� � ��

where:
�� � ��!�	����

�� � $�!�	�%��� � ���
�� � ����	��� � ��

�
�	���

�� � $���	�%$�
!
�	�%��� � $���	�%$�

!
�	�%���

76 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

3.7.1 A proof

Given a module � let us restate the property expressed by the list of equation �* in
deterministic ��calculus. Thus we can use the proof system presented in chapter 1.

Hence, given a module � redefine �* as �� ��� ���� and whenever F���� � �! let
?* be ��, otherwise ��� .

(1) ,�
�
�

������

$�%�� � �
�

��������#�����
$�%��

(2) ,�
�
�

������

$�%�� � �
�

��
�

����
�7��6��$�%�

�

��
�

�� ����
�7���!/��	7�
�������

(2’) ,�
�
�

������

$�%�� � �
�

��
�

����
�7��6��$�%�

�

��
�

�� ����
�7���!/��	7�
�������

(3)
�

��
�

�� ����
�7��7����	7���!/��	7�
�����

(3’)
�

��
�

�� ����
�7��7����	7���!/��	7�
�����

In this subsection we show that �*�?* �� ���� is valid in deterministic ��calculus,
by showing that �* � ?* � ���� is provable.

First of all let us see some useful lemmas that will be used during the proof, and assert
some capabilities of the processes in �)>�.

For every F� � �� the following sequents are provable:

�* � $�+7	7�%��
��
�
�� ����

�7���!/��	7�
����� � � $�
+
7	7�%�* (3.7)

For every F� � �! the following sequents are provable:

�* � $�+7	7�%��
��
�
�� ����

�7���!/��	7�
����� � � $�
+
7	7�%�* (3.8)

Since the initial state 1 is in �! then we have ?* � ��!�	���.
The proof for the sequent �* � ?* � ���� is the following. We have used the proof

system presented in the chapter 1 with some derived rules such as:

� � '���

� � ,�
'���
�,�

Let us show the proof:

3.7. AN EXAMPLE 77

����	�� � ��
�
�	��� �

* �� � ��
�

����	�� � ��
�
�	��� �

* ���
�� �
��!�	��

$�!�	�%���
�
�	�� � ��

�
�	���� $�

!
�	�%�

* � ��!�	���� $�!�	�%
�� �
��

$�!�	�%���
�
�	�� � ��

�
�	��� � $�

!
�	�%�

* � ��!�	���� $�!�	�%
�� �
	"* !��� �
�

�* � ?* � $�!�	�%
�� �
(

�* � ?* �
$�!�	�%
��
	"* !���
2�
�

�* � ?* � ��

9�

�* � ?* � ����
* � ?*�

(�
�* � ?* � �� � ����

* � ?*�
��

�* � ?* � �� � ����
* � ?*�

,
�* � ?* � ����

9� �

9�

$�!�	�%�� � $�!�	�%�
* � ?* � ��!�	��
��� � ����

* � ?*�� �
	"* !��� �
�

�* � ?* � ��!�	��
��� � ����
* � ?*�� �

(

�* � ?* �
��!�	��
��� � ����

* � ?*��
	"* !���
2�
�

�* � ?* � ����
* � ?*�

9� �

��� �
* � ��

9�

��� �
* � $���	�%$�

!
�	�%��

* � ?*�

9�

��� �
* � $���	�%$�

!
�	�%��

* � ?*�
(�

��� �
* � $���	�%$�

!
�	�%��

* � ?*� � $���	�%$�
!
�	�%��

* � ?*�
(�

��� �
* � ��� � ����

* � ?*��
�

��� �
* �
��� � ����

* � ?*�� �
��!�	��

$�!�	�%��� $�!�	�%�
* � ?* � ��!�	��
��� � ����

* � ?*�� �
��

$�!�	�%�� � $�!�	�%�
* � ?* � ��!�	��
��� � ����

* � ?*�� �

9� �

78 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

��!�	���� �* � �* � ?*

���������������������� �
�(�
��!�	���� �* �
��* � ?*� �

��!�	��
��!�	���� $�!�	�%��

!
�	���� $�!�	�%�

* � ��!�	��
��
* � ?*� �

(

��!�	���� $�!�	�%��

!
�	���� $�!�	�%�

* �
��!�	��
��
* � ?*�

	"* !��� �� CB
��!�	���� $�!�	�%��

!
�	���� $�!�	�%�

* � $�!�	�%��
* � ?*�

��
��!�	���� $�!�	�%��

!
�	��� � $�

!
�	�%�

* � $�!�	�%��
* � ?*�

	"* !��� �
�
��!�	���� �* � $�!�	�%��

* � ?*�
�

��!�	���� �* �
$�!�	�%��
* � ?*� �

����	��
��� $���	�%��

!
�	���� $���	�%�

* � ����	��
$�
!
�	�%��

* � ?*� �
��

��� $���	�%��
!
�	��� � $�

�
�	�%�

* � ����	��
$�
!
�	�%��

* � ?*� �
	"* !��� �
�

��� �
* � ����	��
$�

!
�	�%��

* � ?*� �
(

��� �
* �
����	��
$�

!
�	�%��

* � ?*�
	"* !���
2�
�

��� �
* � $���	�%$�

!
�	�%��

* � ?*�

9� is similar to the proof 9�.
By observing the module for the vending machine it should be clear that if an envi-

ronment never chooses the 	C77�� option then in this case the system does not have the
possibility to serve this drink, in other words the result of module checking of the CTL
formula:

� �
���� �
��� 	C77����

is false. This can be formally proved by providing a process in �)>���� s.t. ��*��� �
� ��� ��, where �� is the equational ��calculus translation of �. For example the be-
haviour of the LTS in figure 3.5��� in composition with �* is represented in figure 3.5���.
The mudiv program can be used to perform the model checking of the resulting system
w.r.t. the equation list � �.

3.8 Conclusions and future work

In this chapter we have studied an alternative approach for the analysis of module check-
ing problems (see [50, 51, 52, 101]).

Indeed, we propose the use of the equational ��calculus (actually a deterministic
variant) and the compositional analysis techniques for the solution of module checking
problems. In particular we give a procedure for solving the module checking problem for
modal ��calculus, and �����, by extending the results of [50].

In this way we define a unified framework for the analysis of module checking prob-
lems for several temporal logics.

3.8. CONCLUSIONS AND FUTURE WORK 79

This work is in the line of research proposed by Bhat, Cleaveland and Emerson (and
many others) that propose the ��calculus as an intermediate language into which others
logics may be translated for efficient model checking. Here we prove that ��calculus can
also be used as an intermediate language for module checking too.

We propose a solution method that may be applied by using proof theoretic techniques
and syntactic translations among formulas. Furthermore we have built a simple software
environment which may be used to perform module checking for small systems (see sec-
tion 3.7).

As a future work we plan to study module checking problems for restricted classes of
formulas, in order to obtain more efficient decision procedures. In [50] Kupferman and
Vardi studied the module checking problem for 	���, i.e. the subset of ��� formulas
such that there is only universal quantification over paths, and moreover every quantifica-
tion is in the scope of an even number of negations. The model checking and the module
checking problem coincide for this set of formulas. Hence the module checking problem
can be solved in polynomial time in the size of the module and in the size of the formula.

We conjecture that the disjunctive ��calculus formulas, defined by Janin and Walukie-
wicz in [46], may be exploited in this analysis. In fact the satisfiability problem for these
formulas is decidable in linear time (see [46]). We believe that a similar result may be ob-
tained for disjunctive deterministic ��calculus formulas. Furthermore, there is a proper
subset of this class, whose corresponding set of negated formulas is closed w.r.t. the par-
tial evaluation function. Hence the idea is to reformulate our approach in such a way
to reduce the module checking problem for the negated of this sub class of disjunctive
��calculus formulas to a satisfiability problem for disjunctive deterministic formulas.

80 CHAPTER 3. ANALYSIS OF OPEN SYSTEMS

Chapter 4

A synthesis problem

In this chapter we study a synthesis problem that can be defined through underspecifica-
tion. In the previous chapters we have seen how to verify that, for each component that
may be substituted for an unspecified one, the resulting system satisfies a property (in
particular for terms of a process algebra). Here we study a method for finding a suitable
system for inserting in the unspecified component, if it exists, such that the whole system
respects a specification. Actually in this case the specification is represented by another
system and not by a logical formula.

The techniques used are different from the compositional ones, even though these
could be used too, since in this way it is possible to define more efficient synthesis proce-
dure.

4.1 Introduction

In the field of automatic synthesis of programs one often has an abstract specification of
the whole program and an incomplete implementation, and he would like to automatically
derive a complete implementation that satisfies the specification.

The problem for concurrent systems has been dealt with firstly by Merlin and Boch-
mann in [68], where specifications and implementations are expressed in terms of execu-
tion sequences and trace equivalence is used as a criterion of satisfiability. An implemen-
tation of the method is in [88]. In [86] Shields models the same problem in terms of CCS
process algebra (see [69]) and starts from the problem of two given modules
��
� that
interact through an unspecified interface X and must satisfy an abstract specification �:

�� � �� � $

This can be written as �� � �
��� � � � �, where
 �
��
�. The equation is called
the interface equation by Shields. In the equation
� �� � are CCS terms, � is the par-
allel composition, �� is the restriction on synchronization actions � and � is Milner’s
observational equivalence. This equivalence abstracts from internal communications (i.e.

82 CHAPTER 4. A SYNTHESIS PROBLEM

two processes are equivalent iff they are not distinguished by an external observer), and is
more discriminating with respect to comparing execution sequences, in fact it is sensitive
to potential deadlocks. Shields gives necessary and sufficient conditions for the solution
of the problem when
� � are finite state processes and � is deterministic and rigid (i.e.
without internal actions). The work by Qin and Lewis [81] extends the work of Shields
by giving an algorithm to find the most general solution (a solution that simulates every
other solution) if it exists.

More recently Haghverdi and Ural in [41] have proposed an algorithm based on sets
of derivatives, claiming the naturalness of their approach, but their algorithm still has a
complexity that, in the worst case, is exponential in the product of the state space of
 and
�. In [77] Parrow presents an alternative and elegant method for solving the problem. This
is based on successive transformations of equations into simpler ones, together with the
generation of a solution. The method is semi-automatic and tries to find the most general
solution, but the strategy is not complete. A complexity measure for the algorithm is
not given, but the procedure uses backtracking. An extension for the solution of general
context equations is developed in an original way by Larsen and Liu in [54]. In this paper
� can be a generic CCS process, but the equivalence considered is strong bisimulation
[70], which does not abstract from internal behaviour of a system, and so it is not well
suited for a top down design methodology. All the algorithms proposed in [41, 54, 81, 86]
have complexity in time and space exponential in the product of the state space of
 and �.
In this chapter we modify the algorithm proposed in [81] and obtain a complexity in time
and space of =���&����� �(��. Algorithms proposed in [41, 86] can be modified similarly.

4.2 Theoretical framework for the solution of the inter-
face equation

We follow the treatment given by Shields in [86]. Let �	* be a set of actions and 3�
� �
�	* be the set of actions of
. We use a parallel operator ��

�
which corresponds to the

composition of the CCS operators � and ��. The process, parallel composition of two
processes, can perform an action not in � if one of the components can perform it, but to
do a synchronization (D action) both components must be able to perform complementary
actions in �. The set � is called synchronization actions set. So the LTS associated with

��

�
� has states
���

�
�� with
� � ��(�
�� �� � ��(���, actions in �3�
� � 3������ � �D�,

initial state
��
�
�, and, for every � � 3�
��

�
��,

�� is the least relation that can be inferred

by the following rules:

�
��
�� ����

��
�
�

�
��
���

�
�

�
�
����� ����

��
�
�

�
��
��

�
��

�
�
� �

�
��� �<�<���

��
�
�
�
�
���

�
��

We recall the definition of simulation among processes.

4.2. THEORETICAL FRAMEWORK FOR THE SOLUTION 83

�

�

�

�

� �
� �

�

�
� � �

� ��

�

�
�
�

�
�
�
�

�
��

�
�� �

�

�
�

��

�
��

�
��

�
��

�

�

�

�

�

�

(�

&�

�

&� (�

� �

#

�

�

�

Figure 4.1: Examples of the simulation relation. We have
� ' �� and �� '
�, but

� �� ��. Moreover
� ' �� and �� �'
�.

Definition 4.1 A relation(between states is a simulation if for each �
� �� � (and for
each � � �	* � �D�:

if

��
� then there exists �� � �

�� �� and �
�� ��� � (

We write
 ' � (i.e. � is more general than
) if a simulation relation (exists such
that �
� �� � (.

Some examples of the simulation relation are shown in figure 4.1.
Assume 3����� � � with � � ���, and ��3�
� � � � 3�
��3���. So there is

a distinction between the set of actions of the process
 and the one of a possible solution
of the interface equation. A process
 is deterministic if for all
� � ��(�
� if
�

��
��

and
�

��
��� then
�� �
���, and is rigid if for all
� � ��(�
��
� �

#
��.

Definition 4.2 For �
�� ���� �
��� ���� � ��(�
����(��� and � �� D :
(a) �
�� ���

�
��� �

��� ���� iff
�
�
��
��� ��

�
�� ���,

(b) �
�� ��� #
��� �

��� ���� iff
�
#
��
�� and �� � ���.

We call ���# the reflexive and transitive closure of �
�
��� �

#
��� �.

Definition 4.3 Let !�# �

�� ��� � ��
��� ������
�� ��� ���# �

��� �����.

The importance of the sets !�# is shown by the following proposition.

Proposition 4.1 If
��
�
� � � and � is deterministic and rigid, then for every �
�� ��� �

!�# �
� �� we have
���
�
� � ��.

84 CHAPTER 4. A SYNTHESIS PROBLEM

This leads to represent states of the solution as set of pairs of the state space of
 and
�, where every pair is an instance of an interface equation that is solved by a process with
the state represented by the set as initial state. Assume 4�
� �� to be the set of possible
representations of state of solutions i.e. ��	&�	(�
��!�# �

�� ����� � ��(�
� � ��(����.
Shields has studied the kind of systems corresponding to states of a solution of interface
equations and characterized them in a strict manner. Firstly he equips elements of 4�
� ��
with a transition structure that should reflect the transition structure of a solution �.

Definition 4.4 For �
�� ��� � ��(�
����(���:
��� �
�� ���

�
��; �

��� ���� if
� �
�� and ��
�
�� ��� and � � 3����3�
� and � �� D ,

��� �
�� ���
�
�� �

��� ���� if �� � ��� and
�
�
��
�� and � � � and � �� D .

Definition 4.5 For 0� 0 � � 4�
� ��:
��� 0

�
��; 0 � iff for all �
�� ��� � 0� �
�� ���

�
��; �

��� ���� and �
��� ���� � 0 �.
��� 0

�
�� 0 � iff

(i) there exists �
�� ��� � 0 and �
��� ���� � 0 � s.t. �
�� ���
�
�� �

��� ����,
(ii) for all �
�� ��� � 0 if �
�� ���

�
�� �

��� ���� then �
��� ���� � 0 �.

Only a particular kind of subsets of 4�
� �� reflects the solution of an interface equa-
tion
��

�
� � �. These sets are called uncompromised systems, i.e. they are ? � 	CB
<�*�

and = � 	CB
<�*� in the following sense.

Definition 4.6 Assume � � 4�
� �� and 0 � �. The set K is ? � 	CB
<�*� iff for all
�
�� ��� � 0 if
�

�
��
�� and � �� � � �D� then ��

�
�� ���

Definition 4.7 Assume � � 4�
� �� and 0 � �. The set K is = � 	CB
<�*� w.r.t. to �

iff for all �
�� ��� � 0 if ��
�
�� ��� and � �� D then there exist) % �,���

 � �� � �,

0��. . . � 0�� 0
�� � � and
��. . . �
� � ��(�
� such that:

(1)
� �
�
����
��

 �
�	�

��
��
�

(2) 0 � 0�
���� 0�

0�	�

���� 0�

(3) Either
(a)
�

�
��
�� and 0� � 0 �� and �
��� ���� � 0 �� or

(b)
� �
�� and 0�
�
��; 0 �� and �
��� ���� � 0 ��

Intuitively if 0 � � � 4�
� �� is not ? � 	CB
<�*�, then �
� �� � 0 exists where

�
��
�� � �� � � �D� and � �

�
��, but there is no solution to this interface equation.

While I-completeness is a property of elements of4�
� ��, O-completeness is a property of
subsets. Informally it says that if there exists a pair �
� �� � 0 and �

�
�� �� then through

a sequence of synchronizations, the whole system goes to a state in which � action can be
performed. The importance of this characterization is shown by the following theorem.

Theorem 4.1 [Shields] An interface equation
��
�
� � � has a solution iff 4�
� �� has an

uncompromised system.

4.3. AN ALGORITHM FOR SUBMODULE CONSTRUCTION 85

4.3 An algorithm for submodule construction

Now we present the algorithm proposed by Qin and Lewis in a formulation that uses the
concepts of Shields we have recalled in the previous section. This will allow us to state
easily a proposition which permits a modification of the algorithm with an improvement
in complexity. Let ����� � 3����3�
� be the set of external actions and �CBB��� �
3�
� � � be the communication actions of the possible solution. A box consists of a set
0 � 4�
� �� together with a set of ports.

Intuitively, the algorithm, after checking whether the equation is obviously unsolvable
(�*�
 �), tries to find the uncompromised system that reflects the most general solution. In
�*�
 � every Box containing 0 � 4�
� �� I-complete, which is reachable from the initial
Box that contains !�# �
� ��, is considered; reachable Boxes whose 0 is not ?� 	CB
<�*�
are marked !��. The system constructed up to this point (by abstracting away !��
Boxes) is ? � 	CB
<�*�, and a possible uncompromised system that reflects the most
general solution must be a subset of this system, if a solution exists. Then the system is
refined, boxes whose set of pairs is not =�	CB
<�*� w.r.t. the current system are marked
!�� (�*�
 �), until an uncompromised system is found or box �� is marked !��. In
�*�
 � the LTS for the possible solution is constructed. Note that a box �� has a port
" � ����� not marked !�� if all pairs in �� can perform a " action, while this is not
necessary for actions in �CBB���. In the following algorithm there is a reference to the
anywhere state. Every process may be substituted to this state and the resulting process is
still a solution.

Step 1 Generate all !�# sets. If !�# �
� �� is not ? � 	CB
<�*� then finish and report
failure.

Step 2 Associate to each box � that will be created in the following a set of ports labeled
with actions in Ex(X) and Comm(X). Create an initial Box �� with pairs !�# �
� ��,
and mark box �� unprocessed. Do the following until there are no unprocessed
boxes ��:

0 Remove the mark unprocessed from Box ��; mark Box �� !�� if it is not
? � 	CB
<�*� else do (1) and (2) below.

1 For each symbol " � �����, do the following:
Let ���"� � ��!�# �

�� ������
�� ��� � ��� �
� /
�� ����.

If �
�� ��� � �� exists such that � � �
/
�� then mark port " on box �� !�� else

do (a) and (b) below:

(a) Check whether there is a box �� containing exactly all pairs in ���"�. If
not, create such a box �� and mark it unprocessed.

(b) Create a transition ���� "� ���. Create a link from �
�� ��� � �� to �
�� ���� �
�� labeled with u.

86 CHAPTER 4. A SYNTHESIS PROBLEM

2 For each symbol I � �CBB���, do the following:

Let ���I� � ��!�# �

��� �����
�� ��� � ���

� <
��
���.

If there is no pair �
�� ��� � �� such that
�
<
�� then create a transition

���� I� �);F#�(�� else do (a) and (b) below:

(a) Check whether there is a box �� containing exactly all pairs in ���"�. If
not, create such a box �� and mark it unprocessed.

(b) Create a transition ���� I� ���. If �
�� ��� � �� and
�
<
��
�� then create

a link from �
�� ��� � �� to �
��� ��� � �� labeled with I.

Step 3 Repeat:

(1) If there is a " transition (" � ����� � �CBB���) from a Box �� to a !��
box ��, mark port " on �� !��. Delete all " transitions from ��. Delete all
" links from pairs in ��.

(2) Mark box �� !�� if there is a pair �
�� ��� � �� such that ��
/
�� ��� for some

" � 3���, but there does not exist a sequence of action links I��

 � I� �

�CBB��� � �D� such that �
�� ��� <��� �
��� �
��

<���

<��� �
��� �

��
/
��

�
��� ���� for some) % �.

until no new !�� boxes are found in (1) and (2) above.

Step 4 If initial box �� is marked !�� then report “Not Solvable”. Otherwise construct
a transition graph for the process R as follows:

1. The initial state of R is ��.

2. The transitions of R are the remaining ones between good boxes and the transi-
tions to the state anywhere state from good boxes.

3. The states of � are good boxes reachable from ��.

4. The actions of � are ����� � �CBB���.

Report R.

In [81] the authors prove the following proposition.

Proposition 4.2 The solution � reported by the algorithm, if it exists, is the most general
solution to
��

�
� � �.

A complexity of =���&���(�� in time and space is claimed, where �
� is the cardinality
of the set of states of a process
. For our purposes it is sufficient to prove the following
proposition, which relates the theory of Shields to the results given by the algorithm of
Qin and Lewis.

4.3. AN ALGORITHM FOR SUBMODULE CONSTRUCTION 87

Proposition 4.3 The sets of good boxes reported by the algorithm is an uncompromised
system.

Proof: Let � be the set of good boxes reported by the algorithm. In �*�
 �
� every box
�� � � whose set of pairs is not ? � 	CB
<�*� is marked !��. It is not possible that
there exists �� � � that is not = � 	CB
<�*� w.r.t. �, in fact in �*�
 �
� it would be
marked !��. �

4.3.1 An improvement

In this subsection we study the theory of Shields and we show how to improve the previous
algorithm.

Proposition 4.4 If
� � are deterministic and rigid then
 � � �	 �(�	���
� � �(�	�����.

Proof: Since in general we have that
 � � implies �(�	���
� � �(�	����� we will
concentrate on the other direction. Let us see the other implication. The following relation
is a weak bisimulation:

(� ��
� �� �
� � "�5��
�� ����"�������#
�� �(�	���
� � �(�	������

In fact(is symmetric and suppose �
� �� � (then:

 if

��
� then since �(�	���
� � �(�	����� there exists �� s.t. �

�� ��. By

contradiction we prove that �(�	���
�� � �(�	������. In fact without loss of gen-
erality we can suppose that
�

!
�� and �� �

!
�� and we will prove that in this case we

have also �(�	���
� �� �(�	�����. The process
 can perform the sequence �� but
this is not true for �, since the only �� �"		���C(of � can be � � and �� �

!
��.

�

Lemma 4.1 If � � ��
� �� is an uncompromised system then for every 0 � � if

�
� ��� �
� ��� � 0 and
 �
�
����
��

 �
�	�

����
� and 0 � 0�
���� 0�

0�	�

��
�� 0� then �
�� ��� �
�� ��� � 0�.

Proof: By induction on). For) � � it trivially follows. Let us see the inductive step
where) �)� � and the lemma is true by inductive hypothesis for)�. Then we know
that �
��� ��� �
��� ��� � 0�� and
��

#
���
���

����
��
#
���
�. Since �
��� �� � 0�� then

�
��� � �� � 0�� (since !�# �
��� �� � 0���� �

�
�� �� � 0� (by the hypothesis 0��

���� 0��
and at least �
�� �� � 0� (since !�# �

�
�� �� � 0��. The same reasoning can be applied to

�
�� � �
��. �

Lemma 4.2 If � � ��
� �� is an uncompromised system then for every 0 � � if
�
� ��� �
� ��� � 0 and �

!
�� ��� �

� !
�� ��� then there exist 0 � � � and
� � ��(�
�

s.t. �
�� ���� �
�� ���� � 0 �.

88 CHAPTER 4. A SYNTHESIS PROBLEM

�

�

�

�

�
 �

���

���

���

���

���

��

�

�

�

�

�

�

�

�

�

�

�
Æ� �
�

�

��

�

	�

�

� �
�

�
��
�

�

�

�

�

�

�

�

�

� �

� �

�

��

��

��

�

�

��

�

�

�

�

���

���

���

�� ��

�� ��

��

�� �� �	

�� �

��� ��

��� ��

��� ��

��� ��

��� ���

��� ���

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��

��� ��
��� ���

��� ��

��� ��
��� ��

�

�

�

�

�

�

�

� �

�

�

��

��

��

Figure 4.2: An example taken from [81], boxes under dotted line are not considered in
the improved algorithm. Transitions to the Anyware state are not shown.

4.3. AN ALGORITHM FOR SUBMODULE CONSTRUCTION 89

Proof: By induction on the lenght of �. If lenght of � is 0 the the result trivially follows.
Let us see the inductive step and suppose � � ���. If �

!
�� �� and ��

!
�� ��� then we know

there exist 0� � ��
� � ��(�
� s.t. �
!�
�� ��� and ��

!�
�� ���� with �
�� ����� �

�� ���� � � 0�.
Since �� �� are deterministic then we have ���

�� �� and ����

�� ���. Since 0� � �� ���

��

�� and � is O-complete it follows that there exist
� �
�
��
��
��

 �
�	�

��
��
� and

0 � 0�
���� 0�

0�	�

���� 0� and either (a)
�

��
�� and 0� � 0 �� and

�
��� ��� � 0 �� or (b)
� �
�� and 0�
�
��; 0 �� and �
��� ��� � 0 ��
 By lemma 4.1 we

have �
�� ��� �
�� ��� � 0�. Then if � � 3����3�
� case (a) is excluded and so case (b)
remains. But in this case let 0 � be 0 �� and
� be
�� then we have the thesis, since if
0�

�
��; 0 �� then also �
�� ���� must be in 0 �� (see definition of ��; relation). In the

other case if � � 3��� � 3�
� the case (b) can be excluded since �
�� ���� �

��; and so

only case (a) remains. But in this case let 0 � be 0� and
� be
�� hence we have the thesis,
since �
�� ���� � � 0 �� and �
��� ���� � !�# �
�� �

��
� �. �

In the following proposition we formulate a property of uncompromised systems that
permits us to improve the complexity of the algorithm.

Proposition 4.5 If � � ��
� �� is an uncompromised system then for every 0 � � if
�
� ��� �
� ��� � 0 then � � ��.

Proof: By contradiction, suppose that 0 � � exists with �
� ��� �
� � �� � 0 such
that � �� ��. First of all suppose that �

�
��� �� �

�
��� � � 3����3�
�. Then since 0 is

= � 	CB
<�*� w.r.t. � there exist
 �
�
����
��

 �
�	�

��
��
� and 0 � 0�

����

0�

0�	�
���� 0� and either (a)
�

�
��
�� and 0� � 0 �� and �
��� ���� � 0 �� or (b)

� �
�� and 0�
�
��; 0 �� and �
��� ���� � 0 ��
 But since � � 3����3�
� case (a) can be

excluded. Let us consider case ���. We can see by lemma 4.1 that �
�� ��� �
�� ��� � 0�

so 0�
�
��; is not possible since �
�� ��� �

�
��.

Now suppose that �
�
��� �� �

�
��� � � 3�
� � 3���; since 0 must be ? � 	CB
<�*� then

 �
�
��, otherwise ��

�
��. Following a similar reasoning as above, we can exclude case

��� since � � 3�
�, but we have to exclude case (a) too, since in case (a)
�
�
�� would

follow but 0� could not be ? � 	CB
<�*�.
The last possibility is that there exists � � 3���� such that �

!
�� �� and ��

!
�� ��� and

��� �
�
� are in one of the situations considered above (�� � � are deterministic and rigid so � �

�� iff&�+&+!���+���� they have the same traces). Then by lemma 4.2 there exist
� � ��(�
�
and a set 0 � � � such that �
�� ���� �
�� ���� � 0 �; so we are again in the cases considered
above. �

Proposition 4.5 suggests to modify the algorithm, by checking for every � � the con-
dition on uncompromised systems, i.e. whether a box �� has two pairs �
� ��� �
� ��� and
� �� ��. In this case we are sure that box �� will be marked !�� in �*�
 3, and so it
will not be considered in �*�
 �. Besides, if ���� "� ��� and �� is marked !�� then this
transition will not be considered in Step 4.4 since �� is !��, so even if �� is not marked
!�� it will not be taken into account in building the solution R (surely this is not the
case if from another “good” state there is a transition "� to ��). Since by applying the

90 CHAPTER 4. A SYNTHESIS PROBLEM

algorithm proposed in [47] it is possible to decide in polynomial time in the state space of
� whether �� � ��� or not for every ��� ��� � ��(���, it easy to put a check on �*�
 2.1, 2.2
and mark directly !�� a box that does not satisfy the condition of proposition 4.5.

Example 4.1 In Fig.4.2 we consider an example taken from [81]. All boxes �� are gen-
erated in Steps � � � and in Step 3 boxes ��� ��� ��� ��� �� are marked !��, but ��

is a box whose pairs cannot be in a “good” box, by proposition 4.5. So at the moment in
which �� is created in Step 2, one is sure that in Step 3 it will be marked !��. With the
improved algorithm �� is directly marked !��, so it is not processed and boxes ��� ��

are not generated.

The new procedure permits to reduce the space of possible solutions. In fact, we have
that �4�
� ��� � ��&���(�, but we have seen that uncompromised systems cannot have a set
0 with �
� ��� �
� ��� � 0 and � �� �� so we have to find states of solutions on a subset
4� of 4�
� ��, where 4� � �0�0 � 4�
� ��
�� �
� ��� �
� ��� � 0 � � � ���. Given
a process ��, by applying the algorithm in [47], it is possible to get a process � such that
�� � � and for every ��� ��� � ��(��� �� �� ���. So we can strengthen � to equality
in definition of 4�. Every 0 � 4� can be seen as a total function from a subset of the

states of
 (i.e. the first elements in the couples of 0) to the states of �. Let

)

�
be the

number of different subsets of cardinality of a set of cardinality). The number of total
functions from a finite set � to another finite set ! is �!����. This leads to the following
approximation:

�4�� /
�&��
���

�
�

�
���� ' ��&�

�&��
���

���� / ��&����� �(�

By the above considerations we can state the following theorem.

Theorem 4.2 The improved algorithm has complexity =���&����� �(�� in time and space.

4.4 Conclusions

In this chapter we have analyzed another problem that can be modeled through unspecifi-
cation, namely finding the solution of interface equations or submodule construction. In
the next chapter a property expressed with a similar schema, but with a universal quantifi-
cation, is used to model security aspects of systems.

We have refined ad hoc techniques for the solution of interface equations, for a re-
stricted class of processes. In particular when the specification is a deterministic process.

Actually we have found a property of uncompromised systems, by studying the treat-
ment of the problem given by Shields. Hence we have shown how to use this property for
improving the complexity of existing algorithms, in particular the one of Qin and Lewis.
This algorithm synthesizes solutions which present a good property, since they are the
most general ones.

4.4. CONCLUSIONS 91

An alternative approach for the automatic synthesis of reactive systems is based on
temporal logic satisfiability procedures (see for example [28]). In our context, a naive
approach could be the use of compositional analysis techniques. Roughly, if we consider
a process � it is possible to define a ��calculus formula �(, such that for every process

 we have
 � � iff
 �� �((see [4, 91]). Hence, the interface equation problem can be
rephrased in the following way:

�� � �
��� � � �� �(

Now it is clear that by applying compositional analysis techniques, we can reduce this
problem to the satisfiability problem in ��calculus. Unfortunately, an optimistic view of
the complexity of this strategy is =���&�

���(�� (see section 3.6 for a discussion). Hence ad
hoc techniques can produce more efficient procedures. Nevertheless, how we try to put
in evidence this thesis, the compositional analysis techniques, which can be applied to
solve this synthesis problem, are actually very flexible and may be applied in many other
settings.

92 CHAPTER 4. A SYNTHESIS PROBLEM

Part II

Applications to Security Properties

Chapter 5

Analysis of non interference

In this chapter we study some information flow properties, in particular we recall the non
interference analysis proposed by Focardi and Gorrieri in [31, 34, 35].

They define a family of security properties. We show that the most interesting prop-
erty among them is conceptually related to a module checking problem. Hence, we show
that compositional analysis techniques can be used in this framework. We provide an
extension of the Focardi and Gorrieri’s approach for modeling non interference proper-
ties, in a framework where simple real-time constraints must be taken into account. The
techniques developed in chapter 2 are used to solve this kind of properties too. Hence, we
present a tool for ensuring that a system enjoys such security properties.

5.1 Introduction

One of the typical problems in computer security is the necessity to guarantee that only
legitimate users can access some kind of information.

A well known approach to face this problem is the Multilevel Security model ([8]),
which is a policy for managing objects at various levels of secrecy (or confidentiality).
Every object and every user is bound to a secrecy level and the information flow can be
directed only from low users to higher users. The system achieves this aim by permitting
neither write-down nor read-up actions. So the information flow should directly go from
lower processes to higher ones. As remarked in [35], this solution is still not satisfactory.
Even though, at a first glance, there is no direct way to transmit high level information to
lower users, there could be a covert channel.

If the low and high users share a bounded common resource, a high level user can
establish a communication with a low user simply by filling or emptying the resource.
An error message of the operating system will make the link between low and high users.
Moreover, if low and high users access common files in mutual exclusion, then a high level
user can modify the view of the system perceived by low level users simply by accessing
the file in a controlled manner. In these cases, the high users can interfere with the low
users, and cause different status of the system in which they operate to be perceived.

96 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

This difference is a kind of information that can be exploited to send messages from high
users to lower. A drastic solution to this kind of problems is to avoid these possible
interferences. A lot of “Non Interference” definitions have been proposed in literature
(for the first time in [36]), for quite different formal models of interaction between users
(processes).

In [34] Focardi and Gorrieri have translated some of these definitions into the process
algebra context ([70]). In this way, a lot of well established techniques for specification
and verification of program properties can be used. Besides, it is possible, in the same
framework, to check functional correctness of the system and security properties. In
[31, 34, 35] Focardi and Gorrieri propose a family of information flow security properties
called Non Deducibility on Compositions (NDC, for short). Intuitively, a system is ���
if, by interacting with every possible high level users, it always appears the same to low
level users. No information at all can be deduced by low level users. The above idea
can be instantiated in a lot of ways, by choosing a particular way of interacting between
systems and various criteria of equivalence.

In particular Focardi and Gorrieri argue that !��� (namely ��� when the equiv-
alence considered is weak bisimulation) is the right choice (see [35] for the motivations),
but neither a method nor a decidability result is provided for this property. Instead, an
approximation is defined which is easy to check (in polynomial time in the size of the
system description) and compositional.

The advantages of Focardi and Gorrieri’s idea of rephrasing security concepts in a
well established framework, such as process algebra theory, are put in evidence. This
facility is due to the great amount of research work that has been performed in the field
of timed process algebras. The flexibility of our methodology for the analysis of ���
like properties, is shown. In fact, the partial evaluation techniques (see chapter 2) can be
exploited in this technical framework too.

5.2 Formal model and security properties

We recall Security Process Algebra (SPA, for short), the formal model used in [34, 35] for
the description of the behaviour of systems, which is a variant of well established models
in concurrency theory (see [70]). We have a finite set of visible actions �, union of input
actions ? � ��� �� 	

� and output actions = � ��� �� 	�

�, a special action D (which
models internal computation, i.e. not visible outside the system), a complementation
function � � � � $� �, such that 	� � � � � � � and D � D . To reflect different levels
of secrecy the set � of visible actions is partitioned into two sets �	*�(or H) and �	*�,
closed by complementation function. Let �	* be � � �D�. We now describe the syntax
for SPA terms and we give their formal semantics by Labeled Transition Systems. The
syntax is the following:

� ��� �� �
� � �� �� � ����� � ��� � ��� � �$7 % � 4

5.2. FORMAL MODEL AND SECURITY PROPERTIES 97

�

�

�

�

�
�

�� �

��

�� � �

�

�� ��

�� � �

�

��

�� � �

�

�� ��

�� � �

�

��

�� � �

�

�����

�� � �

����

��

�� � �

�

�����

�� ����

�
�

��
�
� � �

� ��
�
� � �

�

�����
#
� � �

���
�
�

�<���
��

�� � �

�

��$7 %
�	

� � �

�$7 %

4 �� � �

�� � �

4

�� � �

��

�� � �

�

����

�� � �

���
�� ������

��

�� � �

�

����

�� � �

���
�� ������

��

�� � �

�

����
#
�� � �

���
�������

Figure 5.1: The operational semantics of SPA terms.

where � � �	*, � � �, 7 � �	* $� �	*, with 7�D� � D and 4 is a process constant
that must be associated with a definition 4 �� �.

The semantics of SPA closed terms (processes) is given by the least set of action
relations induced by the rules in figure 5.1.

Informally � (or � <) is a process that does nothing; �
� is a process that can perform
an � action and then behaves as E; �� �� represents the non deterministic choice be-
tween the two processes �� and ��; ����� is the parallel composition of processes that
can proceed in an asynchronous way but they must synchronize to make a communica-
tion, represented by an internal action D (this models an handshake communication); �$7 %
is the process � whose actions are renamed via 7 ; ��� is the process E prevented from
performing actions in �, and ��� is the process E whose actions in � are transformed
into D (or invisible) actions.

As equivalence relation among ��� terms we use (weak) bisimulation� (see figure
5.2 for some examples and chapter 2).

Let �C(*��� � ���� � �	*� �� � � ��(����� �

���, and *) � �.��C(*�.� �

� � �D��.

98 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

�

�

�

��

�
���
�
���

��

�
���

�
���

�

�
���

�
���

��

�

��

�

�

D

��

�

	�

D

��

	

	D

D �

�

� ��

Figure 5.2: Examples of equivalent and inequivalent processes.

5.2.1 Security properties

The underlying idea of ��� for ensuring non interference between high users and low
users is that the system behaviour must be invariant w.r.t. the composition with every
high user. Hence, there is no possibility of establishing a communication (i.e. sending
information); intuitively, it is like a medium where the same signal is always present.
In terms of a generic language for the description of systems, where � stands for the
composition operator and 0 for the equivalence relation, we have:

	. � � :# "��(� ��. 0 � F
(
*
 �CF "��(�

This property can be instantiated by assuming different notions of composition and
equivalence. The method we are going to present is suitable to manage various compo-
sition operators and equivalence criteria. In terms of SPA parallel composition operator
and bisimulation equivalence, we have:

Definition 5.1 � � !��� �	 	. � *) � ���.��� � ��� .

The above definition of BNDC is the one presented in [34], whereas in [30, 35] ���
is replaced by ��� , but the two definitions are equivalent. This formulation makes it
easier to state our results. Before discussing this property, we recall two other properties,
BSNNI and SBSNNI, which approximate BNDC from above and below, respectively.

Definition 5.2 � � !���? �	 ��� � ��� .

Definition 5.3 � � �!���? �	 	� � � ��(��� � � � � !���?

The hiding operator �� used below, where � is closed under complementation, can be
replaced by the composition of the argument with the process �C
� ��

�

�) �
�C
� ,

i.e. ��� � ����C
���� . This shows that !��� � !���? , because the system is
checked only for the absence of high users or for high users that can perform every action.
This inclusion is strict as shown by the following example:

5.2. FORMAL MODEL AND SECURITY PROPERTIES 99

Example 5.1 The process � � <
� #
#
<
� belongs to !���? since ��� � <
�
and ��� � <
� D
D
<
�. It is easy to check that ��� ���� but � �� !��� since
���#
����

#
�� �#
<
������ , so it can go, through an internal action, into a state where

no < action can be performed.

By using the algorithm proposed in [47] it is possible to check both !���? and
�!���? for a finite state process � in =�)=�, where ' is the constant for multiplication
of matrices and) the number of states of the process �. In [35] the authors propose a tool
for checking �!���? membership for finite state processes, which is able to exploit
another aspect of �!���? , i.e. compositionality. In fact if ��� �� � �!���? then
����� � �!���? . This permits us to avoid, in some cases, the so called state explosion
problem due to the presence of parallel operators in SPA terms (see [35] for more details).

A negative result

Unfortunately the same is not valid for !���, in fact we can prove the following result.

Proposition 5.1 BNDC is not compositional.

Proof: Let �� � <
�D D
<
�� <
� <
#
<
#�
� and �� � <�
�D D
<�
�� <
�
<�
#
<�
�; we have that ��� �� � !��� but ����� is not in !���. In fact, let .
be #
#�
#
� then ���������.��� can perform the sequence <
<� of actions and reach
the state ��#
<
#�
��#
<�
���#
#�
#
���� . From this state, it can go into the state �� �
��<
#�
��<�
���#
#�
#
���� or the state �� � ��<
#�
��#
<�
���#�
#
���� , by doing a
synchronization action. Now, �� is weak bisimilar to <�<� and �� to <
<�.

But ��������� cannot produce a sequence <
<� reaching a state bisimilar to
��#
<
#�
��#
<�
���#
#�
#
���� which is weak bisimilar to D
�<�<�� D
<
<�. �

5.2.2 A proof system for SBSNNI

We present a simple proof system for proving that a process is in �!���? for finite
processes (i.e. with no constant process). Let ? � � ��

 � �� be a finite set of indexes.
Let
�
��� �� a syntactic definition for ���� ����

 �����

��. We call finite processes

only SPA terms, built using �� �
��� � �	*�� �� ��. Note that if we exclude constant
process definition, every other SPA term has an equivalent (w.r.t. �) finite process (see
[92]) and SBSNNI is closed by bisimulation equivalence, (i.e. for proving that � �
�!���? we can prove that � � � �!���?� where � � ��).

Proposition 5.2 The proof system in table 5.1 is sound and complete for deciding SB-
SNNI membership of finite processes.

Proof: First, we prove the soundness of the proof system w.r.t. finite processes. The
soundness of the rules 1,2 is trivial. Let us study rule 3. By hypothesis we know that
every � � � ��(�� #
$�, with � � �� � #
$ is �!���? . Let us see that � #
$�

100 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

�

�

�

�

��
���!���? ��

�����!���?��	� �<���	*���D���	��
�	� <�
����!���?

�� ��$��!���? �
�
��� � � ����$�� #��

#
$ ���!���?

Table 5.1: Proof system for SBSNNI

� � � #
$�� . This is the same to prove that � #
$�� � ��� . We show that
� ���� #
$��� ����� is a bisimulation. The only interesting case to analyze is the
couple �� #
$��� ����, and in particular the transition � #
$��

#
�� $�� . By

the premises of the rule we know that there exists � � s.t. �
#
�� � � and � ��� � $�� ,

and since $ � �!���? we get � ��� � $�� . So we have ���
#
�� � ��� and

$�� � � ��� .
Now, we prove the completeness of the proof system w.r.t. finite processes. Every

finite processes � may be written as �
���

��
��

where every �� for � ? is a finite process. Now we proceed by induction on the maximal
length of the possible sequences of transitions of the process �.

) � �. Then � � � and we can apply rule 1.

 ?)3"	* >� �*�
. Then by inductive hypothesis we know that every �� with � ?
is in �!���? . Now we partition the index set ? in three sets ?# , ?" and ?) . The
first set corresponds to the indexes of D -derivatives of �, the second to <-derivatives
of � (< � �) and the third set to #-derivatives of � (# � �). Hence � may be
re-written as: �

���

D
��
�
����

<�
��
�
����

#�
��

Now consider � be
�
���
 D
��

�
���� <�
��, then by rule 2 we have � � �!���? .

Now by induction on �?) � we prove � � �!���? . For �?) � � � let � be
� #
�,, we show that the premises of rule 3 are satisfied. We prove that there
exists � � s.t. �

#
�� � � and � ��� � �,�� . In fact, we know that � � �!���?

we get ��� � ��� , then since ���
#
�� �,�� we must have ���

#
�� � ���

and �,�� � � ��� . It follows the thesis since �, � �!���? and so �,�� �
�,�� . The inductive step is similar.

�

Since it is computationally easy to calculate �!���? membership this proof system
has a limited practical interest. But it gives some hints to understanding the nature and

5.2. FORMAL MODEL AND SECURITY PROPERTIES 101

locality of this property. In fact rule 3 shows that if a process #
$ � is in �!���?
then � must be in �!���? and performing # leads the system to a state where it could
go autonomously through internal actions. So at every point in the future behaviour, the
interaction (namely performing a synchronization or not) with possible high users does
not influence the behaviour of the resulting system.

Example 5.2 The process <
� #
<
�, where # is a high action and < a low action is in
�!���? . In fact, by rule 1 we have � � �!���? and hence by rule 2 we have
<
� � �!���? . At this point since <
���#� � <
���#� we can use rule 3 and prove that
<
� #
<
� � �!���? .

5.2.3 BNDC like properties

Let '� be a preorder over processes, and suppose that '� is a precongruence w.r.t. �� ��.
Let 0��'� � '	�

� be an equivalence relation over processes; we can parameterize the
definition of Non Deducibility on Compositions with 0�:

Definition 5.4 � � ���� �	 	. � *) � ��� 0� ���.��� .

We propose a sufficiency criterion to have a static characterization (i.e. not involving
the universal predicate) of ����.

Suppose that there exists a process �C
) � *) such that for every process � � *)
we have � '� �C
) and a process � < � *) such that for every process � we have
� < '� �. Under these assumptions, we can state the following proposition:

Proposition 5.3 � � ���� �	 ��� 0� ���� <��� 0� ����C
)���

Proof: ��:obvious,
��: for every process . with . � *) we have � < '� . '� �C
) � so, since '� is a

precongruence w.r.t �� �� operators, we have:
��� 0� ���� <��� '�

���.��� '�
����C
)��� 0� ���

This proves ��� 0� ��.�� and hence the thesis. �

Proposition 2.4 of [32] can be seen as an instantiation of the above proposition. The
requirements of the above proposition seem to be too strong for permitting us to use a
precongruence which is sensible to deadlocks (i.e. it is no possible to find suitable �C

and � < processes), so for the usual equivalences used in concurrency theory we have
to develop an alternative solution. First of all we can parameterize the definition of Non
Deducibility on Composition w.r.t. a set � of high users in composition with which the
system is checked.

Definition 5.5 � � ����� �	 	. � *) � � � ��� 0� ���.��� .

102 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

Since we consider a finite set of actions the only source of infinity is the set of states
of this transition system. Let)3 � ���	� � � ��(���� 	� � �	*� % � �� ���� �

��
� ��� �� 6����� be the set of processes that cannot perform an infinite sequence of D actions
passing through an infinite number of different states. Let 7� � �����(��� �� 6�����
be the set of finite state processes.

Under certain constraints on the set � we can provide a method for reducing the
verification of !���� membership for finite state systems to a validity problem in
��calculus ([49]).

Unfortunately, this reduction to the satisfiability problem for the ��calculus is not
usable in practice for real systems, because of the inherent intractability of this problem,
which is DEXPTIME complete (see [94]). Nevertheless, we have decided to implement
a proof checker for the ��calculus in order to have a verifier that may help the computer
to perform what is essentially an exponential task.

5.3 Decidability of �����like properties

In this section we propose a decision procedure for BNDC like properties. It relies on
compositional analysis techniques and in particular it exploits the partial model checking
techniques proposed by Andersen. First, we recall the definition of characteristic formula.

5.3.1 Characteristic formula

Given a finite state process �, we present below the definition of a formula �2 that is
characteristic (w.r.t. weak bisimulation) for this process � (see [91, 92]). Let ��D��� be
a short notation for ��
�D�� � �, $$D %%� for ,�
$D %� � �, where � is not free in �. Let
��<���� $$<%%�� �< � �� be respectively ��D���<���D���� $$D %%$<%$$D %%�. It can be shown that
these derived modalities can be equivalently expressed in an equational form. Let us see
the definition of the characteristic formula:

Definition 5.6 Given a finite state process �, its characteristic formula (w.r.t. weak
bisimulation) �2 # �2 is defined by the following equations for every � � � ��(���,
� � �	* and � � �	*����� �

���:

�2� �� �
�

	2���2�

�
��2��

������2����

�
�

�2�

�
��
�$$�%%�

�
2���2�

�
��2��

�2������

�
�

�6 $$�%%% �

Intuitively, for every state of the process there is a variable that encodes the capabilities
of that state.

Following [91, 92] if �2� is characteristic for �� (w.r.t. �) then:

Lemma 5.1 i If �� � �� then �� �� �2�

ii If �� �� �2� and �� is finite state then �� � ��.

5.3. DECIDABILITY OF �����LIKE PROPERTIES 103

A decision method based on partial model checking

Two problems arise in the verification of !���� membership for a process �:

i The fact that the verification involves the composition with every high user in � (it could
not be a finite set).

ii The checking of bisimulation equivalence between two processes.

The first problem is tackled by reducing it to a validity problem which is decidable.
For the second problem, since bisimulation equivalence is in general undecidable, we
have to restrict ourselves to the class of finite state systems. Moreover, if we consider a
system � that is finite state then it is possible that the composition with a particular high
user in � is no longer finite state. The following lemmas identify a large class of systems
which remain finite state when composed with a particular set of high users.

Lemma 5.2 If � is a finite process and . � *) �)3, then ���.��� is a finite state
process.

Lemma 5.3 If � is a finite state process and. � *)�7�, then ���.��� is a finite state
process.

We have now the technical tools to prove the following result:

Proposition 5.4 !����! is decidable for all finite state processes �.

Proof: Let ��2�) # �2�)� be the characteristic formula (up to weak bisimulation) for
��� , then:

� � !����! �	 	. � *) � 7� � ���.��� �� ��2�) # �2�)�

In fact:

� � !����!

�� 	. � *) � 7� � ���.��� � ���
������� 	. � *) � 7� � ���.��� �� ��2�) # �2�)�

On the other hand:
� �� !����!

�� �. � *) � 7� � ���.��� �� ���
����� �. � *) � 7� � ����.��� �� 6���� ��
�� ��

���.��� �� ���
�������� �. � *) � 7� � ���.��� ��� ��2�) # �2�)�
��
�	. � *) � 7� � ���.��� �� ��2�) # �2�)�

So applying lemmas 3.2 and 3.1 in the order, we have that:
� � !����! �	 	. � *) �. �� ���2�) # �2�)���������

Now, applying the translation *(we obtain a closed formula �2 � *(����2�) #

�2�)���������� of ��calculus.

104 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

To reduce the problem to a validity problem on ��calculus, we use the formula
�C(*) � ,�
$� ��D�%� � $���%% . It is no difficult to see that . � *) �	 . �� �C(*) .
We can now reduce the decision problem of !����! membership to a validity problem
on ��calculus. Now we have � � !����! �	 �C(*) �� �2 (i.e.
�C(*� � �2� is
valid.

In fact:
� �� !����!

���. � *) � 7� . ��� �2
�� . � *) . ��� �2
�� �C(*) �� �2 �� �
� &
���

On the other hand:
�C(*) �� �2 �� �
� &
���

���. � *) . ��� �2
���. � *) � 7� . ��� �2 ��� #
�#���� ��7
'�

��� 6���� �
��� �"
��"�'�
�� � �� !����!

Since the validity problem on ��calculus is decidable the result follows. �

By means of a similar proof we can state the following proposition:

Proposition 5.5 !����> is decidable for all finite processes �.

5.4 A tool for non interference analysis

The tool consists of three elements, one already existing mudiv, and two others created
for this purpose, namely spv and �PA (see figure 5.3).

The first is an enhanced version of a tool for performing partial model checking and
it is freely distributed ([58]). One of the main reasons to use this existing tool, instead of
writing a simple translation procedure that implements the partial evaluation functions, is
that mudiv performs heuristic simplifications on the assertions, that in general reduce the
number of equations of the final specification, and sometimes they reduce it to a constant
(i.e. True or False). Since the strategy of mudiv is not complete we have developed a proof
assistant for ��calculus (called �PA) in Coq, by implementing the deduction system of
chapter 1, that have been proven complete to establish the validity of ��calculus formulas
by Walukiewicz (see [104]). Moreover, we have implemented a partial decision procedure
in spv, which exploits the particular form of the validity problem that arises for deciding
BNDC like properties. The main element spv (or security property verifier) contains the
following modules:

 (SPA translator to mudiv process specification language) It implements the trans-
lation functions from the syntax of SPA terms, (actually for an extended version
similar to the one proposed in [35]), to the simpler and more restrictive specifica-
tion language of mudiv.

5.4. A TOOL FOR NON INTERFERENCE ANALYSIS 105

�

�

�

�
mudiv

 proof

 Assistant

 mu calculus

Characteristic

SPA traslator

formula
generator

Traslation
from
equational

to modal

Input specification
for mudiv

mu calculus

Partial
prover

Figure 5.3: Tool’s structure.

 (Characteristic formula generator) It implements the functions for building the
characteristic formula for a process � and producing the correct logical specifi-
cation for mudiv. A function that directly gets a SPA specification and produces a
mudiv specification is provided.

 (Translation from equational to modal ��calculus) It implements the function *(
and a lot of heuristic simplifications on the list of equations, that do not modify the
meaning of the top formula but reduce its dimension. Some heuristics are similar
to those of mudiv, and others are specialized for the particular validity problem and
the form of the characteristic formula.

 (Partial prover) It implements a subset of the rules of [105], and some other special
rules for dealing with particular kinds of formulas. It seems to give promising
results, since the following examples are almost instantaneously checked with this
feature of spv and moderately bigger examples can be solved too. Unfortunately,
since it does not implement a complete strategy, sometimes it reports that a system
is not !��� when actually it is in this class.

Another feature of this tool is a module that implements the algorithm of [47] for
checking the bisimulation equivalence between two processes, which can be used too for
the minimization (w.r.t. bisimulation) of transition systems associated to processes. In
fact the process �� in figure 5.2 can be obtained by minimizing the transition system of
the process ��, by means of this algorithm.

Moreover, the model checker mudiv can be used to check the system w.r.t. particular
high users, for trying to show that the system does not satisfy particular properties. The
proof checker �PA can be used to check that a property is verified by the system in com-
position with high users in a set � of processes, provided that the membership in � of
these processes can be expressed by a ��calculus formula.

106 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

Actually, in chapter 3 we have reduced the module checking problem for ��calculus,
to the verification of a similar problem and this tool can be also used to analyze module
checking problems.

Example 5.3 A manager for an object, shared between high and low users, could be
specified as follows:

� � (��)
�� (��"
F(*�"
�

�� � D
� (��3)
�

Users must make a request to the manager for accessing the object (high users can
read the value of the object and low users can write a value). A kind of timeout is modeled,
by means of a D action, such that the system is not obliged to wait for the communication
action from an high user. It can be checked automatically that � � !��� �!, (actually
it is in SBSNNI).

5.5 Adding time modeling feature to SPA

In this section we show a development of non interference theory in the line of research
proposed by Focardi and Gorrieri.

In particular we note that timing aspects of the system can be used to transmit infor-
mation. Suppose to have a system that provides services both for High and Low users.
Then an high user can simply make the system not disposable for interaction with low
level users for a fixed amount of time and hence by revealing some kind of information.
The SPA process algebra is not able to deal with a quantitative time notion, only temporal
relations between actions can be expressed.

Fortunately, there has been a lot of research in process algebra theory for enhancing
the specification languages in order to solve this problem (see [74, 99]). In this section
we extend the SPA language with operators that permit to express the elapsing of time.
We follow the modeling approach that is called fictitious clock, namely a global clock is
supposed to be updated whenever all the processes in the system agree on it. A distin-
guished action tick is used to model the elapsing of one unit of time. Other approaches
have been explored, in particular by considering a dense time but they are unnecessarily
too complex for our analysis and present some technical problems. Actions are assumed
to take no time. This is reasonable if we choose a time unit such that the actual time of an
action is negligible with respect to the time unit.

Timed Security Process Algebra

In this section we introduce the Timed Security Process Algebra (tSPA, for short). In
addition to ��� operators, we add the time prefixing * 	�
� and the idling operator
J���, where � is a *��� term. Moreover we extend the definition of the semantics of
the ��� operators with the rules shown in figure 5.4.

5.5. ADDING TIME MODELING FEATURE TO SPA 107

�

�

�

�

* 	�
�
����
�� �

� �
����
��

J���
����
�� J���

�
�
�� � �

J���
�
�� � �

< �� �* 	��
�

����
�� � �

J���
����
�� J�� ��

��
����
�� � �

� ��
����
�� � �

� 	� � �
���

�� ���

���

�����
����
�� � �

���
�
�

��
����
�� � �

� ��
����
�� � �

�

�� ��
����
�� � �

� � �
�

�
,
�� � � # � � ��

���
#
�� � ���

�
�
�� � � < �� � ��

���
�
�� � ���

�
����
�� � � 	# � � �� � �

,
��

���
����
�� � ���

Figure 5.4: Operational semantics of new operators of tSPA.

Informally the J (idling) operator allows the process � to wait indefinitely. At every
instant of time if the process � can perform an action < then the whole system proceeds in
this state, by dropping the idling behaviour. The third rule about 3<): operator enforces
the so called time determinacy that is a central property of timed process algebras, namely
if �

����
�� � � and �

����
�� � �� then � � � � �� (i.e. the associated LTS is tick-deterministic).

The core operator for management of time is the parallel one. As we see from the
its semantics, both components must agree on performing a tick action. Roughly, they
synchronize to let time pass. But there is a side condition, i.e. no communications are
possible. This enforces the so called maximal communication progress assumption. In-
deed, whenever a communication is ready to be performed then it must start immediately.

The hiding operator �� is slightly modified with respect to the one of SPA. We avoid
the possibility that the process ��� performs a tick action if at the same time it can
perform an action in � � � . (The rules for the hiding operator in figure 5.1 must be
discharged).

In fact, the role of hiding operator in SPA is to represent a system as appears to low
users when high activities are enabled. The same should be valid in the timed SPA context.
Hence, the hiding of a system cannot let time pass in a state where the system can perform
an high activity, otherwise it should not model correctly the maximal communication
progress assumption. This is clarified by considering the process � � J�#�. Assume that
� � �#� and the standard rules for hiding, then we obtain ���

#
�� and, at the same

time, ���
����
��. Note that the process ����C
����) ��� cannot perform a * 	� action.

Hence, ����C
����) ��� �� ��� .
With our modified rules, we can formally prove that for every process � its compo-

sition with �C
����) (restricted on the high actions) is equivalent to ��� , i.e., that hiding

108 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

corresponds to enabling every high level action.

Proposition 5.6 For every process � we have: ����C
����) � �� � ���

This technical modification permits us to recast part of the theoretical results about
��� for timed ���.

First of all we state one of the peculiarity of timed SPA, that is common to several
timed process algebras, namely time determinacy.

Lemma 5.4 For every *��� process � we have:

 If �
����
�� � � and �

����
�� � �� then � � � � ��.

Let us give the following definition of weakly time alive for processes.

Definition 5.7 A process � is directly weakly time alive iff �
����
��. A process � is weakly

time alive iff for all � � � ��(���, we have �� is directly weakly time alive

In the *��� model for defining NDC like properties, we do not consider all high pro-
cesses for the interaction with the systems, we must restrict ourselves to weakly time alive
processes that can perform only action in �	*� � �D�. Let * �) the set of such processes.

The reason is the following: a process, that is not directly weakly time alive, may
prevent time from elapsing in parallel with every system �. Hence, it can block the time
flow. We want to avoid this unrealistic possibility.

As equivalence relation we still consider the observation equivalence. We use this
equivalence since we can directly reuse the existing theory for the characteristic formula
and the decidability procedures for ��calculi. Other finer equivalences and logics may
be used for a more accurate study of the real-time aspects of the systems, nevertheless we
believe that this framework is sufficient for many purposes.

We now restate the security properties proposed by Focardi and Gorrieri in this new
setting. The most important property is timed Bisimulation Non Deducibility on Compo-
sition (*!���, for short).

Definition 5.8 � � *!��� �	 	. � * �) � ���.��� � ��� .

As in the untimed case, we give the definition of two other properties, tBSNNI and
tSBSNNI, which approximate tBNDC from above and below, respectively.

Definition 5.9 � � *!���? �	 ��� � ��� and ���� ����
�� �	 ���

����
���.

Definition 5.10 � � *�!���? �	 	� � � ��(��� � � � � *!���?

5.5. ADDING TIME MODELING FEATURE TO SPA 109

The property *!���? is slightly changed w.r.t. the original BSNNI. This is mainly
due to the maximal communication progress property of our language. The *!���?
and *�!���? properties are introduced for giving approximations of *!��� that are
easily computable. Our final aim is to prove that a system is *!��� (actually, this is
true for *�!���?). With our definition of *!���? and hence of *�!���? it is easy
to see that *�!���? � *!���.

Roughly, � is *!���? if the system ��� , where no high level activity is allowed,
behaves like system � that has all the high level actions hidden (i.e., transformed into
internal D actions). (The condition on * 	� actions is merely technical and inserted only
for proof purposes.)

Now, we are ready to state formally the relationships among the defined properties.
In particular we have that *!���? is a weaker property than *!���.

Proposition 5.7 *!��� � *!���? .

Furthermore, by following the proof technique of [35] we prove that *�!���? is a
stronger property than *!���.

Proposition 5.8 *�!���? � *!���.

Proof:
The proof is performed by showing that the following is a “timed” weak bisimulation,

namely a weak bisimulation for processes which can perform a particular action * 	�.

(� ��� ���� � ��.��� � � � � ��(���� . � * �)�

By inspection of possible cases, �� ���� � ��.��� � (then:

 if � ���

�� � ����� � �� * 	� then it follows that � ��.��

�� � ���.�� , and

�� ����� � ���.��� � (,

 if � ���
����
�� � ���� , then since � � � *�!���? and . is weakly time alive, we

have 	# � � � � � � �
,
�� and so � ��.��

#
�� � ��.���

����
�� � ���.���� and

�� ����� � ���.����� � (,

 if � ��.��

�� � ���.��� � �� � � � then we have � ���

�� � ���� and

�� ����� � ���.��� � (.

 if � ��.��
#
�� � ���.��� , with � � ,

�� � �� and . ,
�� .�, then � ���

#
�� � ���� .

Since �� � *�!���? we have the following equivalence � ��� � � ��� , hence
there exists �� s.t. � ���

#
�� ���� and ���� � � ���� and � ���� � � ���� .

Hence we have up to weak bisimulation �� ����� � ���.��� � (.

 if � ��.��

�� � ���.�� , then � ���

�� � ���� , and �� ����� � ���.��� � (.

110 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

 if � ��.��
����
�� � ���.���� � � ����

�� � �� and . ����
�� .�, then � ���

����
�� � ���� and

�� ����� � ���.���� � (.

�

For *�!���? property, we have not proven the compositionality, but for *!���
as for the corresponding property in the untimed language, we have the following negative
result:

Proposition 5.9 *!��� it is not compositional.

Proof: By considering a counter-example similar to the one of proposition 5.1. �

5.5.1 Decidability results for �����-like properties

In this section we show the flexibility of the methodology that we have proposed for
the analysis of NDC like properties, by applying the same techniques to the analysis of
*!���-like properties.

The steps we have to perform are the followings:

1. define a characteristic formula for the timed equivalence,

2. define partial evaluation techniques for the parallel operator,

3. study validity procedures when formulas are interpreted over the class of LTSs
which are the semantics of *��� terms.

Point 1 can be solved by observing that our “timed equivalence” is the same as obser-
vational equivalence, and hence we can use the already defined characteristic formula for
this equivalence. The crux is that we use * 	��deterministic equational ��calculus.

Point 2 can be solved by applying our theory described in chapter 2.
Point 3 is more challenging. In fact, differently from SPA, it is not always the case

that for every (finite) LTS there exists an *��� term whose semantics is this LTS. For
example consider the following LTS:

�
�
���

�
�
���

� ����

This problem is due to our definition of the choice operator. We avoid this problem by
considering the choice operator of high users as the standard CCS one. (This is obtained
by dropping the third rule for choice in Figure 5.4) Then it is easy to see that for every
finite-state LTS we can find a High user whose semantics is this LTS. Hence we consider
properties that are stronger than ����� .1

1However, we feel that is possible to suitably change the validity procedure of [93] in order to consider
only LTSs which are the semantics of some ���� term. We leave the proof of this conjecture as a future
work.

5.6. AN EXAMPLE 111

Let us see the partial evaluation function ����, where � is a *��� process, for the
parallel operator of *���. It is shown in table 5.2 and can be inferred from the partial
evaluation function we have studied in example 2.5.2, where we consider the same parallel
operator, defined by means of GSOS rules. So we can state the following lemma, where
�� is a finite state process and � is the timed parallel operator.

Lemma 5.5 Given a process ����� and an equational specification �#� we have:
����� �� ��# �� �	 �� �� ��# ������

We call 7�� the set of finite-state processes, which are deterministic, weakly time alive
and whose choice operator has the new semantics. (Actually, we still suppose to restrict
ourselves to consider * 	�-deterministic processes, even though with this choice operator
is possible to generate LTS which does not enjoy this property.)

We can prove the decidability of ����� -like properties when we only consider finite
state processes 7��.

Proposition 5.10 For all finite state processes � the following property is decidable:

	. � 7�� � ���.� �� � � ��

Proof: Similar to the proof of proposition 5.4. In particular since, we deal with
�* 	��–deterministic processes, we use deterministic ��calculus. Moreover, lemma 5.5
is used, and a simple condition on weakly time alive processes is needed. �

In this way we have extended the non interference analysis as proposed by Focardi
and Gorrieri to deal with quantitative time aspects. Moreover, we have shown that the
compositional analysis techniques studied in chapter 2 permit easily to solve the technical
problems that may occur in this analysis.

5.6 An example

We rephrase the description of the Manager of a mutual exclusion variable (see Example
5.3) in *���, in this way we can take in account timing constraints. We implement the
no-write-down no-read-up policy (see [36]). High users can only read the variable and
low users can only write it. Hence, the information flow should only go from low level
users to high level users. But, there could be some timing covert channels.

A first description of the manager could be the following:

� � (��)
* 	�
�� (��"
* 	�
F(*�"
* 	�
� D
* 	�
* 	�
�
�� � * 	�
D
� J�(��3)
��

The set � of high actions is �(��) � (��3)�. Roughly, the system can receive a high
request and then, after letting one unit of time pass, it can go in a state where it can serve
the request for at most one unit of time or return in the initial state. Otherwise the system
can receive a low request and let one unit of time pass and then let the low level user to

112 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

��# ����* � ����*�# ��

6��* � 6
�� �� �����* � ���! �� �����!�1��	�
������*

���* � ��

������� � ��������� �
�
!

�
	�!�

������ �� � �� D� � �� * 	�
�D����� � �D������� �

�
!

	�!�

����� �
�
!

�
	�!�

����������

�* 	������ �

�
�* 	������� � �

�!
�
	�
$�%� �

����
�� ��

� C*#�(F ��
[�]���� � [�](�//s) �

�
!

�
	�!�

������ �� � �� D� � �� * 	�
$D %���� � $D %��//s) �

�
!

	�!�

����� �
�
!

�
	�!�

$�](� �����

$* 	�%���� �

�
$* 	�%����� � �

�!
�
	�
���� �

����
�� ��

� C*#�(F ��
�� � ����� � ������� � �������
�� � ����� � ������� � �������

���� � �

���� � �

Table 5.2: Partial evaluation function for parallel operator � of timed ���.

write and then let one unit of time pass and returns in its initial state. The last possibility is
that the system lets two units of time pass and then returns in its initial state. This system
is not *!���, in fact consider the following high process:

� � J�(��)
J�(��3)
J�����

The manager in parallel with the high process � may have the following computation:

�����
����
��

��(���

which cannot be performed by the process ��� . So we refine our Manager and we let
exactly one unit of time to the high level user to read the message. Please note, that after
the (��) it has to wait one unit of time. So at the end, the high user takes two units of
time from the request actions.

We can re-design our system, by considering a timer that can be activated by the
manager, by issuing the action :C and then it can be stopped by the action �*C
.

So, the new manager is the following:

� B�(� J�:C
* 	�
J��*C

� B�(��
� � (��)
* 	�
:C
�J��*C

�� J�(��3)
J��*C

����

 (��"
* 	�
F(*�"
* 	�
� D
* 	�
* 	�
�
��)�:�(� �� B�(�����:C� �*C
�

5.6. AN EXAMPLE 113

�

�

�

�
τ

τ

tick

tick
tick

reqL

tick

τ

tick

tick

reqH
tick

readH

writeL

τ

τ

readH

Figure 5.5: The behaviour of the process ��)�:�(, represented by a Labeled Transition
System.

�

�

�

�

τ

τ

tick

tick

reqL

tick

tick

tick

τ

tick

tick

tick

τ

tick

tick

reqL

readH

2

3 4

1

2

3 4

5

66

5
7

8

9

10

11

12

writeLwriteL

1reqH

τ
readH

τ

tick

13

Figure 5.6: A graphical explanation of *!��� membership of ��)�:�(.

114 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

Now, high users are forced to wait exactly one time unit in the critical section, and
then they must leave it.

It is worthwhile noticing that ��)�:�(does not belong to *�!���? . In fact, there
is a process � � in ��(��� s.t. � ���

����
�� and � ��� �

����
��. The process � � is the following:

�* 	�
J��*C

� B�(���J��*C

�� J�(��3)
J��*C

�������:C� �*C
�

Remark 5.1 We can directly prove that ��)�:�(� *!���. The idea is to directly
build a timed weak bisimulation that contains ���)�:�(�.��� ��)�:�(���, for every
high user. � * �) . This is one of the advantages of considering timed (weak) bisimulation
as equivalence relation between our systems. In fact, this kind of equivalence has a nice
proof technique:

We can prove that two processes are equivalent by simply providing a bisim-
ulation relation that contains them.

In our specific case, this is very interesting since at the same time we are able to prove an
infinite number of equivalences (like BNDC membership requires)!

Consider first the Figure 5.6. The dashed lines represent couples of a function 7 from
derivatives of ��)�:�(to derivatives of ��)�:�(�� . For sake of simplicity, in Figure
5.6 we use numbers to represent derivatives instead of terms. Hence we have the following
relation:

(� ��� ��.��� � ��� � �� �� � ��� � 7�. � * �)� � � � ��(���)�:�(��

The proof that(is a timed weak bisimulation follows by inspection of the possible cases.
As example, we show that if ���.��� �� � (we have the following possibilities to
consider:

 if ��.�� ����
�� ���.��� , hence . ����

�� .� and . �
��
>��� . In this case � ����

�� � and
����.���� �� � (.

 if ��.�� #
�� ���.��� , then .

��
>��� .�, but since ����.���� �� � (we have
completed.

 if ��.�� #
�� ��.��� , then. #

�� .� but also in this case we have ���.���� �� �
(.

 if � ����
�� �, we have two possibilities, if .

��
>��� .� then ��.�� #
�� ���.��� .

Now, since .� must be weakly alive, we have ���.��� #
�� ���.��

����
�� ���.���� ,

and ����.����� �� � (. The other possibility is that . �
��
>��� and also in this

case since . must be weakly alive, we have ��.�� #
�� ��.�

����
�� ���.���� and

����.����� �� � (.

5.7. CONCLUSIONS AND FUTURE RESEARCH 115

5.7 Conclusions and future research

In this chapter we have studied a notion of information flow security property, namely
Non Deducibility on Composition, as defined by Focardi an Gorrieri (see [33, 34, 35]).

We have proposed a methodology for studying ��� like properties. This kind of
properties may be defined by using several equivalences. Likely, characteristic formu-
las also may be defined for several equivalence relations over processes, e.g. ready-
simulation and divergence bisimulation (see [4, 91, 92]). Hence, our approach can also
be applied in the analysis of NDC properties defined by exploiting the aforementioned
equivalences.

This method is based on the combination of partial model checking (a modular ap-
proach for model checking) and theorem proving. In the last years, model checking and
theorem proving, have been used separately and successfully in the analysis of security
protocols ([32, 37, 59, 78, 84]), in particular for detecting flaws in authentication proto-
cols.

One of the main advantages of composing partial model checking and theorem prov-
ing is the possibility of analyzing the behaviour of a system against all the possible en-
vironments it can interact with. So deadlock freedom can be checked w.r.t. all high level
users (these properties can not be analyzed with the tool presented in [35]). It is worth-
while noticing that this method can ensure the non interference property only w.r.t. the
characteristics of the system that are modeled.

We have extended the theory for dealing with a quantitative notion of time. We have
shown the flexibility of our methodology for the analysis of BNDC like properties, by
showing that partial evaluation analysis can be fruitfully exploited to work in this frame-
work. The time modeling is very simple, more challenging models may be studied. For
example, a possible extension should be the integration of time and probabilities in the
same framework for dealing also with a notion probabilistic non interference (see [38]).
A possible language for description of systems could be the one presented in [9].

We believe that partial evaluation techniques provide a general framework where
��� like properties can be decided for a generic specification language.

116 CHAPTER 5. ANALYSIS OF NON INTERFERENCE

Chapter 6

Analysis of cryptographic protocols

In this chapter we propose a methodology for the formal analysis of cryptographic pro-
tocols. We define a language for the description of protocols and a logical language for
expressing security properties of protocols. An unspecified component is used to model a
hostile environment in which the protocol runs. Then we design a suitable partial evalua-
tion function for our language. We show a relationship among the verification problems
of different security properties. Hence the theoretical aspects of an implementation of
the theory proposed are given. The chapter concludes with a discussion about the use of
compositional analysis concepts in the formal verification of security properties.

6.1 Introduction

The continuous growing of the amount of security-sensitive information, which flows in
computer networks, has caused a lot of interest in research in formal methods for the
definition and the analysis of security properties which systems must ensure.

A typical example of security properties is the necessity that only legitimate users
can access some kind of information, or a particular service, or else that parties in a
communication get assurance about the identity of their correspondents. Furthermore,
computer networks may consist of thousand of geographically distributed computers, and
the communication between a two of them may involve the exploiting of communication
features of many others in the network. This raises the necessity of establishing secure
communication channels, in such a way that the secrecy (or confidentiality) of exchanged
data is kept during the steps of the communication.

Cryptographic systems ([83]) are used to try to solve these problems in communica-
tion protocols. These protocols are named cryptographic. Through encryption, messages
are exchanged between parties over a possibly insecure medium in such a way that it
should be possible to retrieve the actual meaning of the message only from users who
know a certain piece of information, i.e. a key (this ideal situation is referred to as perfect
encryption assumption). Unfortunately, cryptography can represent only a foundational
tool for ensuring security properties, but alone it is not sufficient, as proved by many

118 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

flaws found in cryptographic protocols (see [2, 35, 61, 72]), even by assuming the perfect
encryption. Cryptographic protocols, even though at conceptual level involve only few
communications between parties, are recognized to be prone to errors.

In the last years, various techniques for finding flaws in such protocols have been
developed (see [32, 35, 59, 61, 63, 72, 82]). Some of them are essentially based on the
analysis of finite state systems, and typically can ensure error freedom only for a finite
amount of the behaviour of systems.

Another approach is based on proof techniques for authentication logics (see [2, 48,
78]) or for process algebras (see [1, 14]).

Our approach is novel in this area, and is based on partial evaluation techniques de-
rived from the idea of partial model checking and compositional analysis. We have al-
ready shown the applicability of this approach for ensuring information flow security
properties in the previous chapter. Here, we transpose these ideas for the verification of
cryptographic protocols.

The intuitive idea is the following: verifying that a system � in conjunction with a
generic process � enjoys a property expressed by a formula % of a logical language �,
is equivalent to verify that � by itself satisfies a particular formula %���, where the
requirements are changed in order to respect the evaluation of the behaviour of �:

��� ��" % �	 � ��" %���

We can exploit this idea by supposing that the process � can be seen as an intruder that
tries to discover some information, which should remain enclosed in the system �. The
unleashing of information may be expressed by the logical formula % .

The idea of modeling an intruder that acts in composition with the system to be an-
alyzed is not new. But generally, only a particular intruder is considered, and his capa-
bilities are somewhat questionable. We follow the natural idea to consider the intruder as
an unspecified component. Then, the partial evaluation techniques seem to be a correct
technical tool for analyzing this kind of situations, as we have advocated in chapters 3 and
5. In this way we have formally, and exactly which properties this possible intruder must
have in order to perform a successful attack on the protocol (in our formal model).

6.2 An operational language for the description of proto-
cols

In this section we present the language for the description of protocols. First of all we in-
troduce the notion of types, and typed messages. The model consists of a set of sequential
agents that can communicate by exchanging messages, in a synchronous way.

6.2.1 Types and typed messages

Let us suppose to have a finite set �T�,. . . ,T�� of collections of values. Every set T�� �
���

 �)� can be partitioned in two disjoint sets, the basic values BT� and the random

6.2. A LANGUAGE FOR THE DESCRIPTION OF PROTOCOLS 119

values RT�, in such a way that the former set is finite and the latter is infinite (but count-
able). Every collection T� has associated a �;B�C< � � that represents the set of values of
that collection, i.e. its type. By using a finite set of function symbols �% �� A���

� and a
special symbol� (product), we build the set of message types inductively as follows:

 every basic type � �� � ���

 �)� is a message type,

 if �� � � are message types then � � � � is a message type,

 if ���

 � �� are message types and % � is a function symbol of arity � then % �����

 � ��� is a message type,

 nothing else is a message type.

Then we can define the set of typed messages inductively as follows:

 if � is a message variable and � is a message type then � � � is a typed message of
type � ,

 if B� �T� then B� � �
� is a typed message of type � �,

 if B� � �� and B� � �� are typed messages then �B�� B�� � �� � �� is a typed
message of type �� � ��,

 if B� � ���

 � B� � �� are typed messages and % � is a function symbol of arity �
then % ��B��

 � B�� � %

�����

 � ��� is a typed message of type % �����

 � ���,

 nothing else is a typed message.

A typed message B � � without variables is called a
"(� typed message. Equality
between typed message means syntactic equality. The set of typed messages of a type � ,
Msgs(T), is defined as the set �B � � �B � � ��
 ��"� �'��� ����
5��. We give below
the definition of the set of typed submessages of a typed message B � � .

Definition 6.1 Let B � � be a pure typed message; the typed submessages of B � � are
�"���B � � �, where �"�� is defined as:

�"���B � � �� � �B � � ��

�"����B� B�� � � � � �� � ��B� B�� � � � � �� � �"���B � � � � �"���B� � � ��

�"���% �B��

 � B�� � % ����

 � ���� � �% �B��

 � B�� � % ����

 � ������
����	���	�� �"���B� � ���

120 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

A message B � � is initial iff B � � is pure and every submessage B� � � � of B � � of
basic type � � is member of BT�. A function K from variables to pure messages or types
is called a substitution. We write �B � � �$K% for the message obtained replacing every
variable � with K���.

Before introducing the syntax of composed systems let us see the inference system of
sequential agents, that permits them to deduce new messages by starting from the set of
messages that they have produced or received. This system consists of a set of inference
schemata. An inference schema is a couple ?� � ��B� � ���

 � B� � ���� B� � ���,
usually written as:

B� � ���

 � B� � ��
B� � ��

where B� � ���

 � B� � �� is a set of premises (possibly empty) and B� � �� is the
conclusion. We say that a pure typed message B � � is inferred from a set of pure typed
messages B�

� � ���

 � B
�
� � �� by using ?� � ��B� � ���

 � B� � ���� B� � ��� (for

short B�
� � ���

 � B

�
� � �� ��� B � �), if a substitution K exists s.t. for every � ' � ')

�B� � ���$K% � B�
� � �� and �B� � ���$K% � B � � . An axiom schema is a rule schema

with no premises. As notation, we write ��B� � �������� ? � ���

 �)� for a sequence
B� � ��

B� � ��.

A proof for a typed message B � � is a finite tree, rooted in B � � , whose leaves are
instances of axiom schema and each node is built from its descendents by applying a rule
schema. We write � � B � � if a proof exists for a typed message B � � , where every
message B� � � � � � appears in the conclusion of an axiom. Given an inference system,
we define a deduction function ��� � �B � � ��� � � � �� � B � ��.

6.2.2 Syntax

We briefly introduce the syntax of systems. A system (term) is generated by the following
grammar:

Composed systems:

� ��� ��� � ���� � ����� � ����

Sequential agents:

� ��� � < � �
� � �� �� � $B � � � B� � � �%��8�� �
$��B� � ������� ��� � � � %��8��

� ��� 	9B � � � 	:��� � � � D �D�	��? �@
-
�	��? � :�)

-		�	�

?

where B � �� B� � � � are typed messages, � is a finite set of channels with 	 � �, � is a
message variable, � is a finite set of pure typed messages, � is a subset of � and � � � �
(the set of natural numbers).

6.2. A LANGUAGE FOR THE DESCRIPTION OF PROTOCOLS 121

The inference construct $��B� � ������� ��� � � � %��8�� acts as a binding for the
variable � in ��, whereas the variable � must not appear in ��. The prefix constructs
	:��� � �
�� @-�	��?
�� :�)

-		�	�

?
� are bindings for the variable � in �. Hereafter we

consider only sequential agents where the binding constructs bind the same variable al-
most once. A sequential agent is said to be closed if every message variable is bound. In
the sequel we consider only closed agents.

We make some assumptions on the capacity of sequential agents to guess random val-
ues. Random generated messages (nonces) are used to witness the freshness of messages
during executions of the protocols (runs). To model the characteristics of these messages,
we have assumed that for every basic type � � there is a subset of messages of this kind,
i.e. RT�. A particular action :�)

-		�	�

? permits to guess a random value of a basic type

� . Random messages of composed types can be built by using basic random values as
subcomponents. Since they must be guessed randomly, it should be impossible that two
different agents can guess the same values. Formally, this is achieved by partitioning the
set of basic values in as many sets as the number of sequential agents that compose a
system. For every basic type � � there is a particular function(? �

� �� � $�RT� which
gives the values that are guessed by agents. For every one of these functions, if �� �or
� �� � � then (? �

� � �� �� (? �

� �� � ��. A sequential agent is correct if the set of actions
:�)

-		�	�

? , which he performs, has always the same � index and always a different index.
A compound system is correct if its sequential agents in their starting configuration

contain only messages that are in their initial knowledge, which must consist only of
initial messages. We implicitly assume that the receiver of a message is able to recognize
the structure of received messages, even if it is not able to understand the meaning of such
messages.

The set �	* of actions, which can be performed by a compound system, is defined as:
�	* � �	:B � � � 	 � �� B � � � ��:��� �� � �	9B � � � 	 � �� B � � � ��:��� �� �
�@�	��? � 	 � �� B � � � ��:��� �� � �D�	��? � B � � � ��:��� ��� � �D'�? � � : �
�

�� � �D�
 Below we give the definition of the function channel, that given an action
returns a channel (>C 3 if the channel is not specified), and message that given an action
returns its message:

	9B � � 	:B � � D D�	��? @�	��? D'�?

channel 	 	 >C 3 	 	 >C 3
message �B � �� �B � �� � �B � �� �B � �� �: � ��

To every sequential agent in a composed system, it is possible to assign a unique
identifier, i.e. the path from the root to the sequential agent term in the parsing tree of
the compound term. As notation we write �

�
$� � � if 2 is a finite sequence of actions

2�� � ' ') s.t. � � ��
����

���� �� � � �. Given a sequence of actions we use
the function B�:�, defined as B�:��/2� � B����:��/� �B�:��2� and B�:��6� � �,
to get the set of communicated messages. Given a sequence of transitions �

�
$� � � of a

compound term �, ��
�
$� � �� #�

1 is the sequence of actions of the agent identified from
1Here we use this notation with a different meaning of the one in chapters 1,2,3.

122 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

� in �, that have contributed to the transitions of the whole system. The set of channels,
where an agent � possibly performs a communication, is defined as �C(*��� (this set can
be built syntactically).

6.2.3 Operational semantics

As usual we give semantics to our language through Labelled Transition Systems. The
semantics of compound terms is given by the least set of action relations induced by the
rules of figure 6.1.

Informally, the semantics of sequential agents is the following: � < is the process that
can do nothing; �
� is the process that can perform an action according to the particular
construct � and then behaves as � (in particular the action @-�	��? allows to listen the
communications internal to other subcomponents of the system). Moreover the rule �9�
plays a central role in our calculus. It asserts that an agent can send a message only if he
can deduce it by his knowledge. �� �� is the process that nondeterministically chooses
to behave as �� or ��; $B � � � B� � � �%��8�� is the matching construct: it permits to
check the equality between typed messages.

The deduction construct ��B� � ������� ��� � � � permits to deduce new messages
by applying a particular inference schema. By using this construct a finite number of
times, an agent can build the proof of every message in ���. Typically, it may be used
to decrypt messages by applying a rule such as 6 in section 6.4.

The compound system ���� performs an action � if one of the two subcomponents
performs this action, and a synchronization action (D�	��?) if both the subcomponents per-
form complementary actions, i.e. send (9B � �) or receive (:B � �). It is worthwhile
noticing that in contrast to ��� process algebra our synchronization actions carry infor-
mation on the message exchanged. In this way we can model eaves–dropping. To model
a synchronous communication over a set of channels �, the �� operator must be used
in conjunction with �, e.g. ��������. The latter process cannot perform actions whose
channel is in the set �, except for synchronizations. The hiding construct ���� permits
to hide the message exchanged during a synchronization on a channel in �. This operator
can be used to model a subsystem where the communications are safe, and also it may
be applied in a compositional design methodology. For notational convenience, we use
���

�
� for �������; besides we consider � � � < when 	� � �	*� � �

��.

6.3 A logical language for the description of protocol prop-
erties

We present a logical language (�5) for the specification of the functional and security
properties of a compound system. We have extended a normal multimodal logic with op-
erators that permit to know whether a message can be derived by an agent after a sequence
2 performed by the whole system, starting from an initial knowledge.

6.3. A LANGUAGE FOR THE DESCRIPTION OF PROTOCOL PROPERTIES 123

�

�

�

�

�:�
B � � � ��:��� �

�	:��� � �
���
����?
�� ��$B��%������?�

�:�)�
: � (? � � ��

�:�)
-		�	�

?
���

# 	!
�� ��$:��%����'�?�

�@�
�@-�	��?
���

@��"	!
�� ��$B��%������?�

�$%��
B � � �� B� � � � �����

�� ���

����

�$B � � � B� � � �%��8����

�� ���

����
�9�

B � � � ����

�	9B � �
���
����?
�� ����

�$%��
B � � � B� � � � �����

�� ���

����

�$B � � � B� � � �%��8����

�� ���

����
� ��

�����

�� ���

����

��� ����

�� ���

����

� ��
��B� � ������� ��� B � � ���$B��%������?�

�� ���

����

�$��B� � ������� ��� � � � %��8����

�� ���

����

� ��
� ��B � � ���B� � ������� ��� B � � �����

�� ���

����

�$��B� � ������� ��� � � � %��8����

�� ���

����

�����
�
����?
�� � � 	 �� �

���
����?
�� � ���

�����
�
����?
�� � � 	 �� �

���
����?
�� � ���

�����
�
#��"	!
�� � �

���
#��"	!
�� � ���

�����
�

#
�� � �

���
#
�� � ���

����
�

�� � �

����

�� � ����

����
�
����?
�� � � ��

����?
�� � �

�

����
#��"	!
�� � ��� �

�

������
�

�� � � 	#�))�<��� �� �

����

�� � ����

�D��
�
#��"	!
�� � � 	 � �

����
#
�� � ����

�@��
�
#��"	!
�� � � ��

@��"	!
�� � �

�

����
#��"	!
�� � ��� �

�

Figure 6.1: Operational semantics of the language, where there are symmetric rules for
 �� ��� �� and @�. In the rules � and � messages ��B� � ������� must be in �.

124 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

The syntax of the logical language �5 is defined by the following grammar:

% ���� � � � ���% � $�%% � ����%� � ����%� � B �� � 0�
�	� � �2 � �B �� � � 0�

�	�

where B � � is a pure typed message, � is an agent identifier, ? is an index set and � a
finite set of pure typed messages. Informally, the ���% modality expresses the possibility
to perform an action � and then satisfy % . The $�%% modality expresses the necessity that
after performing an action � the system satisfies % .

A system � satisfies a formula B � � � 0�
�	� if � can perform a sequence 2 of actions

and an agent of �, identified by � , can deduce B � � starting from the set of messages
� and the messages he has known during the performing of the sequence 2. This formula
plays a central role in the analysis of authentication protocols, that are often based on the
sharing, between two parties, of a secret, i.e. a particular message that is assumed no one
else knows. Hence, pieces of information are used to witness the identity of agents and
the eventual disclosure of particular information can have dangerous consequences. If we
want to know if a sequence 2 exists s.t. an agent �� can deduce B � � , we can express
this fact using the formula �2 � �B � � � � 0�

�	� . Hence, in the sequel we are mainly
interested in the study of properties that can be formulated in the following way:

Is there an agent (intruder) that in communication with the agents of the sys-
tem, can retrieve a secret that should be shared only among some agents of
S?

It can be formally restated in our model in with the following statement, where B � �
represent the secret (message).

���� �� �2 � �B � � � � 0�
�	�

Actually, in general we wonder if there exists an intruder with a particular initial
knowledge.

The language without B � � � 0�
�	� and �2 � �B � � � � 0�

�	� (knowledge operators)
is called �.

6.3.1 Semantics

We suppose to have a deduction function D� !���:� $� !���:�, which has to enjoy
the properties listed below:

Assumption 6.1 For every type � the set of messages in D��� ���:��� � is finite and
constructible2, when � is a finite set. We require this assumption since we want to be able
to perform an automatic analysis.

2Here, we mean that there is a procedure that terminates in a finite amount of time and returns an explicit
enumeration of
��� ������� �.

6.4. A SUITABLE DEDUCTION FUNCTION 125

Assumption 6.2 If IS is an inference schema and Æ a bijection between random values
then: B� � ��

B� � �� ��� B � � �	 Æ�B� � ���

 Æ�B� � ��� ��� Æ�B � � �. The idea
under this assumption is to avoid deduction systems that are not general and depend on
particular random values.

Assumption 6.3 If B � � is a typed message and : � � � a random value, that does not
appear as submessage neither in B � � nor in any of the messages in �, then B � � �
 ��� �	 B � � � �� � �: � � ���. As above.

Assumption 6.4 If B � � is a typed message and B � � � ���, then every basic value
of B � � must be a submessage of some message in �. We want that messages of basic
type cannot be forged.

We can give the semantics of a formula % w.r.t. an LTS associated with a composed
system �. We define the semantics of a formula % � �5 inductively as follows:

;
" �&�"' � !� �
&� � �� �

;
" �
 � !� �
&� � �� �

� �� ����%� �	 	 � ? � � �� %�
� �� ����%� �	 � � ? � � �� %�
� �� ���% �	 �� � � �

�� � �
�� � � �� %

� �� $�%% �	 	� � � �

�� � � ������� � � �� %

� �� B � � � 0�
�	� �	 �� � � ��

�
$� � �� #�� <2
��

B � � � �� �B�:��<2��

� �� �2 � �B � � � � 0�
�	� �	 �2 � � �� B � � � 0�

�	�

6.4 A suitable deduction function

In this section we show that our requirements on the deduction function are not too re-
strictive, because the inference system in figure 6.2 satisfies our assumptions and also is
similar to the one used by many authors (see [59, 63, 82]). Given a set of messages � then
B � � � ��� if B � � can be proved by using the following axioms (1) and rules (2-6),
where � represents the encryption function, 0�; is a basic type of keys and ����0�;
is the type of inverse keys, and there are some basic types such as atomic messages and
agent identifiers:

The interesting rules are 5 and 6; the former permits the encryption of messages by
using a key, and the latter permits one to know the encrypted message when knowing the
inverse key. Please note that the system does not allow the deduction of keys (or inverse
keys) that are not in �. We can state:

Proposition 6.1 The above deduction function enjoys assumptions 6.1,6.2,6.3 and 6.4.

126 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

���B � � � �
B � �

��� B � �� B� � ��

�B� B�� � �� � ��
���
�B� B�� � �� � ��

B � ��
���
�B� B�� � �� � ��

B� � ��

��� B � �� � � 0�;
���� B� � ��0�;� ���

���
���� B� � ��0�;� � � �	� � ����0�;

B � �

Figure 6.2: A deduction system that enjoys our assumptions.

6.5 A simple protocol

In this section we show a simple example of protocol written in our formalism. First of
all we describe it in the notation used in literature as follows:

� $� ! � �B��5	�

With � $� ! � �B��5	�
 is intended that � sends a message �B��5	�
 to !, and
! receives this message. The message �B��5	�
 is an encryption of a message B with
the public key of !. It is assumed that only ! knows the private key �0�!�	� (inverse
key).

Actually, this notation is misleading, since it represents only a “correct” execution of
the protocol. In fact, commonly there is no assurance about the identity of the parties in
the communication. Hence, ! can perform a receiving action but we can not assume that
actually the other party is �. This must be deduced by the contents of messages. So the
above protocol can only be used to send a message B to ! in such a way that only ! can
read it. A non trivial example of authentication protocol is shown in figure 6.5.

Hence we model the behaviour of the two parties separately. We use as inference
system the one in figure 6.2.

The sender ����� is the following, where �� � �B � �� �0�!� � 0�;� is the initial
knowledge of �.

�$B � � �0�!� � 0�; �� � � ��0�;� � �%�	��9� � ��0�;� � �
���8� <�

The receiver �!��� with �� � ��0�!� � ����0�;� is the following:

	��:�;� � ��0�;� � �
�$; � ��0�;� � � �0�!�	� � ����0�; �� E � � %!�8� <�

where �� and !� are respectively the continuations of � and !.
The agent � builds the encrypted message and then sends it on the channel 	�� . The

agent ! receives an encrypted message from the channel 	�� and then tries to decrypt it
by using his inverse (private) key �0�!�	�. At the end of a correct run of the protocol
the variable E of ! must contain B.

6.6. PARTIAL EVALUATION TECHNIQUES 127

It is worthwhile noticing that our description of the protocol is near to a possible
implementation of the protocol, and make explicit the steps that the agents must perform.
Actually, this positive aspect is common to other approaches based on process algebra
theory (see [1, 35, 59, 84]).

6.6 Partial evaluation techniques

In this section we define the partial evaluation techniques tailored for our language. The
crux is that, in contrast to previous work shown in this thesis, in this case we have to
deal with terms that may have an infinite number of successors (e.g. this is the case for
an agent (term) that can receive a typed message 	:��� � �
�). Since, we would like
to design an automatic method for the analysis of protocols, we should avoid sources of
infinite behaviour. In particular, we do not want to consider behaviours of intruders that
are not useful for a successful attack of a protocol. This is the case of random generation
actions.

Hence, it is convenient to assume a particular behaviour of agents with regard to the
generation of random values. In particular, we want that if an agent performs a sequence
of actions whose first action is the guessing of a random value : � � then this value will be
eventually sent as submessage of some message B� � � � during this sequence and between
these two events only guessing actions are performed.

Definition 6.2 A sequential agent �� is immediately well behaved �	 if ��

# �	!��
�

$�
��
���'��?����!'!	��

then 2� � D'��?�

 D'��?�	9B
� � �2�� with

�� � � � �:� � ���

 :� � ���
B� � � � ����
�:� � ���

 � :� � ��� � �"���B� � � �

�� is well behaved �	 	� �
�� � ��

�
�� ��� ��� � �

��� � �
�� is immediately well behaved,

where ��� is the reflexive and transitive closure of the relation �
����

��.

The following lemma tell us that if we are interested in the analysis of formulas like
�2 � B � 0�

�	� , we can restrict ourselves to consider only this particular kind of sequen-
tial agents. This implies that only random values that are sent are influent.

Lemma 6.1 If there exists a sequential agent �� s.t. ���
�
�� �� �2 � B � 0�

�	� then a

well behaved agent � �
� exists s.t. ���

�
� �
� �� �2 � B � 0�

��	� .

We give the partial evaluation function for � and � without knowledge operators in
figure 6.3, and in figure 6.4 for ��

�
and �2 � �B � � � � 0��

�	� , where:

�"		��� � ��	� B� � �� � ����
�����?
�� � �
��B� � � � ����

��"		��� � ��	� B� � �� �:� � ���

 � :� � ���� � �����

# �	!� 	���	# �	!�
$� � �

���

�
�����?
�� � � �B� � � � ���� � �:� � ��������"���B� � � ��

128 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

����
�
� �

����
�
� �

����% ����
�
� ����%���� �

�
�

�
	���

%��� � �� �� D�	��
��D�	��? �% ����

�
�

�
�
�
"	!
	� ��

�	:B � � ��%��� �� �
�
�
��"	!
	� ��

�	9B � � ��%��� ���
�

��"�	!
	� ��

�@�	��? �%��� � �
�
�

��"	!
	� ��

%��� �

����%����
�
� �����%�����

����%����
�
� �����%�����

Figure 6.3: Partial evaluation function for � and �.

�2 � �B �� � � 0�
�	����

�
��

	�	���? �	��
�!/��	�
 �	9B
� � � ����2 � �B �� � � 0�

�	����
�� ���)3):� ��

	�	���? �	��'��?�����# 	��
�.!/��	�
��D'��?�������	9B
� � � ��

��2 � �B �� � � 0
����'��?�����#
�	� ��� �� �:"���):� ��

�
�
"�	! �
	� ��

�	:B� � � ����2 � �B �� � � 0������? ��
�	� ��� �� �(�	� >):� ��

�

��"�

	� ��
�@�	���? ����2 � �B �� � � 0������? ��

�	� ��� �� ���>��� 3(C

):� �
�
�

�
	���

�2 � �B �� � � 0�
� ���

� � 3<):� �

B � � � 0�
�	8��� �*(> �<�

B � � � 0�
�	8��� � �2 � �B �� � � 0�

�	���� < �

�
� B � � � ���
� B � � �� ���

Figure 6.4: Partial evaluation function for ��
�

and �2 � �B � � � � 0�
�	� .

The set �"		��� represents the sending actions (and relative successors of �) that can
be performed by the intruder. The set ��"		��� represents the sequences of guessing
of random values followed by a sending of a message that can be performed by the in-
truder. By observing the compositional analysis proposed in [5, 55] it can be noted that
it is somewhat semantic driven. Analogously, our partial evaluation can be derived by
inspection of the operational semantics of the language. Between brackets we have put in
evidence the corresponding behaviour of the intruder.

We will concentrate on the reduction for �2 � �B � � � � 0��

�	� since it is the most
involved in analysis of security properties, while for � it is a generalization of the ideas
of [5]. For the sake of simplicity, we avoid the problem of considering always a different
index of the :�) actions in the translated formulas (this problem can be easily solved by
global counters). It is worthwhile noticing that �"		��� is a finite set (by assumption 6.1).

Given a bijection 1 between basic random values, that respects the type (i.e. if : � � �

6.6. PARTIAL EVALUATION TECHNIQUES 129

then 1�:� � � �), this bijection naturally extends to a bijection between typed messages,
sequential agents and composed systems in a straightforward way. If there is a 1 bijection
between two composed systems then we write � 0� � �.

Lemma 6.2 If � 0� � � then �

�� �� �� � � �	

�� � �

� and � � 0� � �
�.

The above lemma can be used to prove that �
�
$� �� and � 0� � � then � � �	�
$� � �

�.
The next proposition states the correctness of the partial reduction, where we assume

that � is a well behaved process.

Proposition 6.2 Given a system �, with �C(*��� � �C(*��� � �, a finite set of typed
messages � and an initial message B � � then:

���
�
�� �� �2 � �B � � � � 0�

�	� �	 �� �� �2 � �B � � � � 0�
�	����

Unfortunately, the formula % � �2 � �B� � �
�� � 0�

�	���� presents various infinitary
disjunctions, which are due to the analysis of the generation of random values by the agent
� . By our assumptions on the deduction function it is not fundamental which sequence
of generation actions is performed, the essential thing is the correct kind of types that are
generated. So we can prove:

Lemma 6.3 If B � � is an initial message, 1 a bijection between �:� � ������ and �:�� �
� �
����� with � ��� � 0� ��� and �"������ �:� � ������ � � � �"������ �:�� � �

�
�����

then:
���

�
����'��?����# �� �2 � �B � � � � 0

���'��?����#
�	�

�	

� ���
�
� �
���'�

�
�? �

�
���#

�� �2 � �B � � � � 0
���'���?

�

����#
��	�

Now we can give a translation from this formula to another one, s.t. the satisfiability
is preserved, i.e. % is satisfiable �	 <% is satisfiable. This translated formula <% presents
only finitary disjunctions. This translation can be performed during the generation of %
and keeps unchanged the finitary part of the formula. Let us consider the infinitary part of
the formula to be reduced (if it is finitary then it is done), so let % be ���.!/!�	�
%�, where
%� with * � �	� B� � � �� ��:� � ������� � � �� is:

��:� � ��������	9B
� � � ����2 � �B � � � � 0

����'��?�����#
�	� ��� ��

We can define an equivalence relation over tuples of ��"		��� as below:

�	� B � �� ��:� � ������� � �
�� 0� �	�� B� � � �� ��:�� � �

�
� ������� �

�
��

�	
	 � 	� � � � � � � 0� � �

�

����:� � ������� �� � ����:�� � �
�
� ��������

130 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

where 1 is a bijection between ��:� � ������� and ��:�� � � �
� ������ and ����:� � ���������

is the multiset of types which are present in the sequence. Now we can consider the
quotient of ��"		��� w.r.t. this equivalence relation. The key point is that ��"		������
is finite. In fact, up to renaming, only a finite number of successors of � can be chosen,
since only a finite number of sequential agents of kind 	:��� � �
� are present in � and
��. Moreover the set of channels is finite and for a given type � only a finite number of
different multisets are compatible. So we can choose for every class in ��"		���
�� only
a member, let � be the set of such tuples, hence we can define <% as ���* <%�.

Lemma 6.4 Under the hypothesis of proposition 6.2 we have:

��� �� �2 � B� � �
� � 0�

�	���� �	 �.� ��
<�2 � B� � � � � 0�

:	����

We have reduced the verification of the existence of an agent �� s.t. ���
�
�� �� �2 � �B �

� � � 0�
�	� to a satisfiability problem in a sublogic of �. The main result of this chapter

is the following:

Theorem 6.1 Given a system �, with �C(*��� � �, a finite set of typed messages � and
an initial message B � � then is decidable if ��� with �C(*��� � � s.t. ���

�
�� �� �2 �

�B � � � � 0�
�	� .

Moreover, we can build an agent (i.e. intruder) for a satisfiable formula <% .

6.7 Authentication properties

The theory we have presented in the previous sections deals in particular with so called
secrecy properties, i.e. that certain pieces of information remain enclosed in a particular
context. Among other interesting properties are the authentication ones. The definition of
authentication used in [59] can be restated as follows:

Whenever a Receiver ! completes a run of the protocol, apparently with
Sender �, then � has recently been running a protocol, apparently with !.

We define two distinct actions start, finish to model the starting of Sender and the
termination of Receiver respectively: when Sender starts it issues the action start and
when Receiver terminates it issues the action finish. It is assumed that such actions cannot
be performed by others than Sender and Receiver. In this setting we can formalize the
authentication property as:

+ � for any run 2 ����	
 � 2 #��� 	���� � 2 #��

6.7. AUTHENTICATION PROPERTIES 131

Please note that, since the set of runs is prefix closed, this property also implies that start
precedes finish in any 2. A system is correct if for every intruder � with =
"�����!�����
��*�(*� 7) �#� � � and � � ��*�(*� 7) �#� � � we have

����!���� � � �
���6�� ����� +

It should be clear that by adapting the compositional analysis techniques of previous sec-
tion, this property could be easily checked; here we prefer to show a reduction of the
verification of this property to a particular secrecy property, that can be directly handled
by our theory (and so by our tool, see the following section). We believe that this is an
interesting result of its own, since to the best of our knowledge this is the first attempt to
perform a similar reduction.

We define an encoding 1 over systems as:

1���!� � ����!��
�� � �$�*�(* �� 	9�*�(*A%�	�:�;� � �
�	 �<
� <
!� � !$7) �# �� 	�97) �#A%�	:��� � �
�	 �<
� <

where 	� 	� are channels not occurring in ��! and �*�(*A� 7) �#A are distinguished val-
ues. Moreover we assume:

 The intruder cannot interact over channel 	� 	�. This seems reasonable since these
channels appear only for checking purpose; please note that this hypothesis matches
the hypothesis that start and finish actions cannot be executed by the intruder.

 Values �*�(*A and 7) �#A are basic values such that �*�(*A� 7) �#A �� �� and
�*�(*A � �� � ��� 7) �#A��� � ��.

Over the system 1���!� we will consider the following property:

4 � for any run 2 �7) �#A � 0�	� �� �*�(*A � 0�	��

where 0�	� (0�	�� represents the knowledge of the agent � (!) after the system has
performed the sequence 2. Under the above assumptions we can state:

Proposition 6.3 If � is such that =
"�����!���� � ��*�(*� 7) �#� � � and � �
��*�(*� 7) �#� � � then:

����!���� � � ��� + iff �1���!���� � � ��� 4

We can use our tool to check if a system satisfies 4 by checking if it does not satisfy:

�2 � ���	
� � 0�	� � 	����� �� 0�	�

Moreover if we force the intruder to eavesdrop any message sent over channels 	 and 	�,
we can check the property above simply by inspecting the knowledge of the intruder i.e.
checking the following property:

�2 � ���	
� � 0�	� � 	����� �� 0�	�

The above property can be easily analyzed by a simple modification the partial evaluation
function3. In particular, one checks if the intruder can deduce 7) �#A but not �*�(*A, in

3Actually our tool is able to manage more complex conditions on the knowledge of the intruder.

132 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

the base cases:

�7) �#A � 0�
�	8 � �*�(*>A �� 0�

�	8���� �

�
� 7) �#A � ��� � �*�(*A �� ���
� C*#�(F ��

and

��2 � 7) �#A � 0�
�	���*�(*A �� 0�

�	����� < �

�
� 7) �#A � ��� � �*�(*A �� ���
� C*#�(F ��

6.8 Technical framework for the implementation

We have built a tool for performing the analysis of authentication protocols4. In this
section we show the more interesting theoretical aspects of our implementation. In order
to implement the partial evaluation function we have to specify how �"		� ��"		 and the
membership of messages in ��� can be computed. We define the size of a message
�B � � � as 1 if � is a basic type, and as � �
2����������	���	�� if � � % �����

 � ���. Let
��:���� �� be the set of messages whose type has a size equal or smaller than � .

We consider as deduction system the one presented in figure 6.2, which enjoys our
assumptions. In the following we define a canonical representation of the knowledge of
agents with the aim to compute easily ��� ���:��� � and B � � � ��� (a similar
representation, but for a different problem has been presented in [48]).

Definition 6.3 � is downward closed (DC) iff 	B � � � ��� � � we have B � � �
 �� ���:���� � � ���.

It is not difficult to prove that with a set of messages � that is also �� we have B � � �
 ��� iff there is a proof of B � � that uses only growing rules (namely rules in which
the size of the conclusion is bigger than the sizes of the premises). Hence to decide if
B � � � ��� it is enough to follow recursively the structure of the message, checking if
submessages of B � � belong to �. Also to compute ��� ���:��� � we simply follow
the structure of the messages, getting for basic types �� the list � ���:�����, and then
correctly reconstruct an appropriate list of messages.

Definition 6.4 � is minimal iff 	B � � � � we have B � � �� �� ���:���� � � ���.

Definition 6.5 � is a base for (if ��� � (and � is minimal and downward closed.

The property of minimality ensures that no unnecessary message belongs to the base. In
fact, if B � � can be deduced by a set � that is DC, then by �� can it be deduced
by other messages, say B� � ���

 � B� � ��, with ���� � �� � for � ���

 �)� and
so B � � � �� � �B � ���. Now we have that � � �B � �� is DC and moreover
 ��� � �� � �B � ���.

Moreover this representation enjoys the following strong property:

Proposition 6.4 Given ��� with � base, if � is a base for ��� then we have � � �.
4Joint work with Davide Marchignoli, see [62].

6.9. OPTIMIZATIONS 133

The last thing we have to specify is how a base � can be updated to a base �� in such a way
to have ���� � �� � �B � ���. Given � base for ��� then we define �33�B � �� ��
such that ��33�B � �� ��� � �� � �B � ���:

�33�B � �� �� �
�B� � ���

 � B� � ��� � ��	CB
C���B � �� ��
�� � � � �B ���
for i=1 to n do �� � �33�B� � ��� ��	��
?)	<"3��B � �� �� � �B � ���

where:

 ��	CB
C���B � �� �� is the set of messages that can be derived from B � � ;
more precisely we compute ��	CB
C���B � �� �� as the set of messages that can
be deduced starting from message B � � and applying exactly one “destructor”
rule (projection rule for pairs and decryption rule for encryptions). In this way we
inductively consider smaller and smaller messages to be inserted in � until unde-
composable messages are reached;

 ?)	<"3��B � �� �� is the minimal �� � ����B � ��� such that ���� � ����B �
���. To obtain ?)	<"3��B � �� �� we take advantage of the fact that all the relevant
submessages of B � � have already been included in �, so we simply need to
remove from � messages directly derivable from B � � . What we do is to remove
from � all the messages that can be deduced starting from B � � and applying
“constructor” rules (pair formation and encryption).

From a practical point of view, our work permits the so called on the fly analysis
technique, i.e. if there are some errors, these can be found even without the explicit
analysis of the whole system. In fact it is possible to build incrementally the reduced
formula. Moreover since this formula is in disjunctive form, it is satisfiable iff one of
the disjuncts is satisfiable. Hence one can analyze these disjuncts separately. If an attack
exists, then it must exist a disjunct of the translated formula that is satisfiable. In order to
verify that the reduced formula it is not satisfiable one has to analyze the whole system �.

6.9 Optimizations

In this section we try to highlight some further optimizations for our analysis of protocols.
We have already seen that the formula produced by the partial evaluation function can be
reduced to a finitary one, still preserving satisfiability. Here we present other reductions
on the formulas, that can improve the efficiency of the verification method. We know
that by definition of deduction function, these are monotonic, i.e. if � � �� then ��� �
 ����. This leads to the following fact, with � � ��:

���
�
�� �� �2 � �B � � � � 0�

�	� �� ���
�
��� �� �2 � �B � � � � 0��

�	�

134 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

The above implication follows from the fact that if ��
�
$� then ���

�
$� too. So an intuitive

approach could be to consider the behaviours of an intruder where his knowledge grows
as possible. This idea has been exploited by many researchers (see [87]), in particular
Shmatikov and Stern claim that they first prove the soundness of this approach. Their
model differs from ours, since it is based on asynchronous communications. Here we
transpose their idea in our formal context and we show also the soundness of our reduc-
tion, that can be stated easier due to our logical characterization. If we look at the partial
evaluation function we note that there are two possible behaviours for an intruder w.r.t.
a system that can perform a communication of a message B � � on a channel 	 (i.e. a
D�	��? action), he can wait otherwise he can eavesdrop the communication. It is clear that
by idling he looses the possibility to increase his knowledge, and if an intruder can derive
B�� � � �� by starting from � then he could derive it by starting from � � �B � ��. So we
have that if:

��2 � �B�� � � ��� � 0�
�	����

�� �� �
���6
-��

then
�D�	��? ���2 � �B

�� � � ��� � 0�����?�
�	� ��� �� �� �
���6
-��

Since we consider disjunctive formulas, we can safely cut off the part of the partially
evaluated formula, which is obtained through the analysis of idling behaviour of the in-
truder with respect to a communication action, since if this formula is satisfiable then the
formula corresponding to the eaves-dropping of this communication is satisfiable. An-
other suggestion is not to permit the intruder to send a message if an honest participant
in the protocol can do that. We can formally state this reduction in our formalism as an
equivalence of the satisfiability problem between:

�	:B � � ��	9B � � ���2 � �B�� � � ��� � 0�
�	����

��

and
��2 � �B�� � � ��� � 0�

�	����
��

where �
#��"	!
�� � � and B � � � �.

It is clear that if ��2 � �B�� � � ��� � 0�
�	����

�� is not satisfiable then so �	:B �

� ��	9B � � ���2 � �B�� � � ��� � 0�
�	����

�� is not satisfiable, otherwise it is like to say that
������� is satisfiable. The other side of the equivalence is similar.

The partial order reduction techniques can be applied too. In this way we exploit the
independence between actions (i.e. performing of one of the two actions do not prevent
the performing of the other), by example in the case that the system has two separate
agents that both can perform a sending action. In our context we can prove that:

�	:B � � ��	�:B� � � ����2 � �B�� � � ��� � 0�
�	����

�� �

�	�:B� � � ���	:B � � ���2 � �B�� � � ��� � 0�
�	����

��

is equivalent (from the satisfiability point of view) to

�	:B � � ��	�:B� � � ����2 � �B�� � � ��� � 0�
�	����

��

6.10. EXAMPLES 135

6.10 Examples

We show two examples of analysis of security protocols with our tool.

6.10.1 Needham Schroeder Public Key protocol

In this subsection we show an example protocol that has became paradigmatic for testing
tools for cryptographic protocol analysis. For a long time it has been considered correct,
and also proved within a logical framework. It has a simple flaw, that arises when the
system is considered in presence of another agent. In figure 6.5 we present the intended
execution between a sender and a receiver, by using the notation used in literature. In the
flawed version the sender � communicates to ! a fresh nonce �
 and its name encrypted
with the public key of ! (so only !, who knows the private key, can decrypt this message).
Then the receiver ! communicates to � the nonce �
 that he has received before and a
fresh nonce �� encrypted with the public key of �. Finally the sender communicates to
the receiver the nonce ��. In the intention of the designer of the protocol, at the end of a
run between a sender � and a receiver !, it must be that only � and ! know �
 and ��

(these nonces can be used to establish a new communication with a new shared key that
is function of these values).

� $� ! � ��
� ���5	�

! $� � � ��
� ����5	�

� $� ! � �����5	�

� $� ! � ��
� ���5	�

! $� � � ��
� ��� !��5	�

� $� ! � �����5	�

>
!�� &�"��
� #
""�#��� &�"��
�

Figure 6.5: Needham Schroeder Public Key protocol.

Our specification it is based on the description of the behaviour of the two components
separately. We have tested our specification and as expected we have found a flaw, even
if a slight different w.r.t. the one presented in [59]. An intruder is able to know the nonce
��. To perform the verification we have only specified the initial knowledge of a possible
intruder, i.e. the public keys of � and !, the names of � and !, and his private and public
key. We do not need to give the nonces to the agents, since contrary to other approaches,
our framework allows the intruder to guess them autonomously.

The following is a behaviour of an intruder that causes �� to be leaked (we use ����
to represent the intruder that takes part to a communication as the agent �):

� $� � � �����;� ��
� ���
���� $� ! � ��!��;� ��
� ���
! $� ���� � �����;� ��
� ����
� $� � � �����;� ��
� ����
���� $� ! � �����;� �
�
� $� � � �����;� ���

136 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

The attack performed can be summarized as follows: the agent � starts a run of the
protocol with the agent �; then the agent � can simulate � in a run of the protocol
with the agent !. The agent ! sends to ���� the message �����;� ��
� ����, which
contains the fresh nonce ��, encrypted with � public key. Now the intruder is not able
to decrypt directly the message, but he can send the message to the agent �. The agent
� will correctly decrypt �����;� ��
� ���� and then reply the nonce �� to � , encrypted
with � public key, since he thinks that is the second message of his run with � . Now �
knows ��! It is interesting to note that the above intruder is not very clever, since he sends
to !, as last message, a non correct message (encrypted with a wrong key), by permitting
! to understand that there are some problems. A clever intruder can wait to receive the
correct message from �, and then resend �� to !, correctly encrypted. Also this intruder
can be found by our secrecy analysis. By performing authentication analysis only the
latter intruder can be found. This is reasonable since a secrecy attack can be performed
even without an authentication attack. In fact, we may be interested that the information
exchanged during a session of a protocol is kept secret, even though the protocol does not
terminate correctly.

Indeed, we have corrected the protocol similarly to [59] and we have verified that there
are no flaws. The presented attack is found in few seconds by our tool, and the verification
of the corrected version takes less than a minute on a Pentium PC, with Linux operating
system.

It is interesting to note that we do not need to introduce a specification for an intruder.

6.10.2 ISO SC27 Protocol

In this subsection we analyze an authentication protocol, namely the ISO SC27 protocol
(see [45]). It has been proposed as ISO standard but a flaw was found in [11].

Here we show the flexibility of our tool by analyzing this protocol, which is based
on shared key encryption, namely the key and the inverse key are the same. The deduc-
tion function used in the tool does not model correctly all the aspects of this encryption
schema5. Nevertheless, by resorting to a simple trick we can use the tool to find a subtle
attack on the protocol. Thus we assume that both � and ! know a public key and a pri-
vate key. The encryption will be performed by using the public key and the decryption by
using the private key, which in this case is shared between � and !.

� $� ! � �

! $� � � ��
����
� �������

� $� ! � ��

Figure 6.6: ISO SC27 protocol.

5We are currently extending the tool’s features to include a suitable deduction function for shared key
encryption.

6.11. CONCLUSIONS AND RELATED WORK 137

The protocol should ensure authentication among parties. In particular in figure 6.6
we give the intended execution. � sends a nonce �
 to !. ! replays the encryption of
�
 with the shared Key ��� together with the encryption of another nonce ��. Then �
decrypts �� and sends it to !.

We have started the analysis by supposing that the initial knowledge of the intruder is
empty. We use an authentication analysis as proposed in section 6.7. The attack found by
the tool is the following (see also [11]):

� $� ��!� � �

��!� $� � � �

� $� ��!� � ���!��;� �
�� ���!��;� ���
��!� $� � � ���!��;� �
�� ���!��;� ���
� $� ��!� � ��

��!� $� � � ��

This attack is very subtle since it may be performed even without the presence of the
receiver !. In fact, we have modeled a situation where the agent � can start two parallel
sessions, one in which he plays the role of sender and the other in which plays the role of
receiver. Simply the intruder uses � as an oracle for the decryption of messages.

This shows that the verification of authentication protocols is very difficult. Because
there is the necessity to check the protocol in the actual setting where it runs. In fact if
we check the protocol in a setting where the agent � only acts as sender then the previous
attack cannot be performed and hence it is not reported by our analysis.

6.11 Conclusions and related work

We have proposed a new approach for checking security properties of cryptographic pro-
tocols. This approach is a transposition of the ideas we have proposed in chapter 5 (or see
[67]) for the analysis of non interference properties ([32, 34, 35, 36]).

We believe that underspecification can be seen as a suitable method for specifying
security properties. Hence, if one accepts the previous idea then partial evaluation tech-
niques seem to provide a unique conceptual framework for the analysis of security prop-
erties. By looking at our results in the previous chapters on non interference and at the
ones in this chapter we can note that are obtained by following the schema below:

1. design suitable languages for system description and property specification;

2. develop partial evaluation techniques;

3. develop satisfiability procedure for the logic.

Obviously, the technical frameworks are in general different, but we feel that the pre-
vious steps can be considered as general guidelines for the analysis of security properties,
when these are defined through underspecification. In particular the concepts recalled in

138 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

chapter 2, even though not always applicable directly (just like in the security analysis
of this chapter), may provide useful hints in performing the second step of the previous
schema.

The bases for a systematic study of security aspects of distributed systems are pro-
vided by the great amount of work performed in concurrency theory for the definition
of concurrent languages for the description of several settings and by the sophisticated
decision procedures techniques defined in mathematical logic.

In this line of research we plan to extend our approach for the analysis of crypto-
graphic protocols, by considering the possibility that the intruder has a probability to
guess the correct key for an encrypted message (see [57] for an attempt). We hope to
borrow some concepts from [53], where partial evaluation techniques are developed for a
process language which can express probabilistic aspects of concurrent systems.

We believe that the method for security analysis exposed in this thesis is very flexible
and may have a wide range of applications. Until now we have used partial evaluation
techniques for the analysis of non interference, timed non interference, secrecy and au-
thentication.

We think that other verification problems may be faced with our analysis. For exam-
ple we feel that non repudiation properties of cryptographic protocols may be correctly
defined through underspecification and solved by means of partial evaluation techniques
(see [85]).

Related work

The literature on security properties analysis and on verification of cryptographic proto-
cols is wide. For an impressive overview of cryptographic protocols and cryptographic
systems see [83]. Here we briefly recall some approaches related to process algebra theory
and process logics.

To our knowledge, the only previous attempt to analyze non interference and crypto-
graphic protocols within the same conceptual framework, has been proposed by Focardi
and Gorrieri ([32, 35]). In their work an explicit description for a particular, actually the
most general, intruder is requested.

The same limitation is present in the seminal work of Lowe (see [59]), who applies
generic tools for verification of process algebra terms for the analysis of cryptographic
protocols. In the aforementioned paper, Lowe shows how starting from the results of the
analysis on a finite number of runs, one can deduce the correctness of the whole behaviour
of the protocol.

Perhaps, a work more similar to ours is the one of Marrero et al. (see [63]), where
a model with sequential agents is used and the explicit description of an intruder is not
needed since an axiomatic behaviour of the intruder is supposed. But the work is more
limited in its scopes, since they do not permit the intruder to guess nonces and uses two
different methodologies for secrecy and authentication, and seems not to be directly gen-
eralizable (they make reasoning with a fixed theory), while generality and flexibility are
major topics of our work. Actually, our approach is from the opposite direction, the be-

6.11. CONCLUSIONS AND RELATED WORK 139

haviour of an intruder is automatically considered when one applies the point of view of
compositional analysis.

Other approaches are based on proof theoretic methods (see [1, 2, 37, 48, 78, 84]).
Some of them use temporal and modal logic concepts and permit to prove that a sys-
tem, even though with a non finite behavior, enjoys security properties. In general these
methods are not fully automated and need non trivial human efforts to analyze systems,
moreover counterexamples are not directly feasible.

An interesting exception is the work of Kindred and Wing in [48], where the authors
propose a fully automated original approach for checking that a protocol enjoys some
properties expressed in a logical language �. Roughly, the method is based on a finite
representation of a theory generated by the set of initial assumptions of the protocol, the
protocol itself (expressed as a set of logical formulas), and the axioms and rules of the log-
ical language � (this language has to verify some requirements, but some authentication
logics reported in literature may be used).

Some authors have found the 9 calculus (see [71]) as a suitable language for describing
security protocols. This is mainly due to the management of names (that can be seen as
secrets) of this process language. In [1], Abadi and Gordon have proposed an approach
based on proof theoretic tools for a variant of the 9�calculus. The idea is to model the
intruders by using testing equivalence theory for 9�calculus (see [15]). They analyze
protocols based on shared key encryption, but since their language is very powerful it
seems difficult to automatize their approach. Another approach relies on control flow
analysis techniques of the 9�calculus (see [14]). By controlling how the information is
exchanged along channels, it is possible to study confinement properties, namely whether
information is never sent along a particular channel and remains enclosed in a system.

140 CHAPTER 6. ANALYSIS OF CRYPTOGRAPHIC PROTOCOLS

Bibliography

[1] M. Abadi and A. D. Gordon. Reasoning about cryptographic protocols in the spi
calculus. In CONCUR ’97: Concurrency Theory, 8th International Conference,
volume 1243 of Lecture Notes in Computer Science, pages 59–73, 1997.

[2] M. Abadi and M. R. Tuttle. A semantics for a logic of authentication. In Proceed-
ings of the 10th Annual ACM Symposium on Principles of Distributed Computing,
pages 201–216. ACM Press, 1991.

[3] L. Aceto, B. Bloom, and F. Vaandrager. Turning SOS rules into equations. Infor-
mation and Computation, 111(1):1–52, 1994.

[4] H. R. Andersen. Verification of Temporal Properties of Concurrent Systems. PhD
thesis, Department of Computer Science, Aarhus University, Denmark, 1993.

[5] H. R. Andersen. Partial model checking (extended abstract). In Proceedings of 10th
Annual IEEE Symposium on Logic in Computer Science, pages 398–407. IEEE
Computer Society Press, 1995.

[6] J. C. M. Baeten, J. A. Bergstra, and J. W. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Fundamenta Informaticae, IX(2):127–
168, 1986.

[7] H. Beki,#. Definable operations in general algebras, and the theory of automata
and flow charts. In C. Jones, editor, Hans Beki,#: Programming Languages and
Their Definition, volume 177 of Lecture Notes in Computer Science, pages 30–55.
Springer-Verlag, 1984.

[8] D. E. Bell and L. J. La Padula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report ESD-TR-75-301, MITRE MTR-2997,
March 1976.

[9] M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoretical Com-
puter Science, 202(1–2):1–54, 1998.

142 Bibliography

[10] G. Bhat and R. Cleaveland. Efficient model checking via the equational �-calculus.
In Proceedings, 11�� Annual IEEE Symposium on Logic in Computer Science,
pages 304–312, New Brunswick, New Jersey, 1996. IEEE Computer Society Press.

[11] R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva, and M. Yung.
Systematic Design of a Family of Attack Resistant Authentication Protocols. IEEE
Journal on Selected Areas in Communications, 11(5):679–693, 1993.

[12] B. Bloom. Structured operational semantics as a specification language. In Con-
ference Record of the 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’95), pages 107–117, San Francisco, California,
1995. ACM Press.

[13] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. Journal of the
ACM, 42(1):232–268, 1995.

[14] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson. Control flow analysis for
the pi-calculus. In Proceedings of 9th International Conference on Concurrency
Theory, volume 1466 of Lecture Notes in Computer Science, pages 84–98. 1998.

[15] M. Boreale and R. De Nicola. Testing equivalence for mobile processes. Informa-
tion and Computation, 120(2):279–303, 1995.

[16] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking: ���� states and beyond. In Proceedings, Fifth Annual IEEE Sym-
posium on Logic in Computer Science, pages 428–439. IEEE Computer Society
Press, 1990.

[17] M. Burrows, M. Abadi, and R. Needham. A logic of authentication. Technical
Report 39, DEC Systems Research CENTER, 1989.

[18] J. Clark and J. Jacob. A survey of authentication protocol literature. November
1997.

[19] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Transactions
on Programming Languages and Systems, 8(2):244–263, 1986.

[20] E. M. Clarke and J. M. Wing. Formal methods: State of the art and future direc-
tions. ACM Computing Surveys, 28(4):626–643, 1996.

[21] R. Cleaveland, M. Klein, and B. Steffen. Faster model checking for the modal
��calculus. August 1993.

[22] M. Dam. CTL� and ECTL� as fragments of modal ��calculus. Theoretical Com-
puter Science, 126:77–96, 1994.

143

[23] R. De Nicola. Extensional equivalences for transition systems. Acta Informatica,
24(2):211–237, 1987.

[24] R. De Nicola and M. C. B. Hennessy. Testing equivalences for processes (concur-
rent programming). Theoretical Computer Science, 34(1-2):83–133, 1984.

[25] R. De Nicola and F. Vaandrager. Three logics for branching bisimulation. Journal
of the ACM, 42(2):458–487, 1995.

[26] Degano and Priami. Enhanced operational semantics. In Computing Surveys, vol-
ume 28. 1996.

[27] E. A. Emerson. Temporal and Modal Logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, volume B, pages 996–1072, Amsterdam, 1990.
Elsevier Science Publishers.

[28] E. A. Emerson and E. M. Clarke. Design and synthesis of synchronization skele-
tons using branching time logic. Science of Computer Programming, 2:241–266,
1982.

[29] E. A. Emerson and C. Jutla. The complexity of tree automata and logics of pro-
grams. In IEEE Symposium on Foundations of Computer Science (FOCS’88),
1988.

[30] R. Focardi. Comparing two information flow security properties. In Proceedings
of The 9th Computer Security Foundations Workshop, pages 116–122. IEEE Com-
puter Society Press, 1996.

[31] R. Focardi. Analysis and Automatic Detection of Information Flows in Systems and
Networks. PhD thesis, Department of Computer Science, University of Bologna,
1998.

[32] R. Focardi, A. Ghelli, and R. Gorrieri. Using non interference for the analysis of
security protocols. In H. Orman and C. Meadows, editors, Proceedings of DIMACS
Workshop on Design and Formal Verification of Security Protocols. DIMACS Cen-
ter, CoRE Building, Rutgers University, September 1997.

[33] R. Focardi and R. Gorrieri. An information flow security property for CCS. In
Second North American Process Algebra Workshop (NAPAW ’93), 1993. TR 93-
1369, Cornell (Ithaca).

[34] R. Focardi and R. Gorrieri. A classification of security properties. Journal of
Computer Security, 3(1):5–33, 1995.

[35] R. Focardi and R. Gorrieri. The compositional security checker: A tool for the
verification of information flow security properties. IEEE Transactions on Software
Engineering, 27:550–571, 1997.

144 Bibliography

[36] J. A. Goguen and J. Meseguer. Security policy and security models. In Proceedings
of the 1982 Symposium on Security and Privacy, pages 11–20. IEEE Computer
Society Press, 1982.

[37] J. W. Gray, III and J. McLean. Using temporal logic to specify and verify cryp-
tographic protocols. In Proceedings of The 8th Computer Security Foundations
Workshop. IEEE Computer Society Press, 1995.

[38] J. W. Gray, III and P. F. Syverson. A logical approach to multilevel security of
probabilistic systems. In Proceedings of the 1992 IEEE Computer Society Sym-
posium on Security and Privacy, pages 164–176. IEEE Computer Society Press,
1992.

[39] J. F. Groote and F. Vaandrager. Structured operational semantics and bisimulation
as a congruence. Information and Computation, 100(2):202–260, 1992.

[40] O. Grumberg and D. E. Long. Model checking and modular verification. ACM
Transactions on Programming Languages and Systems, 16(3):843–871, 1994.

[41] E. Haghverdi and H. Ural. Submodule construction using derivatives. Technical
Report TR-95-13, Computer Science Department, University of Ottawa, 1995.

[42] D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt,
editor, Logics and Models of Concurrent Systems, volume F-13 of NATO Advanced
Summer Institute, pages 477–498, 1985.

[43] M. Hennessy. Algebraic Theory of Processes. The MIT Press, Cambridge, Mass.,
1988.

[44] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Englewood
Cliffs, NJ, 1985.

[45] ISOSC27. Entity Authentication Using Symmetric Techniques. Report ISO/IEC
JTC1.27.02.2 (20.03.1.2), June 1990.

[46] D. Janin and I. Walukiewicz. Automata for the �-calculus and related results. In
J. Wiedermann and P. Hájek, editors, Proceedings 20th Intl. Symp. on Mathemati-
cal Foundations of Computer Science, MFCS’95, volume 969 of Lecture Notes in
Computer Science, 1995.

[47] P. C. Kanellakis and S. A. Smolka. CCS expressions, finite state processes, and
three problems of equivalence. Information and Computation, 86(1):43–68, 1990.

[48] D. Kindred and J. M. Wing. Fast, automatic checking of security protocols. In
Second USENIX Workshop on Electronic Commerce, pages 41–52, Oakland, Cali-
fornia, 1996.

145

[49] D. Kozen. Results on the propositional ��calculus. Theoretical Computer Science,
27(3):333–354, 1983.

[50] O. Kupferman and M. Y. Vardi. Module checking. In Rajeev Alur and Thomas A.
Henzinger, editors, Proceedings of the Eighth International Conference on Com-
puter Aided Verification, volume 1102 of Lecture Notes in Computer Science, pages
75–86. Springer Verlag, 1996.

[51] O. Kupferman and M. Y. Vardi. Module checking revisited. In Proceedings of the
Ninth International Conference on Computer Aided Verification, volume 1254 of
Lecture Notes in Computer Science, pages 36–47. Springer-Verlag, 1997.

[52] O. Kupferman, M. Y. Vardi, and P. Wolper. Module checking. Technical Report
TR98-302, Rice University, 1998.

[53] K. G. Larsen and A. Skou. Compositional verification of probabilistic processes.
Lecture Notes in Computer Science, 630:456–467, 1992.

[54] K. G. Larsen and L. Xinxin. Equation solving using modal transition systems. In
Proceedings of the Fifth Annual IEEE Symposium on Logic in Computer Science,
pages 185–215. IEEE Computer Society Press, 1990.

[55] K. G. Larsen and L. Xinxin. Compositionality through an operational semantics of
contexts. Journal of Logic and Computation, 1(6):761–795, 1991.

[56] F. Levi. Verification of temporal and Real-Time Properties of Statecharts. PhD
thesis, Dipartimento di Informatica, Università di Pisa, 1997.

[57] P. Lincoln, J. Mitchell, M. Mitchell, and A. Scedrov. A probabilistic poly-time
framework for protocol analysis. In ACM Symposium in Computer and Communi-
cation Security, 1998.

[58] J. Lind-Nielsen. Mudiv: A program performing partial model checking. Master’s
thesis, Department of Information Technology, Technical University of Denmark,
September 1996.

[59] G. Lowe. Breaking and fixing the needham schroeder public-key protocol using
FDR. In Proceedings of Tools and Algorithms for the Construction and the Analisys
of Systems, volume 1055 of Lecture Notes in Computer Science, pages 147–166.
Springer Verlag, 1996.

[60] G. Lowe. Some new attacks upon security protocols. In Proceedings of The 9th
Computer Security Foundations Workshop. IEEE Computer Society Press, 1996.

[61] G. Lowe and B. Roscoe. Using CSP to detect errors in the TMN protocol. IEEE
Transactions on Software Engineering, 23(10):659–669, 1997.

146 Bibliography

[62] D. Marchignoli and F. Martinelli. Automatic verification of cryptographic proto-
cols through compositional analysis techniques. To appear in Proceedings of the
International Conference on Tools and Algorithms for the Construction and the
Analysis of Systems, 1999.

[63] W. Marrero, E. Clarke, and S. Jha. A model checker for authentication proto-
cols. In H. Orman and C. Meadows, editors, Proceedings of DIMACS Workshop
on Design and Formal Verification of Security Protocols. DIMACS Center, Rutgers
University, September 1997.

[64] F. Martinelli. An uniform approach for the analysis of open systems. Submitted
for publication.

[65] F. Martinelli. An improvement of algorithms for solving interface equations. In-
formation Processing Letters, 67(4):185–190, 1998.

[66] F. Martinelli. Languages for description and analysis of authentication protocols.
In Proceedings of 6th Italian Conference on Theoretical Computer Science, pages
304–315. World Scientific, 1998.

[67] F. Martinelli. Partial model checking and theorem proving for ensuring security
properties. In Proceedings of 11th Computer Security Foundations Workshop,
pages 44–52. IEEE Computer Society Press, 1998.

[68] P. Merlin and G. V. Bochmann. On the construction of submodule specification
and communication protocols. ACM Transactions on Programming Languages
and Systems, 5:1–25, 1983.

[69] R. Milner. Communication and Concurrency. International Series in Computer
Science. Prentice Hall, 1989.

[70] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van
Leewen, editor, Handbook of Theoretical Computer Science, volume B: Formal
Models and Semantics, chapter 19, pages 1201–1242. The MIT Press, New York,
N.Y., 1990.

[71] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes. Information
and Computation, 100(1):1–77, 1992.

[72] J. C. Mitchell, M. Mitchell, and U. Stern. Automated analysis of cryptographic
protocols using murphi. In Proceedings of the Symposium on Security and Privacy,
pages 141–153. IEEE Computer Society Press, 1997.

[73] R. M. Needham and M. D. Schroder. Using encryption for authentication in large
networks of computers. Communications of the ACM, 21(12):993–999, 1978.

147

[74] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In
J. W. de Bakker, C. Huizing, W. P. de Roever, and G. Rozenberg, editors, Proceed-
ings of Real-Time: Theory in Practice, volume 600 of Lecture Notes in Computer
Science, pages 526–548, 1992.

[75] D. Niwinski and I. Walukiewicz. Games for the mu -calculus. Theoretical Com-
puter Science, 163(1-2):99–116, 1996.

[76] D. Park. Concurrency and automata on infinite sequences. In Proceedings 5th GI
Conference, volume 104 of Lecture Notes in Computer Science, pages 167–183,
1981.

[77] J. Parrow. Submodule construction as equation solving in CCS. Theoretical Com-
puter Science, 68(2):175–202, 1989.

[78] L. C. Paulson. Proving properties of security protocols by induction. In Pro-
ceedings of The 10th Computer Security Foundations Workshop. IEEE Computer
Society Press, 1997.

[79] G. D. Plotkin. A Structural Approach to Operational Semantics. Tech. Rep. FN-19,
DAIMI, Univ. of Aarhus, Denmark, Sept. 1981.

[80] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE
Symposium on the Foundations of Computer Science (FOCS-77), pages 46–57.
IEEE Computer Society Press, 1977.

[81] H. Qin and P. Lewis. Factorisation of finite state machines under strong and obser-
vational equivalences. Formal Aspects of Computing, 3(3):284–307, 1991.

[82] A. W. Roscoe and M. H. Goldsmith. The perfect spy for model-checking crypto-
protocols. In H. Orman and C. Meadows, editors, Proceedings of DIMACS Work-
shop on Design and Formal Verification of Security Protocols. DIMACS Center,
Rutgers University, September 1997.

[83] F. B. Schneider. Applied Cryptography. J. Wiley & sons, Inc., 1996.

[84] S. Schneider. Verifying authentication protocols with CSP. In Proceedings of The
10th Computer Security Foundations Workshop. IEEE Computer Society Press,
1997.

[85] S. Schneider. Formal analysis of a non-repudiation protocol. In Proceedings of The
11th Computer Security Foundations Workshop. IEEE Computer Society Press,
1998.

[86] M. W. Shields. Implicit system specification and the interface equation. The Com-
puter Journal, 32(5):399–412, 1989.

148 Bibliography

[87] V. Shmatikov and U. Stern. Efficient finite-state analysis for large security pro-
tocols. In Proceedings of 11th Computer Security Foundations Workshop, pages
105–116. IEEE Computer Society Press, 1998.

[88] D. P. Sidhu and J. Aristizabal. Constructing submodule specifications and network
protocols. IEEE Transactions on Software Engineering, 14:1565–1577, 1988.

[89] R. D. Simone. Hiher-level synchronizing devices in meije-sccs. Theoretical Com-
puter Science, 37, 1985.

[90] A. K. Simpson. Compositionality via cut-elimination: Hennessy-Milner logic for
an arbitrary GSOS. In Proceedings, Tenth Annual IEEE Symposium on Logic in
Computer Science, pages 420–430. IEEE Computer Society Press, 1995.

[91] B. Steffen and A. Ingólfsdóttir. Characteristic formulae for processes with diver-
gence. Information and Computation, 110(1):149–163, 1994.

[92] C. Stirling. Modal and temporal logics for processes. In Logics for Concurrency:
Structures versus Automata, volume 1043 of Lecture Notes in Computer Science,
pages 149–237, 1996.

[93] R. S. Street and E. A. Emerson. The propositional ��calculus is elementary. In
Eleventh International Colloquium in Automata, Languages and Programming,
volume 172 of LNCS, pages 465–472, 1984.

[94] R. S. Street and E. A. Emerson. An automata theoretic procedure for the proposi-
tional ��calculus. Information and Computation, 81(3):249–264, 1989.

[95] R. S. Streett. Fixpoints and program looping: Reductions from the propositional
��calculus into propositional dynamic logics of looping. In R. Parikh, editor,
Proceedings of the Conference on Logic of Programs, volume 193 of Lecture Notes
in Computer Science, pages 359–372, Brooklyn, NY, 1985. Springer.

[96] P. Syverson. On unifying some cryptographic protocol logics. In Proceedings of
IEEE Symposium on Research in Security and Privacy, pages 14–28. IEEE Com-
puter Society Press, 1994.

[97] A. Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Jour-
nal of Mathematics, 5:285–309, 1955.

[98] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, chapter 4, pages 133–191. Elsevier Science Pub-
lishers B. V., 1990.

[99] I. Ulidowski and S. Yuen. Extending process languages with time. In Proceed-
ings of the 6th International Conference on Algebraic Methodology and Software

149

Technology, volume 1349 of Lecture Notes in Computer Science, pages 524–538,
1997.

[100] R. J. van Glabbeek. The linear time-branching time spectrum (extended abstract).
In J. C. M. Baeten and J. W. Klop, editors, CONCUR ’90: Theories of Concur-
rency: Unification and Extension, volume 458 of Lecture Notes in Computer Sci-
ence, pages 278–297, Amsterdam, The Netherlands, 1990. Springer-Verlag.

[101] M. Y. Vardi. Verification of open systems. In Proceedings of the 17th Conference
on Foundations of Software Tecnology and Theoretical Computer Science, Dec.
1997.

[102] M. Y. Vardi and P. Wolper. Automata theoretic techniques for modal logics of
programs. In ACM Symposium on Theory of Computing (STOC ’84), pages 446–
456, Baltimore, USA, 1984. ACM Press.

[103] I. Walukiewicz. On completeness of the �-calculus. In Proceedings 8th Annual
IEEE Symp. on Logic in Computer Science (LICS’93), pages 136–146, Los Alami-
tos, CA, 1993. IEEE Computer Society Press.

[104] I. Walukiewicz. A Complete Deductive System for the mu-Calculus. PhD thesis,
Warsaw University, 1994.

[105] I. Walukiewicz. A complete deductive system for the �-calculus. Technical Re-
port RS-95-6, BRICS, Department of Computer Science, University of Aarhus,
Denmark, 1995.

[106] G. Winskel. On the compositional checking of validity. In Proceedings of CON-
CUR’90, volume 458 of Lecture Notes in Computer Science, pages 481–501, 1990.

[107] G. Winskel. The Formal Semantic of Programming Languages. MIT Press, Cam-
bridge, Moss, 1993.

150 Bibliography

Appendix A

Proofs of chapter 6

This appendix contains the proofs of chapter 6. A first technical lemma is the following:

Lemma A.1 Suppose that there exists a sequential agent �� s.t. ���
�
��

�����

�����

and ����
�
����

�����

������ #�� 2 � �2�

 2��, and B � � is an initial message of �,

with B � � � �� �B�:��2�� then :

 there exists � � s.t. ���
�
� �
�

������

���
���� and ����

�
� �
�

������

���
����� #��� 2� �

�2��

 2���� with B � � � �� � B�:��2���, and moreover if 2 ��� � � ���

 � �
��

is the sending of a message B� � � � then there exists a minimal # such that every
<� # ' < � � we have that 2�� is the generation of a random value :, which is a
submessage of B� � � �, and every random submessage of B� � � � that does not
belong to �� � B�:���2 ��

 2�,��� is generated in this sequence. Moreover <2�

preserve the adjacency of every sequence of generation actions performed by � .

Proof: First, we show that if in 2 there is 2� � D'��?� and :� � �� is never sent, as
submessage, during the following 2�� with ' � � ' � then we have (we assume that is
the maximal index of of such action):

B � � � �� � �2������	���	�������

This follows from the fact that 2� does not appear as submessage of � � �2��

 � 2�	��
since it is newly created; moreover since it is never sent as submessage then it cannot
be received as submessage in every action in 2�� with ' � � ' �, since :� � �� is a
basic random value and it cannot be guessed from no-one else than � , and by assumption
6.4 this message cannot be deduced by any other agent in �. So, by observing that the
possible actions in 2 can be only generation, sending, receiving or eaves-dropping we can
argue that :� � �� �� �"���� � �2������	���	�������. By applying assumption 6.3 we have
B � � � ����2������	���	�������. So we can build a process that after action 2�	� goes in a

process � �
���, and by the assumption on the deduction function we have � �

���

���������
$� � �

� ,
since the lack of knowledge of :� � �� does not prevent ���� to deduce everything he could

152 Appendix A

deduce with it. This result is based on the fact that (it can be proven by induction on the
length of 2) if a process � with initial knowledge � can perform 2 then it is possible
to build another term � � that does not use neither equality nor choice and produces this
sequence. So if the value :� � �� is never sent then it cannot be substituted in a sending
action and hence the result follows. By repeating this step a finite number of times we get
a process that does not generate a random value that he will not send as submessage.

Let us see how we can reorder the sequence in such a way that every sequence of
generations of random values is followed by a sending of those values as submessages.
This fact implies that a minimal #, which satisfies our requirements, must exist in 2.

Let us suppose to have a generation action in the sequence, there are various cases:

 before the sending of :� � �� another sending is performed, where :� � �� does not
appear as submessage, then � can perform D'��?� after the sending action, since
:� � �� is not influent for the performing of this kind of action how it can be proved
by structural induction on � .

 before the sending of :� � �� there is a receiving, then he can perform the generation
action after the receiving action.

 before the sending of :� � �� there is a generation action, good.

 before the sending of :� � �� there is an eaves-dropping action, then he can perform
the generation action after this action.

By applying a finite number of times this reduction we can build a process where
every generation action of a random value :� � �� is followed by a sequence of generation
actions and finally by a sending of a message that contains :� � �� as submessages. �

This result can be used to prove the following lemma:

Lemma 6.1 If there exists a sequential agent �� s.t. ���
�
�� �� �2 � �B � � � � 0�

�	�

then a well behaved agent � �
� exists s.t. ���

�
� �
� �� �2 � �B � � � � 0�

��	� .

We can observe that from the semantics of ��
�

it follows:

Lemma A.2 Suppose �C(*��� � �C(*��� � � then:

�2 � /2� � ���
�
�� �� �B � � � � 0�

�	�

�	

�/ � ���
�
�

B
�� � ���

�
� �
�� � � ���

�
� � �� �2� � �B � � � � 0��

�	�� �

�/ � ���
�
�

B
�� � ���

�
�� � � ���

�
� �� �2� � �B � � � � 0�

�	�� �

�/ � ���
�
�

B
�� ���

�
� �
�� � ���

�
� � �� �2� � �B � � � � 0��

�	��

153

Moreover, due to our assumptions on the deduction function we can state:

Lemma 6.2 If � 0� � � then �

�� �� �� � � �	

�� � �

� and � � 0� � �
�.

Proof: By structural induction on S and by inspection on the rules used to infer the
transition of �. �

The above lemma can be used to prove that if �
�
$� �� and � 0� � � then � � �	�
$� � �

�.
The correctness of the partial evaluation is stated by the following proposition, where

we assume to deal with well behaved processes.

Proposition 6.2 If B � � is an initial message and �C(*��� � �C(*��� � � then
���

�
�� �� �2 � B � � � 0�

�	� �	 �� �� �2 � B � � � 0�
�	����

Proof: By induction on the max depth of the derivations of �.
Base case:

� � � < then the result follows by observing that � can only deduce initial messages
during its future behaviour that it could deduce in its initial position. So the result follows.
Inductive step:

���
�
�� �� �2 � �B � � � � 0�

�	� �	

�2 !��� -��
&�� � ���
�
�� �� �B � � � � 0�

�	� �	

���
�
�� �� �B � � � � 0�

�	8 �

��2 !��� -��
&��� 2 � /2� � ���
�
�� �� �B � � � � 0�

�	� �	 	����
���

�� �� �B � � � � 0�
�	8 �

��� �/ � ���
�
�

B
�� � ���

�
� �
�� � � ���

�
� � �� �2� � �B � � � � 0��

�	�� �

��� �/ � ���
�
�

B
�� � ���

�
�� � � ���

�
� �� �2� � �B � � � � 0�

�	�� �

��� �/ � ���
�
�

B
�� ���

�
� �
�� � ���

�
� � �� �2� � �B � � � � 0��

�	��

Condition (1) takes in account possible synchronizations between � and �; these are
(from the point of view of � agent):

 receiving a typed message on a channel 	. Since only a finite set of messages
can be sent from � on every channel and the number of channels is finite, we can

consider only a finite number of actions /. So we have that ��
�����? �

�� � �
������? ��

and � ���
�
� �
������? �� �� �2� � �B � � � � 0

������? ��
�	�� . By inductive hypothesis we

have that � �
� �� �2 � �B � � � � 0�

�	����
�. So considering all the possible /

actions of this kind we obtain:

�
�
"�	! �
	� ��

�	:B� � � ����2 � �B � � � � 0
������? ��
�	� ��� ��

 sending of a typed message, the set of types that the system � can receive is finite
and for every type every agent can deduce only a finite number of messages by

154 Appendix A

assumption 6.1, hence by inductive hypothesis, the following disjunction takes in
account these cases:

	�	���? �	��
�!/��	�

�	9B� � � ����2 � �B � � � � 0�
�	����

��

 eaves-dropping of a communication internal to the system �, such communications
can be in a finite number, and hence by inductive hypothesis these cases can be
treated as:

�

��"�	! �
	� ��

�@�	���? ����2 � �B � � � � 0
������? ��
�	� ��� ��

Condition (2) takes in account actions performed by the system � without interaction
with the agent � , by inductive hypothesis these actions can be taken in account using the
following formula:

�
�
	���

�2 � B � � � 0�
�	����

�

The last condition (3) is more difficult to translate than the previous ones, since in this
formulation it does not directly permit to use the induction hypothesis on the structure of
�. The restriction to the analysis of well behaved processes and our requirements on the
�C(* of � and � help us, in fact it follows that the only possibility is that / � D'��?� . Since
2 is well behaved then if ���

�
� �� B � � � 0�

�	� and 2 can be rewritten as /2�D�	���? �2��,
where /2� � D'��?�

 D'��?� are generation actions. Moreover the random values, guessed
in this sequence, appear as submessages in B� � � � (see lemma A.1); and D�	���? � is
derived from the synchronization of a sending action 	9B� � � � by � and a receiving
action performed by the system �. By definition of well behaved process, we have that

��
B�������? �

$� � �
���!'!	B��
 and ���

�
��

B��#��"�	! �

$� � ���
�
� �
���!'!	B��
 and � ���

�
� �
���!'!	B��
 ��

�2 � �B � � � � 0
���!'!	B��

�	� .

We can now apply inductive hypothesis and so we obtain � �
���!'!	B��
 �� ��2 � B �

� � 0
���!'!	B��

�	� ��� ��. Hence, �� �� �D'��?��

 �D'��?���	9B

� � � ����2 � �B � � � �

0
���!'!	B��

�	� ��� ��

By the other hand, if

�� �� �D'��?��

 �D'��?���	9B
� � � ����2 � �B � � � � 0

���!'!	B��

�	� ��� ��

then it can be proven that a well behaved 2 exists s.t. ���
�
�� �� B � � � 0�

�	� . So
considering all possible initial sequences of random generation actions we have:

	�	���? �	��'��?�����# 	��
�.!/��	�

��D'��?�������	9B
� � � ����2 � �B �� � � 0��

�	����
��

that is an infinitary disjunction, where �� � � � ��:� � ������� .

155

�

The following lemma states the key idea for the reduction of infinitary disjunctions to
finitary ones.

Lemma 6.3 If B � � is an initial message, 1 a bijection between �:� � ������ and �:�� �
� �
����� with � ��� � 0� ��� and �"������ �:� � ������ � � � �"������ �:�� � �

�
�����

then:

���
�
����'��?����# �� �2 � �B � � � � 0

���'��?����#
�	�

�	

� ���
�
� �
���'�

�
�? �

�
���#

�� �2 � �B � � � � 0
���'���?

�

����#
��	�

Proof: if ���
�
����'��?����# �� �2 � �B � � � � 0

���'��?����#
�	� then there exists 2 such that

����
�
����'��?����#

�
$�� #�� <2

with B � � � ����:� � �������B�:��<2��. We are in the hypothesis of lemma 6.2 so we

have � ���
�
� �
���'���?

�

����#

��
$� with 2 � � 1�2�. Hence we can see that �����

�
� �
���'���?

�

����#

��
$�

� #��� <2� � 1�<2�. So we have:

B � � � �� � �:� � ������ �B�:��<2�� �	
1�B � � � � �1�� � �:� � ������ �B�:��<2��� �	
1�B � � � � �1��� � 1��:� � ������� � 1�B�:��<2���� �	
B � � � �� � �:�� � �

�
����� �B�:�� <2���

Finally, we have � ���
�
� �
���'�

�
�? �

�
���#

�� �2 � �B � � � � 0
���'���?

�

����#
��	� . The other direction

can be proved by using a symmetric reasoning. �

The next lemma states the correctness of our translation from infinitary partially eval-
uated formulas, to finitary ones.

Lemma 6.4 Given a system � and B� � �
� initial in � then:

��� �� ��2 � B� � �
� � 0�

�	����� �	 �.� ��
<

��2 � B� � � � � 0�
:	�����

Proof:

By induction on the depth of the nesting infinitary disjunctions in % � �2 � B� � �
� �

0�
�	����

(��)
So if ��� �� % then either � models a formula in the finite part of % and in this case

also of <% , or exists * � �	� B � �� ��:� � ������� � �
�� � ��"		��� � �� �� %�, where %� is

��D'��?�������	9B � � ���2 � �B� � �
�� � 0

����'��?�����#
�	� ��� ��

156 Appendix A

The last fact implies:

��

# �	!� 	���	# �	!�
$� � �

��
����?
�� � ��

�� �� ��
�� �� ��2 � B� � �

� � 0��

�	������

with �
����?
�� ��� �

� � � � �:� � ���

 � :� � ���� B � � � ���� and �:� � ������ �
�"���B � � �

There must be the case for some *� � �	�� B� � � �� ��:�� � � �
� ������� �

�
�� � $*%�� that

%�� appears as a disjunction in <% , let us see that under this hypothesis there exists � �
� s.t.

��
� �� %�� .

Let 1 be a bijection between the random values of ��:� � ������� and ��:�� � �
�
� ������ , (a

bijection must exist by construction, since the two sequences have the same multiset of
types). Hence it is possible to construct a process � �

� such that:

��
�

�
�
	! �

�
	���	# ��	! ��
$� � ��

���

and � ��
���
0� � �

�� . To achieve this aim, let us reorder the second sequence ��: �� � �
�
� ������ ,

in such a way that 1�:�� � :�� with � ' � '). At this point if ��

# �	!��� � �
���'��?��

,

then � must be of the form :�)
A		�	�

?�

4 and � � � 4$:� � ���>%. So we define �� �

�:�)
A		��	��

?�
4�, where (? �

� �� � �� � :��. By iterating this) times give us the desired
process.

Then for some � ���
���

it must be � ��
���

�����?
�� � ���

���
. We have 1�� �� � � �

�� 1�B � � � �

�B� � � � and 1���:� � �������� � ��:�� � � �
� ������ , so we are in the hypothesis of lemma

6.3, hence ����
��
�� �� �2 � B� � � � � 0��

�	� and so � �
����� ���

���
�� �2 � B� � � � �

0
���
�	� and by proposition 6.2 this leads to � ���

���
�� �2 � B� � � � � 0

���
�	����

�
�. The

depth of the nesting of infinitary disjunctions in the latter formula is less than in the
formula �2 � �B� � �

�� � 0�
�	����, hence by applying the inductive hypothesis �. �

���
��

<
�2 � �B� � � �� � 0

���
: �	����

�
�, hence the thesis follows by considering � ��

���
� . �

���
and .� �

��
�.

The other direction is trivial.
�

The following is the proof of the main theorem of the chapter.

Theorem 6.1 Given a system �, with �C(*��� � �, a finite set of typed messages � and
an initial message B � � then is decidable if ��� with �C(*��� � � s.t. ���

�
�� �� �2 �

�B � � � � 0�
�	� .

Proof:
By using proposition 6.2 and lemma 6.4 we can reduce the decidability of the exis-

tence of such �� to a satisfiability problem of the formula <�2 � �B � � � � 0�
�	����. We

have only to prove that satisfiability for this kind of formulas is a decidable problem.

157

By induction in on the max depth of the derivations of �, we prove that the satisfia-

bility <% �
<�2 � �B � � � � 0�

�	���� is decidable and moreover we can build a model for
this formula (if it is satisfiable).

S=Nil then <�2 � �B � � � � 0�
�	���� is equal to T or F. So in the first case every process

is a model in the latter no process is a model.

Inductive step then let us suppose then <% is satisfiable. Then there must be the case
that either �B � � � � 0�

�	8 � � or for some successor � � of � that <% � �
<

�2 � �B � � � � 0��

�	����
� is satisfiable. In the former case every process is a model.

Let us see the latter one. By induction, we can build � �
�� that satisfies <% �. By con-

struction <% � must appear in some reduction of <% (see figure 6.4). Let us analyze the
various possibilities:

sending: then �� � � and by construction we have that B� � � � � ��� so let �
be 	9B� � � �
� �. We have that �� �� <% .

guessing: then exists a tuple �	� B� � � �� ��:� � �������� � �� such that �� � � � �:� �
������ . For every :� � �� we can choose a guessing action that produces such
message so we have � � :�)

-�		��	�

?�

 :�)

-�		��	�

?�
	9B� � � �
� �, where ��

are variables that do not appear in � �. We have that �� �� <% .

receiving: then �
�����? �

�� � � and �� � � � �B� � � ��. Hence let � � 	:��� � � �
� �

and � is a variable that does not appear in � � and the result follows.

eaves-dropping: then �
#��"�	! �

�� � � and �� � � � �B� � � ��. Hence let � �
@-�	���? �
� � and � is a variable that does not appear in � � and the result follows.

idling: then �� � � and let � be � �.

On the other hand, if B � � � 0�
�	8 � � and it does not exists a <% � that is satisfiable

for some � �, successor of � we have that <% cannot be satisfiable.

�

To prove proposition 6.1, first we have to prove the following technical lemma:

Lemma A.3 Given a finite set of typed messages �. Then:

' If B � �� � �� �� �"����� then if there exists a proof of B � �� � �� of depth)
then there exists a proof with a depth less or equal) where last rule applied is (2),

/ If ���� B� � ��0�;� � � �� �"����� then if there exists a proof of ���� B� �
��0�;� � � of depth) then there exists a proof with a depth less or equal) where
last rule applied is (5).

158 Appendix A

Proof: By induction on the depth) of the proof:
[�) � ��]

' There is no proof of this depth since the only possibility is to use axiom (1), and
B � �� � �� �� �"�����

/ There is no proof of this depth since the only possibility is to use axiom (1), and
���� B� � ��0�;� � � �� �"�����

[) � �)�]

' By inspection of the last rule used in the proof:

rule 2 done,

rule 3 then, there must exist a proof for some message B� B� � ��������� . We can
apply inductive hypothesis on this message, whose proof must have a depth
less) and it cannot appear as submessage of some message in � (otherwise
B � �� � �� should be a submessage of this message). Hence, there is a
proof with a depth less then) where the last rule used is ���, but in this case
B � �� � �� must be proved with a proof of depth less then), and we can
apply inductive hypothesis again and this leads to the result,

rule 4 similar to above proof,

rule 5 It is no possible,

rule 6 then, there must exist a proof for some message ���� B� � ��0�;� �� � ���.
We can apply inductive hypothesis on this message, whose proof must have
a depth less) and it cannot appear as submessage of some message in �
(otherwise B � �� � �� should be a submessage of this message). Hence,
there is a proof with a depth less then) where the last rule used is ���, but in
this case B � �� � �� must be proved with a proof of depth less then), and
we can apply inductive hypothesis again and this leads to the result,

/ By inspection of the last rule used in the proof:

rule 2 It is no possible,

rule 3 then, there must exist a proof for a message B�� ���� B� � � � ���0�;� � ��.
We can apply inductive hypothesis on this message, whose proof must have
a depth less) and it cannot appear as submessage of some message in �
(otherwise ���� B� � ��0�;� � � should be a submessage of this message).
Hence, there is a proof with a depth less then) where the last rule used is ���,
but in this case ���� B� � ��0�;� � � must be proved with a proof of depth
less then), and we can apply inductive hypothesis again and this leads to the
result,

159

rule 4 similar to above proof,

rule 5 done,

rule 6 then, there exist a proof for a message ����� ���� B�� � ��0�;� ��0�;� � ��.
We can apply inductive hypothesis on this message, whose proof must have
a depth less) and it cannot appear as submessage of some message in �
(otherwise ���� B� � ��0�;� � � should be a submessage of this message).
Hence, there is a proof with a depth less then) where the last rule used is ���,
but in this case ���� B� � ��0�;� � � must be proved with a proof of depth
less then), and we can apply inductive hypothesis again and this leads to the
result.

�

Finally, we can state:

Proposition 6.1 The deduction function of section 6.4 enjoys assumptions 6.1,6.2,6.3 and
6.4.

Proof:
By structural induction on the type � and by inspection on the rules of the inference

system we prove that function enjoys assumption 6.1:

 If � is a basic type then since the submessages of messages in � of type � are finite
and the rules do not introduce new message of a basic type that are not submessage
of the premises, we have the thesis.

 If � � �� � ��, the possible submessages of type � in � can be in a finite number.
If B � � is not a submessage then for lemma A.3 ' there is a proof where last rule
used is (2), but by inductive hypothesis only a finite number of �� and �� messages
can be deduced and so the thesis follows.

 If � � ��0�;� ���, then the possible submessages of type � in � can be in a finite
number. Otherwise for lemma A.3 ' there is a proof where last rule used is (5), but
by induction hypothesis only a finite number of submessages of type ��; or �� can
be deduced and hence the thesis follows.

By lemma A.3 and the fact that � is finite, and so its submessages, we can build a func-
tion � s.t. the cardinality of ��� � ��:��� � is bounded from ���� and this leads to
constructability, in our sense, of ��� ���:��� �.

Now we prove that enjoys assumption 6.3, by induction on the max depth of the
branches of the proof of B � � � ��� �: � � ���. If the proof has a depth of 1 then is an
axiom, and the result trivially follows. Let us analyze the inductive step. By inspection
on the last rule used in the derivation:

160 Appendix A

Rule 2 then B � � � �B�� B�� � ����� and we can apply inductive hypothesis on these
two messages and we have that B� � �� � ���� � �� � and so by apllying rule (2)
B � � � ���,

Rule 3 then exists B� B� � � � �� � �� � �: � � ���. If B� B� � � � �� is not in
� � �: � � �� as submessage then for lemma A.3 ' there must be a shorter or equal
proof of B� B� � � � �� with last rule used is �, applying inductive hypothesis the
result follows. Otherwise we can apply directly inductive hypothesis since :� � � �

does not appear as submessage in B� B� � � � ��, and then apply rule 3.

Rule 4 analogous to the previous one,

Rule 5 then B � � � ���� B�� � ��0�;� ��� and we can apply inductive hypothesis on
B� � �� and � � 0�; and so we have that B� � �� � ��� and � � 0�; � ���
hence by applying rule (5) we have B � � � ���,

Rule 6 then exists ���� B� � ����;� � � that is provable from �� � �: � � ���. If
���� B� � ����;� � � is not in � � �: � � �� as submessage then for lemma A.3
/ there must be a shorter or equal proof of ���� B� � ����;� � � where last rule
uses is � so we can apply inductive hypothesis and we have the thesis. Otherwise
we can apply directly inductive hypothesis since : � � � does not appear as submes-
sage in ���� B� � ����;� � �, and then apply rule 6, since �	� � ����0�; must be
in ���.

The proof for assumption 6.2 is done noticing that the rule schemata are based on metavari-
ables for messages, so they are invariant for renaming or bijection between random mes-
sages.

The proof for assumption 6.4 can be done by noticing that the rules of the inference
system do not introduce in the consequence random values that are not in the premises,
hence the result follows.

�

Proposition A.1 Assumption 6.4 implies assumption 6.3

Proof: We prove B � � � �� � �: � � ��� �� B � � � ��� by induction on the
max depth of the branches of the proof of B � � � �� � �: � � ���.

If the depth is 1 then the rule used is an axiom and since it follows that B � � � � so
B � � � ���. The inductive case is analyzed by considering the fact that the premises
must have a proof shorter then B � � so we can apply on these the inductive hypothesis
and so also these premises can be proved by starting from � and the result follows.

�

Proposition 6.4 Given ��� with � base, if � is a base for ��� then we have � � �.

161

Proof: We show � � �. By contradiction consider a message B � � � � and
B � � �� �, whose type has the smallest size among the messages in � that are not in �.

Now B � � � �, so B � � is in ��� � ���. Since � is downward closed,
there must exist a set of typed messages �B� � ���

 � B� � ��� � � ���:��� � � ��
s.t. B � � � ��B� � ���

 � B� � ����. For every � ���

)� the size we have
B� � �� � ��� � ���.

Thus we can prove that for every � ���

)� the message B� � �� is in �. Suppose
the contrary, and let B� � ��� � � ���

)� be a message whose type has the smallest size
w.r.t. the ones that are not in �. Then since � is DC then there exists a set of messages in
�, whose size is smaller than the size of �� , from which B� � �� is deducible. This means
that these messages are in � and hence are among the messages �B� � ���

 � B� � ���.
But this leads to a contradiction since in this case we have that � is not minimal!. Hence
messages �B� � ���

 � B� � ��� are in �, but in this case also � is not minimal, in
contrast with the hypothesis that � is base.

The other inclusion can be proved by using a symmetric reasoning.
�

162 Appendix A

Appendix B

A verification session

In this appendix we present a simple verification session for the example of subsection
6.10.1, with the tool we have developed for cryptographic protocols analysis.

The code for a sender agent is the following:

Send(ab, Encrypt((na:Nonce, a:Aid), bkey:EKey)).
Recv(ab, XA : Enc(Nonce*Nonce)).
If Deduce (YA = Decrypt(XA, akey:DKey)) Then
If Deduce (NAa = Fst(YA)) Then

If (NAa = na : Nonce) Then
If Deduce (NAb = Snd(YA)) Then
Send(ab,Encrypt(NAb,bkey:EKey)).0

End Deduce
End If

End Deduce
End Deduce

The code for a receiver agent is the following:

Recv(ab, Z : Enc(Nonce*Aid)).
If Deduce (X = Decrypt(Z, bkey : DKey)) Then
If Deduce (A = Snd(X)) Then

If (A = a : Aid) Then
If Deduce (Na = Fst(X)) Then
Send(ab, Encrypt((Na,nb : Nonce), akey : EKey)).
Recv(ab, V:Enc(Nonce)).
If Deduce (Vb = Decrypt(V, bkey : DKey)) Then
If (Vb = nb : Nonce) Then
0
End If

End Deduce
End Deduce

164 Appendix B

End If
End Deduce

End Deduce

Analisys of the flawed version:

load_spec "nspk.spec";;
Spec Loaded- : unit = ()
set_secret "nb : Nonce";;
- : unit = ()
set_base [" akey : EKey" ; "bkey : EKey"; "xkey : EKey";

"xkey : DKey" ; "a : Aid"; "b : Aid"; "x : Aid"];;
- : unit = ()
run_spec();;
- : bool = true
show_intruder ();;
- : Terms.action list =
[Terms.Recv ("ax", "E[xkey]((na,a)) : Enc[(Nonce*Aid)]",

Enc[(Nonce*Aid)]);
Terms.Send ("ab", E[bkey]((na,a)) : Enc[(Nonce*Aid)]);
Terms.Recv ("ab", "E[akey]((na,nb)) : Enc[(Nonce*Nonce)]",

Enc[(Nonce*Nonce)]);
Terms.Send ("ax", E[akey]((na,nb)) : Enc[(Nonce*Nonce)]);
Terms.Send ("ab", E[akey](na) : Enc[Nonce]);
Terms.Recv ("ax", "E[xkey](nb) : Enc[Nonce]", Enc[Nonce])]

Analysis of the corrected version:

load_spec "nspk_ok.spec";;
Spec Loaded- : unit = ()
set_secret "nb : Nonce";;
- : unit = ()
set_base [" akey : EKey" ; "bkey : EKey"; "xkey : EKey";

"xkey : DKey" ; "a : Aid"; "b : Aid"; "x : Aid"];;
- : unit = ()
run_spec();;
- : bool = false

