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Lecture 12: Scarf’s Algorithm
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In this lecture we will first present Scarf’s algorithm for the approximation of a fixed point, and its application
to the computation of market equilibria, and then illustrate the main ideas behind the more efficient path-
following techniques.

12.1 A constructive proof of Sperner’s lemma

Consider a restricted simplicial subdivision of the unit (n − 1)-simplex Sn with no subdivision along the
boundaries. Let v1, v2, . . . , vn, vn+1, . . . , vn+k be the vertices of the subdivision, where v1, v2, . . . , vn are the
unit vectors of the initial simplex Sn. We will associate a label l(v) ∈ {1, 2, . . . , n} with each vertex v.

Let l(vi) = i, for i = 1, 2, . . . , n. All the remaining vertices are in the interior of the simplex, and thus can
be labeled arbitrarily from the set {1, 2, . . . , n}.

We show now a constructive proof of the existence of a completely labeled simplex in the restricted subdivision
above.

1. We start from the unique simplex of the subdivision whose vertices are v2, . . . , vn, and an additional
vertex vn+j . We call this the initial simplex.

2. If l(vn+j) = 1, then the algorithm ends since the current simplex is completely labeled. Otherwise
l(vn+j) = k ̸= 1, and the label k appears twice in the current simplex.

3. We eliminate the vertex whose label coincides with the label of vn+j . This will take us to another
simplex, with a new vertex vn+k. We now repeat step (2).

Note that at each stage of the algorithm we are at a simplex with the n − 1 labels {2, . . . , n}. termination
only occurs when we are at a simplex with all the n labels {1, 2, . . . , n}.

We now show that the algorithm never returns to a simplex it has already visited. This shows that the
algorithm reaches a completely labeled simplex after a finite number of steps.

The proof is by contradiction. Consider the first simplex to be revisited. Let it be St. If it is not the initial
simplex, then it can be reached in two ways, through either one of the adjacent simplices with n− 1 distinct
labels. Each of these adjacent simplices were already reached during the first visit, so that one of them is
revisited before St, which cannot be the first simplex to be revisited. A similar argument holds if St is the
initial simplex.

This constructive proof can be extended to prove Sperner’s lemma. The idea is to embed a given unit (n−1)-
simplex Sn (with an arbitrary simplicial subdivision) into a larger unit (2n − 1)-simplex whose restricted
subdivision extends the original general subdivision of Sn.

Therefore the computational scheme outlined above provides a constructive proof of Sperner’s lemma.
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12.2 Scarf’s Algorithm

From the constructive proof of Sperner’s lemma, we derive now an algorithm for the approximation of a
fixed point of a function f mapping Sn into itself, using a labeling as in the proof of Brouwer’s Theorem of
lecture 4.

We associate with each vertex vj an index i such that vji > 0, and fi(v
j) ≤ vji . With this labeling, a

completely labeled simplex is such that at each of its vertices a different coordinate is not increased by f .

As we add vertices to the subdivisions of the simplex, the subdivisions become more refined, and these vertices
may be selected so that the maximum diameter of the simplices tends to zero. Each subdivision contains
a completely labeled simplex, and there exists a subsequence whose vertices converge to a single point x∗.
This process is non-computational: we invoke the Bolzano-Weierstrass Theorem to argue the existence of
a converging subsequence. From a quantitative point of view this process does not give a practical way to
actually locate the fixed point.

Definition 12.1 (Weak Approximation) Given a function f , we say that a point x is a weak approxi-
mation to a fixed point of f if ||x− f(x)||∞ ≤ ϵ. We say that x is an ϵ-fixed point.

Note that an ϵ-fixed point does not need be close to an actual fixed point.

Definition 12.2 (Strong Approximation) Given a function f , we say that a point x is a strong approx-
imation to a fixed point of f if ||x− x∗||∞ ≤ ϵ, and x∗ = f(x∗).

The definition of a strong approximation to a fixed point requires to determine a region of small diameter
where the fixed point must necessarily lie. This approach is not computationally feasible for general functions,
since it requires to anticipate the limit of a sequence from a finite amount of data. Scarf’s algorithm rather
provides a weak approximation to a fixed point.

Theorem 12.3 Let G be a subdivision of Sn with mesh size at most δ. Let f : Sn → Sn be a continuous
function such that ||x − z||∞ ≤ δ implies ||f(x) − f(z)||∞ ≤ ϵ. Label each vertex x of G by i = min{j :
fj(x) ≤ xj > 0}. If s is a completely labeled simplex of G, and x∗ ∈ s, then ||f(x∗)− x∗||∞ ≤ n(ϵ+ δ).

Proof: Consider a completely labeled simplex s, and for each i, let yi be the vertex in s with label i. For
x∗ ∈ s, we can write fi(x

∗)− x∗
i as (fi(x

∗)− fi(y
i)) + (fi(y

i)− yii) + (yii − x∗
i ). The first of the three terms

is upper bounded by ϵ, the second is nonpositive (by the labeling rule), and the third is upper bounded by
δ. Therefore fi(x

∗)− x∗
i ≤ ϵ+ δ, and fi(x

∗)− x∗
i ≥ −n(ϵ+ δ), and the theorem follows.

The bound of the Theorem can be improved.

12.3 Computation of Market Equilibria

We start by making some assumptions on the market excess demand function z(π) (see lecture 5 for related
discussions).

• z is well-defined, and continuous everywhere in the positive orthant, other than possibly at the origin.

• z is homogeneous of degree zero, i.e., z(απ) = z(π), for all α > 0.
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• z satisfies Walras’ Law, i.e., for all π, z(π) · π = 0.

In this context, an equilibrium price vector π∗ ≥ 0 satisfies zj(π
∗) ≤ 0, for all j’s, and zj(π

∗) = 0, when
πj > 0.

Consider a subdivision of the unit simplex Sn, with vertices π1, π2, . . . , πn, πn+1, . . . , πn+k. We label each
vertex π with an integer i such that zi(π) ≤ 0. To satisfy the conditions of a proper labeling, we must have
that for all π there must exist i with πi > 0 and zi(π) ≤ 0. This holds true because otherwise we would have
that πi > 0 implies zi(π) > 0, which violates Walras’ law.

Therefore there exists a completely labeled simplex that can be reached by the algorithm of the previous
section.

Note that we can take a sequence of finer and finer subdivisions, select a converging subsequence of completely
labeled simplices whose vertices tend to a price vector π∗. Since the excess demand function is continuous,
we must have that zi(π

∗) ≤ 0, for all i’s.

12.4 More Efficient Algorithms

So far we have seen how to define a labeling from a function. We now see the converse, i.e., the definition of
a function starting from a given labeling. This function will be the key concept behind the development of
efficient path-following algorithms.

Consider the simplex S̃n = {(x1, . . . , xn) :
∑

i xi ≤ 1, xi ≥ 0}.

Definition 12.4 Consider a simplicial decomposition of S̃n with vertices v1, v2, . . . , vn, vn+1, . . . , vn+k, where
v1, v2, . . . , vn are the unit vectors of the initial simplex S̃n. For each vertex v, let l(v) = i ∈ {1, 2, . . . , n}
denote the label associated with it.

We define the function f : S̃n → S̃n as:

1. For each vertex v of the subdivision, set f(v) = vi, where i is the label associated with v.

2. Having defined f on the vertices of the subdivision, we now extend it to the entire simplex S̃n by
requiring it to be linear in each simplex of the subdivision.

The two following properties of the function f are easily proven:

• f is piecewise linear in S̃n.

• f is the identity map on the boundary of S̃n.

Now assume that for any n-vector c interior to the simplex S̃n there exists x such that f(x) = c. The
vertices of the simplex Sx containing x must bear distinct label. In fact, assume by contradiction that label
i is missing, then the image under f of the vertices of Sx will be on the face of S̃n whose i-th coordinate is
zero. Therefore f(x) will lie on the boundary of S̃n, which is a contradiction.

Conversely, if the vertices of Sx have all the labels, then, for every interior vector c, the system f(x) = c has
a solution contained in Sx.
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Definition 12.5 The polyhedron P ∈ Rn+1 is the product of the simplex S̃n with the closed interval [0, 1],
i.e.,

P = {(x1, x2, . . . , xn, xn+1)|xi ≥ 0,

n∑
i=1

xi ≤ 1, xn+1 ≤ 1}.

A subdivision of S̃n induces a subdivision of P into pieces Pi, each of which is obtained by taking the product
of an elementary simplex with the closed interval [0, 1].

Consider now an n-vector d whose entries are all ones. Define from f a function F : P → Rn, as

F (x1, x2, . . . , xn, xn+1) = f(x1, x2, . . . , xn)− xn+1d.

F is continuous and linear in each piece of the polyhedron P .

We want to show that, for an arbitrary vector c interior to S̃n, F
−1(c) will intersect the face of P for which

xn+1 = 0.

First of all, note that F−1(c) can not intersect the face of P for which xn+1 = 1. In fact, this would imply
c = f(x1, x2, . . . , xn)−d, which is impossible since c has all positive components, while f(x1, x2, . . . , xn) ≤ 1,
for all i’s.

On the faces of P (other than those with xn+1 = 0 and xn+1 = 1) we know that f(x) = x. Therefore
x ∈ F−1(c) must satisfy x− xn+1d = c, which has the unique solution

(x∗
1, x

∗
2, . . . , x

∗
n) = c+

(1−
∑

i ci)

n
d, x∗

n+1 =
(1−

∑
i ci)

n
.

We have shown that F (x) = c has one solution on the boundary of P , except for the face where xn+1 = 0.

Before proceeding we need the following characterization of the solutions to F (x) = c.

Definition 12.6 (Regular value) c is a degenerate value of F if there exists x ∈ P lying on a face of
dimension less than n of some piece Pi for which F (x) = c. A non-degenerate vector c is called a regular
value of F .

Theorem 12.7 (Eaves) Let F : P → Rn be continuous and linear in each piece Pi, and let c be a regular
value. Then the set of solutions of F (x) = c is a finite disjoint union of paths and cycles, where each path
intersects the boundary of P in precisely two points, and each loop does not have any intersection with the
boundary.

It is easy to show that there exists a vector c in the interior of S̃n which is a regular value of F .

We can then invoke Theorem 12.7 to produce a path starting from x∗. Since the path must end at some
other boundary point of P , there must be a vector x on the face of P for which xn+1 = 0 and that satisfies
F (x) = c.

It is easy to see that the path determined by the above construction coincides with the path followed by the
simplicial algorithm described in Section 12.1.

There are several methods that can be used to follow such paths. The presentation of these methods is
beyond the scope of these notes.
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Bibliographic notes

A nice exposition of the constructive proof of Sperner’s lemma can be found in [7]. The work by Scarf on the
computation of equilibria has been presented in [3, 4, 5, 6]. A good introduction to fixed point computation
in the economic context is [8].

The first results based on path following techniques are [1, 2].

The monograph by Todd contains a complete presentation of simplicial algorithms of various degree of
sophistication for the computation of fixed points, and related economic applications [9].
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