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Lecture 1: Overview
Lecturer: Bruno Codenotti

We first give a brief informal introduction to Game Theory, Social Choice Theory, and Mechanism Deign,
and then present some connections between these disciplines and Computer Science.

1.1 Introduction

Game Theory (GT from now) is a scientific discipline which deals with the behavior of homo rationalis in
interactive situations. Homo rationalis is an imaginary species that always acts with a goal, and has the
ability to compute whatever needed to achieve the given goal. Homo rationalis has a (distant) relative in the
real world, homo sapiens, who instead is influenced by his subconscious, and not always has precise goals.
GT aims at understanding something about homo sapiens by using homo rationalis as a (very crude) model.

Definition 1.1 (Common knowledge of rationality) Not only we assume that each player is rational,
but also that each player knows that everybody else is rational, and that each player knows that everybody else
knows that everybody else is rational, etc. We say that the fact that all the players are rational is common
knowledge.

Example 1.2 (The Beauty Contest) Consider a game, where each player has to write an integer number
between 0 and 100 on a piece of paper. The winner(s) will be the player(s) who has written the number closer
to the 2

3rd of the mean of the numbers written down. We assume that rationality is common knowledge
among the players.

Any given player, who is not allowed to communicate with the other players, will argue as follows. The 2
3rd

of the mean cannot exceed 67, and so nobody will write down a number greater than 67. Therefore the 2
3rd of

the mean cannot exceed 44, and nobody will write down a number greater than 44. By iterating this process,
the rational player (who also assumes that everybody else is rational) will write down the number zero1.

GT aims at modeling and analyzing the nature of real-life phenomena produced by the interactions between
decision-makers. Note that the notion of decision-maker (or agent, or player) does not necessarily model a
single individual, but more in general an entity which makes decisions (a company, an association, a political
party, etc). GT uses analytical/mathematical tools to analyze such phenomena.

Informally, a game consists of a set of interactions among a number of players which are in contention for
a reward (or payoff). They have to make moves on which their payoff depends, and they have to follow
certain rules while making moves. All the players behave rationally, e.g., they try to maximize their payoff
(rationality assumption).

A game is a highly abstract description of strategic interactions in competitive situations, and does not
specify the actual actions taken by the players, but rather it assumes their rational behavior. A solution to
a game is a complete description of the outcomes that may arise.

There are two aspects of GT:

1Those interested in knowing why this game has been called The Beauty Contest can see Chapter 12 of [7].
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• A normative aspect, which uses GT to give suggestions to the players. For instance, how to split a
payoff so to satisfy certain fairness properties, how to negotiate an international treaty, etc.

• A classification aspect, where the focus is on subdividing the interactive situations in different types.
For example, games where players can enforce agreements vs games where players cannot communicate,
or games where the differences are based on the information available to the players, etc.

The most basic subdivision between games is determined by the availability or not of suitable mechanisms
to enforce agreements among the players. This leads to two settings:

• Non-cooperative games, where the assumption is that the primitive operations are at the player’s level.
Here players do not cooperate, and act independently, without communicating. More precisely, the
lack of mechanisms to enforce agreements makes communication useless.

• Cooperative games, characterized by primitive operations at the coalitional level. Here players can
interact, communicate, form coalitions, and can make enforcing agreements.

1.2 Non-Cooperative Games

In a non-cooperative game, there is no external mechanism available to enforce agreements. Players act on
the basis of existing incentives.

An important distinction is between strategic and extensive form games:

• A strategic game (or a game in normal form) is a game where all players (simultaneously) decide their
plan of action once at the beginning of the play.

• An extensive form game specifies the possible order of events, and each player can decide her plan of
action not only at the beginning of the play, but whenever she is called to make a move.

The fundamental notion behind the choices of the players is that of strategy. A strategy is a complete plan
of action, that defines the set of moves a player will take in a given game. In this case we talk of pure (or
deterministic) strategies.

We now consider two-player games in normal form. These games are described by a pair (A,B) of matrices,
whose entries are the payoffs of the two players, called row and column players. A = (aij) is the payoff
matrix of the row player, and B = (bij) is the payoff matrix of the column player.

The rows (resp. columns) of A and B are indexed by the row (resp. column) player’s pure strategies.

The entry aij is the payoff to the row player, when she plays her i-th pure strategy and the opponent plays
his j-th pure strategy. Similarly, bij is the payoff to the column player, when he plays his j-th pure strategy
and the opponent plays her i-th pure strategy.

A mixed strategy is a probability distribution over the set of pure strategies which indicates how likely it is
that each pure strategy is played. More precisely, in a mixed strategy a player associates to her i-th pure
strategy a quantity pi between 0 and 1, such that

∑
i pi = 1, where the sum ranges over all pure strategies.

In other words, both players pick the pure strategies at random according to some probability distribution
of their choice.

Let us consider the game (A,B), where A and B are m× n matrices. In such a game the row player has m
pure strategies, while the column player has n pure strategies. Let x (resp. y) be a mixed strategy of the
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row (resp. column) player. Strategy x is the m-tuple x = (x1, x2, . . . , xm), where xi ≥ 0, and
∑m

i=1 xi = 1.
Similarly, y = (y1, y2, . . . , yn), where yi ≥ 0, and

∑n
i=1 yi = 1.

When the pair of mixed strategies x and y is played, the entry aij contributes to the expected payoff of
the row player with weight xiyj . The expected payoff of the row player can be evaluated by adding up all
the entries of A weighted by the corresponding entries of x and y, i.e.,

∑
ij xiyjaij . This can be rewritten

as
∑

i xi

∑
j aijyj , which can be expressed in matrix terms as2xTAy. Similarly, the expected payoff of the

column player is xTBy.

Definition 1.3 (Stochastic vector) A k-vector z = (zi) with real nonnegative entries such that
∑k

i=1 zi =
1 is called a stochastic k-vector.

Definition 1.4 (Nash Equilibrium) A pair of mixed strategies (x, y) is in Nash equilibrium if xTAy ≥
x′TAy, for all stochastic m-vectors x′, and xTBy ≥ xTBy′, for all stochastic n-vectors y′.

We say that x (resp. y) is a Nash equilibrium strategy for the row (resp. column) player.

The set of indices such that xi > 0 (resp. yi > 0) is called the support of the Nash equilibrium strategy x
(resp. y).

In a non-cooperative game where players use their pure strategies, a Nash equilibrium is not guaranteed to
exist. However, if one assumes that players can resort to mixed strategies, then a Nash equilibrium always
exists (by the celebrated Nash Theorem [12, 13]).

1.3 Cooperative games

Cooperative game theory asks questions about the agreements that players should reach. Unlike the theory
of non-cooperative games, cooperative game theory does not specify a game by strategies, moves, actions,
etc., but rather focuses on the coalitional form, and, in particular, on the payoff opportunities available to
each coalition.

A cooperative game (or coalitional game) in characteristic form is defined by a set N = {1, 2, . . . , n} of
players and by a function v(·) which maps the set of all possible coalitions into the real numbers. For any
coalition S ⊆ N , v(S) is the (monetary) worth of S. We can think of v(S) as the payoff that the players in
S can guarantee for themselves, independently of the other players. So v({i}) denotes the payoff that player
i can obtain by playing in a non cooperative way. In this sense one can view a cooperative game as starting
after the end of an associated non cooperative game which gave a payoff of v({i}) to player i, i = 1, 2, . . . , n.
The value v(N) represents the total payoff available to the grand coalition of all the players.

The most natural counterpart to the Nash equilibrium, in the context of coalitional games, is the notion of
core. An imputation to the players is a vector x = (x1, x2, . . . , xn), where xi is the payoff to player i, and
such that xi ≥ v({i}) ,∀i ∈ N , and

∑
i∈N xi = v(N). The core describes the set of all those imputations

from which no coalition of players has an incentive to unilaterally deviate. Indeed an imputation x is in the
core if x(S) =

∑
i∈S xi ≥ v(S), for all S ⊆ N , with equality for S = N . In other words, a core imputation is

feasible, i.e., x(N) = v(N), and it assigns to each possible coalition at least as much as the coalition could
guarantee for itself. This guarantees that there is no coalition S such that

∑
i∈S xi < v(S). If this were the

case, players in S would have an incentive not to accept the imputation and rather divide among themselves
the amount v(S). Given a cooperative game (N, v), we will denote its core by Core(N, v).

2We use the notation xT to denote the transpose of vector x.
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The trouble with the notion of the core is that it might be empty, as we see from Example 1.5 below.

Example 1.5 Three persons have to move a weight from one location to another. The total reward for this
job is one dollar. Any two of the three players can do the job, but none of them can do it alone. They can
collaborate, and make all kinds of internal arrangements about the subdivision of the payoff. Each of them
tries to maximize her own payoff.

We can model this situation by introducing a function v defined for each subset S of the players:

v(S) =

{
0 if |S| ≤ 1
1 if |S| ≥ 2

v(S) can be thought of as the payoff which no one can prevent the players in coalition S from obtaining. The
game can be described by the pair < N, v(·) >, where N = {1, 2, 3} is the set of players.

The goal is to find a core imputation, i.e., an imputation x1 ≥ 0, x2 ≥ 0, and x3 ≥ 0 such that


x1 + x2 ≥ 1
x1 + x3 ≥ 1
x2 + x3 ≥ 1
x1 + x2 + x3 = 1

If we add up the first three inequalities, we get x1+x2+x3 ≥ 3
2 , which is clearly incompatible with x1+x2+x3 =

1. Therefore the core of this game is empty, i.e., there is no way to prevent two of the players to deviate
from any imputation and divide the reward between themselves.

An intuitive explanation for the emptiness of the core is the following. If we look, e.g., at the allocation
( 12 ,

1
2 , 0), we can see that the third player can destabilize it by suggesting to the second player the alternative

allocation (0, 3
4 ,

1
4 ), for which both player 2 and 3 are better off.

The possible emptiness of the core is one of the reasons why the core is far from being the only solution
concept adopted in coalitional games. Other notions include stable sets, the kernel, the bargaining set, the
Shapley value. They all suggest, with different subtleties, some reasonable way of distributing the payoff
available to the grand coalition.

Conceptually, the core can be viewed as a first approximation, with other solution concepts overcoming its
shortcomings in different ways.

1.4 Markets

In a strategic game, each player takes decisions which depend on the strategies available to the other players.
The market setting differs from the scenario of games, because the equilibrium prices – see below – have the
“decentralizing” effect of making the strategic decisions of the economic agents independent. However there
is a natural interplay between market equilibria and Nash equilibria for games: one of the very first proofs
of existence of an economic equilibrium is built upon the existence of a Nash equilibrium in an associated
abstract game. The actors in this game are the economic agents and an extra player, the market, whose
strategy set coincides with the prices.

In 1874, Walras published the famous “Elements of Pure Economics”, where he describes a model for the state
of an economic system in terms of demand and supply, and expresses the supply equal demand equilibrium



Lecture 1: Overview 1-5

conditions [23]. In 1954, Nobel laureates Arrow and Debreu proved the existence of an equilibrium under
mild assumptions [2].

We describe a model of the so-called exchange economy, an important special case of the model considered
by Arrow and Debreu [2]. The more general one, which we will call the Arrow-Debreu model, includes the
production of goods.

Let us consider m economic agents which represent traders of n goods. Let Rn
+ denote the subset of Rn

with all nonnegative coordinates. The j-th coordinate in Rn will represent good j. Each trader i has a
utility function ui : Rn

+ → R+, which represents her preferences for the different bundles of goods, and
an initial endowment of goods wi = (wi1, . . . , win) ∈ Rn

+. At given prices π ∈ Rn
+, trader i will sell her

endowment, and get the bundle of goods xi = (xi1, . . . , xin) ∈ Rn
+ which maximizes ui(x) subject to the

budget constraint3 π · x ≤ π · wi.

An equilibrium is a vector of prices π = (π1, . . . , πn) ∈ Rn
+ at which, for each trader i, there is a bundle

x̄i = (x̄i1, . . . , x̄in) ∈ Rn
+ of goods such that the following two conditions hold:

1. For each good j,
∑

i x̄ij ≤
∑

i wij .

2. For each trader i, the vector x̄i maximizes ui(x) subject to the constraints π · x ≤ π · wi and x ∈ Rn
+.

1.5 Social Choice Theory

The theory of social choice deals with the decisions of a society obtained by aggregating the preferences of
the individuals. The typical questions addressed involve (i) evaluating the social decisions in the presence of
diverging interests of the individuals, and (ii) giving proper recognition to the preferences of the individuals.
The milestones of social choice theory are impossibility results. The first of these is known as Condorcet
Paradox (1785).

Consider an election with three candidates (A, B, and C), and three voters (1,2, and 3). Assume that the
three voters rank the candidates in the following order

1. A B C

2. B C A

3. C A B

Who should be the winner of this election? If we perform a sequence of pairwise majority comparisons
between the candidates, we notice that candidate A wins by majority against B, and so does B against C.
Since in turn C wins against A, we can see that the preferences of the voters give rise to a cyclic behavior,
which makes it problematic to choose a winner.

This paradox shows that a method of aggregating individual preferences in a social choice (in this case
determining the winner of an election) by means of pairwise majority voting cannot work.

Arrow has shown that the difficulty pointed out by Condorcet Paradox has a general flavor, by proving a quite
general Impossibility Theorem [1]. This Theorem states that if the aggregation rule has to (i) be defined
over all possible preferences of individuals (unrestricted domain), (ii) provide decisions which reflect the
preferences of individuals, if these are unanimous (Pareto-efficiency), and (iii) satisfy the property that the

3Given two vectors x and y, x · y denotes their inner product.
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social preference over any two alternatives depends only on individual preferences over these two alternatives
(independence of irrelevant alternatives), then the aggregation either lacks some rationality conditions or it
is a dictatorship, i.e., the social preferences coincide with the preferences of a single individual.

The main message that we receive from these negative results is that social choice theory has to deal with
unavoidable underlying difficulties.

In order to cope with these difficulties, one has to either restrict the domain of the individual preferences or
radically change the model. The quest for “escape routes” takes us into the domain of Mechanism Design,
a discipline whose objective is to implement desired social choices in strategic settings.

1.6 Mechanism Design

The theory of Mechanism Design can be viewed as the engineering side of Economic Theory. Much of the
work in Economic Theory has to do with existing institutions, and the theoretician wants to explain or make
predictions about the outcomes of these institutions. For example, in the context of GT, we fix a game,
and analyze the set of possible outcomes. In the theory of Mechanism Design, the direction of investigation
is inverted: one starts by identifying a desired outcome, or social goal, and then asks if there exists an
institution (the mechanism) that makes it possible to reach the goal. For example, we can consider a set of
outcomes, and try to come up with a game for which this set is the set of its equilibria. The challenge here
is to design a game so that the actions of the individual players, despite their selfishness, lead to prescribed
outcomes.

Mechanism design attempts to escape from the impossibility results of Social Choice Theory using several
different modifications of the model. One of these is the addition of money. Money works as a yardstick
that allows us to measure how much a given alternative is preferred to another. In a world with money,
mechanisms will not only choose a social alternative, but will also determine monetary payments to be made
by the different players.

1.7 Game Theory and Computer Science

One of the main motivations behind the growing interest in Game Theory within the computer science
community is the Internet. The Internet is a computational artifact which emerged from the combined
efforts of many different designers. The outcome of these efforts is an extremely large and complex object.
As a result, it is reasonable to analyze features and properties of the Internet as one would with complex
natural objects. Game Theory seems to be the right tool for this kind of investigation, since the entities
involved in the Internet are locally optimizing agents interacting with one another with different levels of
collaboration and competition.

Two different scenarios characterize the interplay between GT (or, more in general, Economic Theory) and
Computer Science:

1. Economic Theory for Computer Science.

2. Computer Science for Economic Theory.

Economic Theory for Computer Science. Here we want to design algorithms (or protocols) in environments
with multiple owners, where the algorithms have to cope with their potentially strategic (selfish) behavior.



Lecture 1: Overview 1-7

The focus of a line of research has been on algorithmic problems in distributed settings where the agents
cannot be trusted to follow a prescribed protocol, but rather their own self-interest [6, 14]. As such agents
can manipulate the protocol, the designer should ensure that the agents’ interests are best served by a correct
behavior. The algorithm is typically endowed with a system of “payments” to the agents, chosen so as to
motivate them to act as the designer wishes. This research area has been called computational mechanism
design.

Computer Science for Economic Theory. Here we want to understand the computational complexity of the
key game-theoretic parameters, design algorithms for their computation, and, on the most practical front,
develop software for economic interactions, in particular for those occurring on the Internet.

A great deal of research has been done on the development of general methods for the computation of
equilibria. Classical examples are the algorithms of Scarf and some coauthors for the computation of market
equilibria [19], and the algorithm of Lemke and Howson for the computation of Nash equilibria [8, 20]. While
these algorithms are very general, their running times are not polynomially bounded.

Over the last few years, the problem of computing equilibria has received a significant attention within the
theoretical computer science community. In a short span of time, exciting developments have led to hardness
results, the most remarkable being the proof of the hardness of two player games [5], as well as polynomial
time algorithms for computing equilibria in several special cases.

Bibliographic notes

Aumann wrote an overview article [3] which gives a precise idea of the main goals of GT, and points out
some of the crucial questions faced by game theorists.

The book by Osborne and Rubinstein [16] gives a well written presentation of both non-cooperative and
cooperative game theory. The book by Mas-Colell et al. [10] is a very good reference for the market setting,
as well as for social choice theory and mechanism design. Arrow’s Impossibility theorem has been proved in
[1]. For the interplay between Game Theory and Computer Science, one can start with the 1994 survey by
Linial [9], and then see the handbook which was published in 2007 [15].
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