
Multi-dimensional Secure Service Orchestration?

Gabriele Costa1, Fabio Martinelli2, and Artsiom Yautsiukhin2

1 Dipartimento di Informatica, Sistemistica e Telematica. Universitá di Genova
gabriele.costa@unige.it

2 Istituto di Informatica e Telematica Consiglio Nazionale delle Ricerche
{fabio.martinelli,artsiom.yautsiukhin}@iit.cnr.it

Abstract. Web services composition allows a software designer for com-
bining atomic services, for instance taken from a marketplace, in a com-
plex business process fulfilling a desired functional goal. Moreover, among
a large number of possible compositions, the designer may want to con-
sider only those which satisfy specific non-functional requirements.

In our work we consider verification of security properties and evaluation
quantitative security metrics in a single framework. The main focus of
this article is the verification of a composition with several security met-
rics at once. We provide a general solution for the problem and show how
such verification can be made more efficient in specific cases (e.g., when
a metric is an abstraction of another one). We employ a mathematical
structure called c-semirings granting the generality of our approach.

? This work was partly supported by EU-FP7-ICT NESSoS, EU-FP7-ICT ANIKETOS
and EU-FP7-ICT SPaCIoS projects.

1 Proofs

Technical proofs will not be included in the final version of this paper.
Instead, a link to an online version of them will be provided by the
authors.

1.1 C-Semiring

Since a c-semiring could be of partial order then for some values addition op-
eration is undefined. For presentational reasons we separate the case of defined
addition operation, writing d1 ⊕−1 d2 = d1 or d1 ⊕−1 d2 = d2, and the case
when this operation is undefined, i.e., d1 ⊕−1 d2 = glb(d1, d2). Naturally, the
Definition 3 takes into account both cases, but we do the separation to make the
proofs clearer.

Property 1. Operation ⊕−1 is idempotent.

Proof. We must prove that d1⊕−1d1 = d1. Let d1 = d2. Then, d1⊕d2 = d1 = d2.
Thus, d1 ⊕−1 d2 = d2 = d1 ut

Property 2. Operation ⊕−1 is commutative.

Proof. We must prove that d1 ⊕−1 d2 = d2 ⊕−1 d1. Let d1 ⊕−1 d2 = d2, then
d2 ⊕ d1 = d1. Since ⊕ is commutative, then d2 ⊕ d1 = d1. This means that
d2 ⊕−1 d1 = d2 = d1 ⊕−1 d2. Using the same reasoning we can prove the same
property for d1 ⊕−1 d2 = d1.

In case d1⊕−1 d2 = glb(d1, d2) = glb(d2, d1) = d1⊕−1 d2, because of commu-
tativeness of lower upper bound operation. ut

Property 3. glb(d1, glb(d2, d3)) = glb(glb(d1, d2), d3).

Proof. Let glb(d2, d3) = d̄, glb(d1, glb(d2, d3)) = d̄′, glb(d1, d2) = d̂, and

glb(glb(d1, d2), d3) = d̂′. Thus, d̄′ ≤S d1, d̄′ ≤S d̄ ≤S d3, d̄′ ≤S d̄ ≤S d2 and

d̂′ ≤S d3, d̂′ ≤S d̂ ≤S d1, d̂′ ≤S d̂ ≤S d2.
Assume, that d̄′ <S d̂′. This means, that d̄′ <S d̂′ ≤S d3, d̄′ <S d̂′ ≤S d̂ ≤S d1,

d̄′ <S d̂′ ≤S d̂ ≤S d2. Thus, we see, that for glb(d1, glb(d2, d3)) = d̄′ there is d̂′,

which is less that d1 and d̄ (d̂′ is less than each of arguments of glb(d2, d3)). This
is impossible by the definition of glb. The same reasoning can be applied to the
opposite assumption: d̂′ <S d̄′. Thus glb(d1, glb(d2, d3)) = glb(glb(d1, d2), d3).

ut

Property 4. Operation ⊕−1 is associative.

Proof. This property follows from Property 3, since
(d1⊕−1d2)⊕−1d3 = glb(glb(d1, d2), d3) and d1⊕−1(d2⊕−1d3) = glb(glb(d1, d2), d3)

ut

Property 5. Operation ⊕−1 is monotone.

Proof. Monotone. We must prove that if d1 ≤S d2 then ∀d3 d1 ⊕−1 d3 ≤S

d2⊕−1 d3. Since d1 ≤S d2 then d1⊕−1 d2 = d1 and d1⊕−1 d2⊕−1 d3 = d1⊕−1 d3.
By idempotence of ⊕−1: d1⊕−1d3 = d1⊕−1d2⊕−1d3 = d1⊕−1d2⊕−1d3⊕−1d3 =
(d1⊕−1d3)⊕−1 (d2⊕−1d3) (since ⊕−1 is commutative and associative operator).
The last part implies that d1 ⊕−1 d3 ≤S d2 ⊕−1 d3. ut

Property 6. Operation ⊕−1 is distributive over ⊗.

Proof. We must prove that d1⊗(d2⊕−1d3) = (d1⊗d2)⊕−1(d1⊗d3). Let d2 ≤S d3.
This means that d2 ⊕−1 d3 = d2 and d2 ⊕ d3 = d3. From distribution property
of summation we know that (d1 ⊗ d2) ⊕ (d1 ⊗ d3) = d1 ⊗ (d2 ⊕ d3) = d1 ⊗ d3.
This means that (d1⊗ d2)⊕−1 (d1⊗ d3) = d1⊗ d2 = d1⊗ (d2⊕−1 d3). Using the
same reasoning we can prove the same property for d3 ≤S d2.

The last case left for considering is when d2⊕−1d3 = glb(d2, d3) = d. Consider
d1 ⊗ glb(d2, d3) = d1 ⊗ d first. d ≤S d2 and d ≤S d3 by the definition of glb. By
monotonicity of ⊗: d1 ⊗ d ≤S d1 ⊗ d2 and d1 ⊗ d ≤S d1 ⊗ d3.Now, consider
(d1 ⊗ d2) ⊕−1 (d1 ⊗ d3) = glb((d1 ⊗ d2), (d1 ⊗ d3)) = d′. d′ ≤S d1 ⊗ d2 and
d′ ≤S d1⊗d3. Let d1⊗d <S d

′, then exists an element d′, such that d′ ≤S d1⊗d2

and d′ ≤S d1⊗d3 and d <S d
′. This violates the definition of glb in the first case.

A similar reasoning can be applied to the case d′ <S d1⊗d. Thus d1⊗d = d′ ut

1.2 Safety

Lemma 1. Let Γ,H ` e : τ and η, d, e →π η′, d′, e′. If Γ,H ′ ` e′ : τ then
∀δ.η′JH ′Kδ ⊆ ηJHKδ

Proof. By induction on the depth of Γ,H `g e : τ .

– Case (T−Unit), (T−Res) and (T−Var). Trivial.
– Case (T−Ev). We have two further cases

a) η, d, α(ē)→π η
′, d′, α(ē′), then we instantiate the hypothesis to

Γ,H `g ē : R

Γ,H ·
∑
R F (α, r)#α(r) `g α(ē) : 1

and
η, d, ē→π η

′, d′, ē′

η, d, α(ē)→π η
′, d′, α(ē′)

Assuming the premises of the two rules and applying the inductive hy-
pothesis we infer that Γ, H̄ ′ `ḡ′ ē′ : R implies that ∀δ.η′JH̄ ′Kδ ⊆ ηJHKδ
Applying the typing rule for events we have

Γ, H̄ ′ `ḡ′ ē′ : R

Γ, H̄ ′ ·
∑
R F (α, r)#α(r) `ḡ′ ē′ : R

Then ∀δ.η′JH̄ ′KδJ
∑
R F (α, r)#α(r)Kδ ⊆ ηJHKδJ

∑
R F (α, r)#α(r)Kδ.

b) η, d, α(r)→π ηα(r), d⊗ F (α, r), ∗. We assume the premise

Γ, ε `g r : R

Γ,
∑
R F (α, r)#α(r) `g α(r) : 1

and we simply note that ∀δ.ηα(r)JεKδ ⊆ ηJ
∑
R F (α, r)#α(r)Kδ.

– Case (T−If). We have two symmetric cases (depending on B(b)). Instanti-
ating the rule we obtain

Γ,H ` ett : τ Γ,H ` eff : τ

Γ,H `g if b then ett else eff : τ

and
η, d, if b then ett else eff →π η, d, eB(b)

By inductive hypothesis we have that ∀δ the property holds on both ett and
eff , which suffices to conclude.

– Cases (T−Abs) and (T−Req). Premises are false, then the property holds.
– Case (T−Frm). Instantiating the premises we have

Γ, H̄ `g ē : τ

Γ, ϕ
[
H̄
]
`g ϕ[ē] : τ

and
η, d, ē→π η

′, d′, ē′ η′ |= ϕ

η, d, ϕ[ē]→π η
′, d′, ϕ[ē′]

Then, applying the inductive hypothesis we obtain that Γ, H̄ ′ `ḡ′ ē′ : τ im-
plies that ∀δ.η′JH̄ ′Kδ ⊆ ηJH̄Kδ. Here we must prove that ∀δ.η′Jϕ

[
H̄ ′
]
Kδ ⊆

ηJϕ
[
H̄
]
Kδ. To do that, we make explicit the two sets

A = η′Jϕ
[
H̄ ′
]
Kδ = {η′η̄′ | η′η̄′ |= ϕ ∧ ∃η̂′ ∈ JH̄ ′Kδ.η̄′ 6 η̂′}

B = ηJϕ
[
H̄
]
Kδ = {ηη̄ | ηη̄ |= ϕ ∧ ∃η̂ ∈ JH̄Kδ.η̄ 6 η̂}

and we prove that η̇ ∈ A ⇒ η̇ ∈ B. From the definition of A we know
that η̇ = η′η̄′. Then, there must be η̂′ ∈ JH̄ ′Kδ extending η̄′. By inductive
hypothesis η′η̂′ ∈ η′JH̄ ′Kδ implies that η′η̂′ ∈ ηJH̄Kδ. As η′ = ηη̊ for some η̊
(execution can only extend traces), η̊η̂′ ∈ JH̄Kδ. Since η̊η̄′ complies with ϕ
and it is a sub-trace of a history (η̊η̂′) in JH̄Kδ there must be ηη̊η̄′ ∈ B. The
thesis follows from ηη̊η̄′ = η′η̄′ = η̇.

– Case (T−Met). We follow the same reasoning of the previous case.
– Case (T−App). Let e = e1e2. We have

Γ,H0 `g e1 : τ
H2−−→ τ ′ Γ,H1 `g e2 : τ

Γ, (H0 | H1) ·H2 `g e1e2 : τ ′

We must verify three possible subcases depending on the rule used to derive
〈η, d, e1e2〉.

• If (S−App1) is used, then

η, d, e1 →π η
′, d′, e′1

η, d′, e1e2 →π η
′, d′, e′1e2

Applying the inductive hypothesis to e1 we infer that the property holds

on Γ, H̄ `ḡ e′1 : τ
H2−−→ τ ′. Then, we apply (T-App) and we have

Γ, H̄ `ḡ e′1 : τ
H2−−→ τ ′ Γ,H1 `ḡ e2 : τ

Γ, (H̄ | H1) ·H2 `ḡ e′1e2 : τ ′

SinceH v H ′ ⇒ (H | H̄) v (H ′ | barH) we know that η′J(H̄ | H1) ·H2Kδ ⊆
ηJ(H | H1) ·H2Kδ from which the thesis follows.

• If (S−App2) is used, then we have the symmetrical conditions of the
previous case and we can conclude in the same way.

• If (S−App3) is used, then e = (λzx.ē)v and

η, d, (λzx.ē)v →π η, d, ē{v/x, λzx.ē/z}

Also we know that H0 = H1 = ε, then we just need to show that
Γ,H ′2 ` ē{v/x, λzx.ē/z} : τ ′ with H ′2 v H2. We obtain it by proving the
stronger property that ∀e.Γ ;x : τ ′, H `g e : τ and Γ, ε `g v : τ ′ imply
that Γ,H `g e{v/x} : τ . If x is not free in e the property is trivially
satisfied. For all other cases we proceed by induction on e finding that
all of them are straightforward (e = x) or a direct implication of the
inductive hypothesis.

• If (S−Req) is used, we have

e¯̀ : τ
H∗−−→ τ ′ ∈ Srv π(ρ) = ¯̀

η, (reqρ τ → τ ′)v →π η, e¯̀v

By (T−Req) follows that

I = {H | e` : τ
H−→ τ ′ ∈ Srv}

Γ, ε `g reqρ τ → τ ′ : τ

∑
H∈I H−−−−−−→ τ ′

By definitionH∗ ∈ I, then we reach the stronger property that ∀δ.ηJH̄Kδ ⊆
ηJH∗Kδ ⊆ ηJH∗ + ĤKδ.

– Case (T−Wkn). By the inductive hypothesis we know that the property holds
on Γ, H̄ `g e′ : τ . Since H v H ′ then ∀δ.η′JH̄Kδ ⊆ ηJHKδ ⊆ ηJH ′Kδ.

ut

Lemma 2. Let x ∈ fv(e) then for all Γ, e′, τ, τ ′

Γ [τ ′/x], H ` e : τ ∧ Γ,H ′ ` e′ : τ ′ =⇒ Γ,H ′′ ` e{e′/x} : τ

for some H, H ′ and H ′′.

Proof. By induction over e we have

– e = ∗, e = r, e = reqρ τ1 −→ τ2. Trivial.
– e = x. Here e{e′/x} = e′ and the property is trivially satisfied because
τ = τ ′.

– All the other cases are satisfied by the inductive hypothesis (just note that
for conditional we also need to apply the weakening rule).

ut

Lemma 3. If Γ,H `g e : τ and η, d, e π η
′, d′, e′ then ∃H ′ such that Γ,H ′ `g

e′ : τ

Proof. We prove this lemma in two steps. We first prove that (1) the prop-
erty holds for one step reductions and then (2) we prove it on arbitrary long
reductions.

1. If Γ,H `g e : τ and η, d, e →π η
′, d′, e′ then ∃H ′ such that Γ,H ′ `g e′ : τ .

By induction over e.
– e = ∗, e = r, e = x, e = λzx.e

′, e = reqρ τ1 −→ τ2. Trivial.
– e = α(e′). By (T−Ev) we have

Γ,H ` e′ : R

Γ,H ·
∑
r∈R

(F (α, r)#α(r)) ` α(e) : 1

Hence e can make a transition either according to (S−Ev1) or (S−Ev2).
In the first case we have

η, d, e′ →π η
′, d′, e′′

η, d, α(e′)→π η
′, d′, α(e′′)

Applying the inductive hypothesis to e′′ we know that there exists H ′′

s.t. Γ,H ′′ ` e′′ : R hence we conclude by applying (T−Ev). Instead, in
the second case, we obtain

F (α, r) = d′

η, d, α(r)→π ηα(r), d⊗ d′, ∗

and the property is trivially satisfied with Γ, ε ` ∗ : 1.
– e = if b then ett else eff . Here we have two symmetric cases depending

on the evaluation of b. By the inductive hypothesis the property holds
on both ett and eff . However, for (S−If), e reduces to either ett or eff ,
which suffices to conclude.

– e = e1 e2. By (T−App) here we have

Γ,H1 ` e1 : τ2
H3−−→ τ Γ,H2 ` e2 : τ2

Γ, (H1 | H2) ·H3 ` e1 e2 : τ

In this case there are three possible rules: (S−App1), (S−App2) or (S−App3).
The first two are similar and we solve them at once. Indeed, we just need
to apply the inductive hypothesis to the right hand side expression e′1
(e′2, respectively) and we can use the typing rule (T−App) to conclude.
In the third case we have e1 = λzx.e

′ and e2 = v, then we instantiate
(S−App3) to

η, d, (λzx.e
′)v →π η, d, e

′{v/x, λzx.e′/z}

We can conclude by applying lemma 2 to e′.
– e = ϕ[e′], e = γ 〈e′〉. Trivially by applying the inductive hypothesis to e′

2. By induction on the length of the derivations. The base case is satisfied
by the property at point (1). Then, the inductive step, simply consists of
applying (1) to the inductive hypothesis.

ut

Lemma 4. If Γ,H `g′ e : τ then there exists H̄ such that Γ, H̄ `g′ e : τ and
∀H ′′.Γ,H ′′ `g′ e : τ ⇒ H̄ v H ′′.

Proof. By induction on the depth of Γ,H `g e : τ .

– Case (T−Unit), (T−Res), (T−Var), (T−Abs) and (T−Req). Trivially H̄ = ε.
– Case (T−Wkn). Trivial, by the inductive hypothesis.
– Case (T−Ev). We have

Γ,H `g ē : R

Γ,H ·
∑
R F (α, r)#α(r) `g α(ē) : 1

By applying the inductive hypothesis to ē, we find H̄e. Hence, we just need
to notice that H̄e ·

∑
R F (α, r)#α(r) is the minimal history expression typing

e (the summation factor cannot be modified/removed by any other rule).
– Case (T−If). We have

Γ,H ` ett : τ Γ,H ` eff : τ

Γ,H `g if b then ett else eff : τ

By inductive hypothesis, there exist H̄tt and H̄ff . We show by contradiction
that H̄ = H̄tt + H̄ff . Assume there exists H̄ ′ v H̄ such that Γ, H̄ ′ `g
if b then ett else eff : τ . By (T−If), we have that H̄tt v H̄ ′ and H̄ff v H̄ ′.
However, this implies that H̄ v H̄ ′H̄ which suffices to conclude.

– Cases (T−Frm) and (T−Met). Direct consequence of the inductive hypothesis.
– Case (T−App). We have

Γ,H0 `g e1 : τ
H2−−→ τ ′ Γ,H1 `g e2 : τ

Γ, (H0 | H1) ·H2 `g e1e2 : τ ′

Applying the inductive hypothesis we find H̄0, H̄1 and H̄2 and we show that
H̄ = (H̄0 | H̄1) · H̄2. By contradiction, let assume that there exists H̄ ′ v H̄.
By rule, (T−App) we have that H̄ ′ = (H ′0 | H ′1) ·H ′2 such that H̄i v H ′i (with
i ∈ {0, 1, 2}). However, this implies H̄ = (H̄0 | H̄1) · H̄2 v (H ′0 | H ′1) ·H ′2 =
H̄ ′ v H̄.

ut

Lemma 5. (Subject reduction) Let Γ,H `g e : τ and η, d, e π η
′, d′, e′. If

Γ,H ′ `g′ e′ : τ and ∀H ′′.Γ,H ′′ `g′ e′ : τ ⇒ H ′ v H ′′ (i.e., H ′ is the minimal
history expression typing e′) then ∀δ.η′JH ′Kδ ⊆ ηJHKδ.

Proof. Then, we proceed by induction on the length of the derivations.

– Base case. In this case e = e′ and η = η′. By lemma 4, there exists H̄ which
satisfies the property.

– Inductive step. Here we have η, d, e π η
′, d′, e′ →π 〈η′′, d′′, e′′〉. We apply

the inductive hypothesis to the first part of the derivation. Then we need
to apply lemma 1 to η′, d′, e′ →π η

′′, d′′, e′′. For doing that, we have to be
sure that there exists H ′′ such that Γ,H ′′ `g e′′ : τ , which is guaranteed by
lemma 3. We conclude by applying lemma 4 to H ′′ and we find H̄ ′′ minimal.

ut

Theorem 1. If Γ,H `true e : τ and 〈ε, d, e〉 →∗π 〈η, d′, v〉 then ∀δ.η ∈ JHKδ.

Proof. Theorem 1 is just a corollary of lemma 5 in the particular case in which
e′ = v, η′ = ε and H ′ = ε. ut

Property 7. For all history expressions H and H ′ if H ≡ H ′ then ∀δ.JHKδ =
JH ′Kδ

Proof. We proceed by induction on the equational rules. Most cases are trivially
implied by the history expressions semantics defined in Table ??. Here we just
show the cases requiring some more explanations.

– Case d1#H1 · d2#H2 ≡ d1 ⊗ d2#(H1 ·H2). By inductive hypothesis and
semantics of annotated history expressions we have

Jd1#H1 · d2#H2Kδ = JH1 ·H2Kδ = Jd1 ⊗ d2#(H1 ·H2)Kδ

– Case d1#H1 + d2#H2 ≡ d1 ⊕−1 d2#(H1 +H2). Following the same reason-
ing of the previous case

Jd1#H1 + d2#H2Kδ = JH1 +H2Kδ

= Jd1 ⊗−1 d2#(H1 +H2)Kδ

– Case d1#H1 | d2#H2 ≡ d1 ⊗ d2#(H1 | H2). Again, we show that

Jd1#H1 | d2#H2Kδ = JH1 | H2Kδ = Jd1 ⊕ d2#(H1 | H2)Kδ

H ≡ 1#H d̄1#d̄2#H ≡ d̄2#d̄1#H ≡ d̄1 ⊗ d̄2#H

d̄1#H1 · d̄2#H2 ≡ d̄1 ⊗ d̄2#(H1 ·H2) ϕ
[
d̄#H

]
≡ d̄#ϕ[H]

d̄1#H1 + d̄2#H2 ≡ d̄1 ⊕−1 d̄2#(H1 +H2) d̄1#H1 | d̄2#H2 ≡ d̄1 ⊗ d̄2#(H1 | H2)

γ
〈
d̄#H

〉
≡ ¯̄d#γ 〈H〉 where γ = T ≥T d̄′ and ¯̄d = d̄⊕−1 d̄′

µh.H ≡ ¯̄d#µh.H ′ where ¯̄d =
⊕
n

−1Φn(0) and Φ(d̄) = d̄′ ⇔


H[d̄#h/h] ≡ d̄′#H ′

∧
d̄′#H ′ is in MNF

Table 1. Equational rules.

– Case µh.H ≡ d̄#µh.H ′. Here we must prove that Jµh.HKδ ≡ Jµh.H ′Kδ.
From the inductive hypothesis and Jd#hKδ = JhKδ, we infer that JHKδ =
JH[d#h/h]Kδ = Jd′#H ′Kδ = JH ′Kδ which suffices to conclude.

ut
In Table 1 we report the equational rules given in [1].

Property 8. For each history expression H there exists H ′ such that H ≡ H ′

and H ′ is in metric normal form.

Proof. We proceed by induction over H.

– Cases ε, h and α(r). Trivial.
– Case H1 · H2. We apply the inductive hypothesis and we find the MNFs
d1#H ′1 and d2#H ′2. By the rules of Table 1, d1 ⊗ d2#H ′1 ·H ′2 ≡ d1#H ′1 ·
d2#H ′2 is a MNF for H.

– Cases H1 +H2 and H1 | H2. We follow a reasoning analogous to the previous
case.

– Case d#H. By the inductive hypothesis we know there exists a MNF d′#H ′

for H. We conclude by noticing that d⊗ d′#H ′ is a MNF for d#H.
– Case ϕ[H]. A direct consequence of the inductive hypothesis.
– Case γ 〈H〉. A consequence of the inductive hypothesis and the equivalence

rule for metric checks.
– Case µh.H. By inductive hypothesis H has a corresponding MNF d′#H ′.

Then, we apply the equivalence rule and we find µh.H ≡ d̄#µh.H ′ (for some
d̄) which is in MNF.

ut

Theorem 2. If Γ,H ` e : τ and H ≡ d̄#H ′ such that d̄#H ′ is in MNF, then
for each execution η, d, e π η

′, d′, e′ holds that d′ ≤S d⊗ d̄.

Proof. We first prove that the property holds for single-step computations (by
induction on e) and then we prove the theorem by induction on the length of
the computations.

– Cases ∗, r and x. Trivial.
– Case α(e). Here we have two possibilities. If (S−Ev1) applies, the property

is guaranteed by the inductive hypothesis. Instead, if (S−Ev2) is used then
e = r and we have that d′ = d⊗ F (α, r). However, the MNF of the history

expression returned by the type system is
⊕−1

r F (α, r)#· · · which trivially
satisfies the property.

– Case if b then e else e’. Here the computation reduces to one between e
and e′. However, the MNF for it is always annotated with d1 ⊕−1 d2, which
respectively annotate the MNFs for e and e′, and the property holds.

– Cases λzx.e and reqρ τ −→ τ ′. Hypothesis does not apply.
– Case e e′. Here the MNF is d1 ⊗ d2 ⊗ d3, which annotate the MNF for e, e′

and the latent effect of e, respectively. Independently of the rule we apply,
i.e., (S−App1), (S−App2) or (S−App3), we always reduce to the inductive
hypothesis.

– Case ϕ[e′]. By inductive hypothesis.
– Case γ 〈e′〉. Assuming γ = T ≤S ḋ, by hypothesis, the term allows one

computation steps, that is, it does not violate γ. Hence, d′ ≤ ḋ⊕−1 d which
labels the MNF for the history expression of e.

We complete by induction on the derivation length.

– Base case (zero-step computations). Trivially d′ = d.
– Induction. We have

η, d, e π η
′, d′, e′ →π 〈η′′, d′′, e′′〉

By the inductive hypothesis we know that d′ ≤S d ⊗ d̄ and we proceed by
co-induction on the rules of the operational semantics.
• Cases (S−If), (S−App3), (S−Sec2), (S−Met2) and (S−Req). Trivial as
d′′ = d′.
• Cases (S−Ev1), (S−App1), (S−App2), (S−Sec1) and (S−Met1). Trivially

reduce to the inductive hypothesis.
• Case (S−Ev2). Here d′′ = d′ ⊗ F (α, r). However, as α(r) is typed ac-

cording to rule (T−Ev), we have d′ ⊗ F (α, r) ≤S d′ ⊗
⊕−1

r′ F (α, r′) =

d′
⊕−1

r′ F (α, r′)⊕−1 F (α, r) (for each specific r, according to the defini-
tion of ⊕−1). But then we have d̄ ≥S d′ ⊕−1 F (α, r) which suffices to
conclude.

ut

References

1. Costa, G., Martinelli, F., Yautsiukhin, A.: Metric-aware secure service orchestra-
tion. In: Proc. of ICE-12. EPTCS (2012)

