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Fair division problems are concerned with finding ways of dividing a resource among several parties in such
a way that all recipients believe that they have received a fair amount, according to some notion of fairness.
The problem is difficult because each recipient may have a different measure of the value of the resource.
Examples of problems of fair division are dividing up the property in an estate, determining the borders in
an international dispute, etc.

The questions in the area of fair division range from the existence problem (does a division of the goods
with the specific fairness property exist?) to the optimization problem of actually finding either an exact or
an approximate fair subdivision. We present some of the basic results in this field.

3.1 Fairness: Basic Definitions

The notion of fairness can come in several different flavors. Here we consider envy-freeness and proportion-
ality.

Definition 3.1 (Envy). A player who would prefer the goods assigned to another player to her own goods
is said to envy the other player.

Definition 3.2 (Envy-free Allocation). An allocation of goods to players is called an envy-free allocation if
no player envies any other player.

Definition 3.3 (Proportional Allocation). An allocation of goods to n players is called a proportional allo-
cation if each player, based on her own preferences, evaluates the piece she received worth at least 1

n -th of
the whole amount of goods.

Note that an envy-free allocation must be proportional, whereas a proportional allocation need not be
envy-free. However, for n = 2, the two notions are clearly equivalent.

3.2 Cake Cutting: Proportional Allocations

The most popular example of fair division is perhaps the cake-cutting problem. This basic question has been
present in human history since ancient times. It evolved into a rich discipline which exemplifies the role of
mathematics in the social sciences.

In the simplest instance of the cake-cutting problem we are given two people who must share a homogeneous
cake, like in the Fair Division Example of Lecture 2. As we have seen, the procedure we can adopt corresponds
to a very old custom, according to which one of the two people will cut the cake, and the second one will
choose a piece (the divide-and-choose procedure). The optimal strategy for the first player is to divide the
cake into two equal parts, while the optimal strategy for the second player is to choose the bigger piece. If
both players adopt their optimal strategies, then each will get half the cake.

What about a more general scenario, where the two players have different tastes (which they keep secret)
and where the cake is heterogeneous, so that some pieces of the cake might be more attractive not only
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because of their size, but also because they contain special items, or are richer than other pieces of a certain
ingredient? In this case, the objective of a procedure of fair division will be to provide each player with a
piece of the cake whose value, according to such player’s privately known preferences, is at least half the
total value of the cake. Does the divide-and-choose procedure still give a fair outcome?

The first player will cut the cake in two pieces which she considers (according to her own preferences)
equivalent; the second one will choose the piece which he considers more valuable. No matter what the
second player does, the first one will be left with a piece she considers a fair share. Indeed she had divided
the cake into pieces which looked equivalent to her. The second player chooses a part he considers at least
as valuable as the one he leaves to the other player. So we get a division which is envy-free (no one thinks
the other one got a better piece), and thus also proportional (both players think they have received at least
a half the value of the cake). As already mentioned, in the two player case these two notions are equivalent:
if one thinks he has received at least half the value of the cake, he also must think that the other player
cannot have received more than half the value, and so he does not envy her.

The problem becomes more interesting when there are n-players, for n > 2. In this case, the equivalence
between envy-free division and proportionality does not hold. A player might think he has received a piece
whose value is 1

n -th of the total value (so that proportionality is respected), but he can also think that some
other player received more than 1

n -th of the total value, and he will envy her.

We now describe a procedure, known as Banach-Knaster last-diminisher procedure, which provides a pro-
portional division of a cake among n people.

1. Player 1 cuts a piece of cake (that she considers to represent 1
n -th of the total value).

2. That piece is passed around the players. Each player either lets it pass (if she considers it at most
1
n -th of the total value) or trims it down further (to what she considers worth 1

n -th of the total value).

3. After the piece has made the full round, the last player to cut something off (the last diminisher) has
to take it.

4. The rest of the cake (including the trimmings) is then divided among the remaining n − 1 players.
Once down to n = 2, the two remaining players play the divide-and-choose two-player game.

It is easy to see that this procedure guarantees a proportional division, although it does not provide an
envy-free division.

A player will receive a piece which she was the last to trim. She trimmed it so that it became (for her) worth
1
n -th of the whole. Therefore she knows that she received her share (proportionality). But is it true that
nobody is going to receive more (in her eyes)? The answer is no. All the players (except for the last two to
choose) can envy players who pick their pieces later; having exited the game, they can no longer prevent the
other players from getting pieces they regard worth more than 1

n -th of the total value. It is easy to see that
this cannot happen for the last two players.

We now give a sketch of another algorithm, based on Hall’s Theorem, which attains a proportional subdivision
of a cake among n players.

We recall the statement of Hall’s Theorem.

Theorem 3.4 (Hall’s Theorem). Let G = (V,E) be a bipartite graph, where V = X ∪ Y . G contains a
matching saturating all the vertices in X if and only if

|N(S)| ≥ |S|, ∀S ⊆ X ,

where N(S) denotes the set of neighbors of S. If |X| = |Y |, then G contains a perfect matching.
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We are given a cake and n players p1, p2, . . . , pn. We let p1 divide the cake into n pieces x1, x2, . . . , xn which
look equally desirable to her. We now construct a bipartite graph G = (X ∪ Y,E), where X is the set of
pieces of cake and Y is the set of players. There is an edge in G between pi and xj if pi values xj at least
1
n th of the cake. Note that p1 is connected by an edge to all the xj ’s. Therefore there exists a subset S ⊆ X
such that |N(S)| ≥ |S|. It is now possible to prove the existence (and actually to construct) a smallest
subset T ⊆ X such that |N(T )| = |T | and |N(Q)| > |Q|, for all proper nonempty Q ⊂ T . Hall’s Theorem
guarantees that we can find an assignment of the pieces in T to the players in N(T ). By construction, the
players in N(T ) consider any of the pieces in T worth at least 1

n th of the cake, while the remaining players
are not interested in them, and are happy to start dividing what is left of the cake. We can then proceed by
induction.

3.3 Sperner’s Lemma

We will now prove Sperner’s Lemma, a simple and important combinatorial result which will be the basic
tool needed in the proof of existence of an envy-free division of a cake among n players.

Sperner’s Lemma readily follows from a simple parity argument in graph theory.

Theorem 3.5. Let G = (V,E) be a graph, and let d(v) denote the degree of v ∈ V . Then
∑

v∈V d(v) is an
even number.

Proof. The quantity
∑

v∈V d(v) counts the edges in G twice.

Corollary 3.6. Let G = (V,E) be a graph. The number of vertices of odd degree in G is even.

Proof. Let V1, V2 ⊆ V denote the sets of vertices of odd and even degree, respectively. We have∑
v∈V

d(v) =
∑
v∈V1

d(v) +
∑
v∈V2

d(v).

Since the quantities
∑

v∈V d(v) and
∑

v∈V2
d(v) are even, then the quantity

∑
v∈V1

d(v) must also be even.
But this is a sum of odd numbers, and thus it can be even if and only if the number of terms in the summation
is even. Therefore |V1| is even.

Before proving Sperner’s Lemma, we need some definitions.

Definition 3.7 (Unit n-simplex). The unit n-simplex is the subset of Rn+1 defined as

{(x0, x1, . . . , xn) ∈ Rn+1|
n∑

i=0

xi = 1, xi ≥ 0, ∀i}.

Definition 3.8 (Simplicial Subdivision of Triangles). Let T be a closed triangle in the plane. A subdivision
of T into a finite number of triangles is said to be simplicial if any two intersecting triangles share either
a vertex or a side. The triangles obtained by a simplicial subdivision are called elementary triangles. The
simplicial subdivision is also called triangulation.

Example 3.9 (Barycentric Subdivision of the unit n-simplex). An important subdivision is the barycentric
subdivision.

The barycentric subdivision of a unit n-simplex Sn consists of (n+ 1)! simplices. The vertices v0, v1, . . . , vn
of each elementary simplex can be associated with a permutation p0, p1, . . . , pn of the vertices of Sn in such
a way that vi, i = 0, 1, . . . , n, is the barycenter of the points p0, p1, . . . , pi, i = 0, 1, . . . , n.
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In particular, the barycentric subdivision of a line segment S1 (unit 1-simplex) consists of two smaller seg-
ments, each connecting one endpoint of S1 to the midpoint of S1 .

The barycentric subdivision of a triangle S2 (unit 2-simplex) divides it into six triangles; each elementary
triangle has one vertex at the barycenter of S2, another one at the midpoint of some side, and the last one
at one of the original vertices.

Definition 3.10 (Proper labeling). Given a simplicial subdivision of a triangle T , a labeling of the vertices
with the elements of the set {0, 1, 2} is called proper if {v0, v1, v2}, the three vertices of T , are labeled {0, 1, 2},
respectively, and, for all i, 0 ≤ i < j ≤ 2, each vertex on the side of T which joins vertices i and j is labeled
either i or j. No assumption is made on the labeling of the internal vertices, i.e., vertices placed in the
interior of T .

Definition 3.11 (Distinguished Triangle). A triangle labeled with all the three labels is called either distin-
guished triangle or completely labeled triangle.

We are now ready to prove the two-dimensional version of Sperner’s Lemma. The extension to the n-
dimensional case is quite simple.

Lemma 3.12 (2-Dim Sperner). Every simplicial subdivision of a triangle T , with a proper labeling, contains
an odd number of distinguished triangles.

Proof. Let T0 be the region outside T , and let T1, T2, · · · , Tn be the triangles in the subdivision. Let us
consider a graph G = (V,E) on the vertex set V = {v0, v1, · · · , vn}, where vi corresponds to the triangle Ti.
The edge set is defined as follows: (vi, vj) ∈ E if the common boundary between Ti and Tj is a side whose
endpoints are labeled 0 and 1.

First of all we show that v0 has odd degree. Let s be the side of T whose endpoints are labeled 0 and 1. T0

is adjacent to the triangles with one side on s and endpoints 0 and 1. It is easy to see that the number of
these triangles is odd. Therefore v0 has odd degree.

Corollary 3.6 implies that an odd number of the remaining vertices of G (which correspond to elementary
triangles) have an odd degree. None of them can have degree three, for otherwise it would have three sides
labeled 0 and 1, which is impossible. Therefore the vertices of odd degree have degree one. But a vertex vi
has degree one if an only if Ti is a distinguished triangle. This shows that there must be an odd number of
distinguished triangles.

3.4 Sperner’s Lemma and Envy-Free Division

Let us be given a rectangular cake of horizontal length one. Consider a set of n − 1 vertical cuts which
partition the cake into n rectangular portions. Let xi be the horizontal length of the i-th (from the left)
piece of cake.

We have

xi ≥ 0, i = 1, . . . , n

x1 + x2 + . . .+ xn = 1 .

The set S of possible partitions of the cake forms a unit (n− 1)-simplex. Each s ∈ S is called a cut-set.

We make the following assumptions:
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Figure 3.1: Labeling of the vertices according to the names of the owners.

1. All the players are hungry, i.e., any piece of cake is better than the empty piece;

2. The preference sets are closed. Let {t1, t2, . . .} be a sequence of cut-sets. Given s ∈ S, if s is preferred
to ti, ∀ i = 1, 2, . . ., then s is also preferred to t = limn→∞ tn.

Theorem 3.13. Under assumptions (1) and (2) above, there exists an envy-free cake division.

Proof. We first prove the theorem for n = 3, and then give a sketch of the proof for the n-dimensional case.

Consider the unit 2-simplex

xi ≥ 0, i = 1, 2, 3,

x1 + x2 + x3 = 1 ,

which represents the possible partitions of the cake into three parts, and a corresponding triangulation.

Let A, B, and C be the three players. Let us assign an ownership to each of the vertices of the elementary
triangles, in such a way that each elementary triangle has all the three labels A, B, and C (see Figure 3.1).
Notice that this kind of assignment (of labels to vertices) is always possible if we use the regular triangulation
of Figure 3.1.

Let us now construct an auxiliary labeling from the set {1, 2, 3} as follows. For each vertex of the subdivision,
which corresponds to a cut-set, we “ask” the owner of the vertex to choose a piece. The answer will be an
integer i from {1, 2, 3}. We label the vertex with such an i. We leave as an exercise the proof that this gives
a proper labeling.

We can thus invoke Sperner’s Lemma to state the existence of an elementary triangle with all the three
labels, i.e., a distinguished triangle. If this triangle is small enough, then there are three very similar cut-sets
for which the three players prefer different pieces. We can now use assumption (2) to turn this approximate
result into an exact one.

The proof can be easily generalized to the n-dimensional case. The only difficulty lies in finding an initial
assignment of ownerships such that all elementary simplices have all the n labels. The previous subdivision
does not work. However one can use the barycentric subdivision (see Example 3.9, and Figure 3.2) which
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Figure 3.2: Barycentric subdivision of the unit simplex, and the associated labeling.

readily gives the required assignment. Given such an assignment, the proof is the same as in the case
n = 3.

Bibliographic notes

The problem of fair division has been introduced by Steinhaus in 1948. In [15] he reports his solution (for
n = 3) and the generalization to arbitrary n by Banach and Knaster.

A discussion of the many real world applications of the divide-and-choose procedure can be found in [6].

The book by Brams and Taylor [4] is a very good introduction to the subject. It also offers a wide spectrum
of applications for techniques used in fair division.

The description of the proportional allocation algorithm based on Hall’s Theorem – which we have seen at
the end of Section 3.2 – can be found in a book written by Robertson and Webb [11].

Sperner’s Lemma was proved in [14]. We have followed the proof presented in [3].

Bondy and Murthy book presents the derivation of Sperner’s Lemma from basic parity arguments in graph
theory (p. 10, and pp. 21-23 in [2]).

The expository article [16] provides a gentle introduction to the role of Sperner’s Lemma in proving the
existence of approximate envy-free solutions to various fair division problems.

In this lecture, we have been focusing on proportional and envy-free allocations. There are other notions of
fairness; for instance it might be worth mentioning the idea of a consensus-halving division, where each player
believes that the allocations are all equal. [13] illustrates the use of Borsuk-Ulam and Tucker’s Theorems
to construct a consensus-halving division. This paper actually provides a constructive version of a previous
result by Alon [1].

The cake-cutting problem has received attention in Computer Science. The problems consist of turning
cutting procedures into actual algorithms, designing algorithms which minimize the number of cuts [7, 8,
9, 12], and proving related lower bounds [17].
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