
Evaluation of Risk for Complex Systems Using
Attack Surface

Leanid Krautsevich, Fabio Martinelli and Artsiom Yautsiukhin
The Institute of Informatics and Telematics of The National Research Council

Via G. Moruzzi 1, Pisa, PI 56124, Italy
Email: {name.surname}@iit.cnr.it

Abstract—Many approaches for security assessment were
recently proposed. In particular, attack graphs and attack surface
gained a lot of attention. Nevertheless, these approaches suffer
from several drawbacks. For example, attack graph operates only
with known vulnerabilities and it is unclear how attack surface
(metric) contributes to the risk picture for a complex system.

We introduce a novel formal approach for modelling cy-
berattacks and evaluating of security of complex systems. Our
formalisation unites attack surface and attack graph approaches
and establishes an explicit link between these approaches and
security risk assessment. In this way we are able to exploit the
advantages of these three security evaluation approaches in a
common framework overcoming many shortcomings of using
these approaches separately.

Keywords—Attack Surface, Attack Graph, Risk, Complex Sys-
tems.

I. INTRODUCTION

Complex IT systems do not only significantly facilitate
many functionalities of industrial products (corporate net-
works, electronic motors, SCADA, business processes, etc.)
but also expose the products to new types of risk. The risk
management practices state that in order to handle risk the
organisation should first assess its risk and then define an
appropriate strategy for risk mitigation. In this paper, we
consider assessment of cyber security risks, i.e., the risks
caused intentionally.

Despite a number of proposed methods for the assessment
of security of IT systems there is still a need for a reliable,
meaningful, cost-effective, widely applicable approach which
is able to justify security investments. General risk assessment
methods [1], [2], [3] mostly consider a high level model of the
evaluated system and rely a lot on the statistics (for quantitative
analysis) or on the opinion of experts (for qualitative analysis).
The approaches analysing security using low level details
(e.g., vulnerabilities) [4], [5], [6], [7] are not general enough
to get the overall risk picture. Furthermore, the analysis of
concrete software products is usually not considered during
the analysis of the system as a whole where these products
are applied [8], [9], [10]. Although all these techniques have
their advantages when applied to analysis of specific security
aspects, we propose a novel comprehensive framework for
analysis of complex systems which aggregates the strengths
of these existing approaches.

This paper brings together three main techniques for as-
sessing of security: attack surface [9], attack graphs [24],
[4], and risk assessment [3]. We start with the fact that

despite all effort to secure a component of an IT system an
attacker may still compromise the component using known and
unknown vulnerabilities in the resources of the component.
We understand resources as methods, channels and data items
similarly to [9]. The attacker may need to successfully execute
several exploits against several components of the system in
order to reach her goal. We use a graph to show how a poorly
secure components increases the possibility of the attacker to
propagate in the the system and achieve her goal. We take into
account all possible attacks to the system and formally link a
specific attack with the overall risk picture for the system.

The main contributions of this paper are as follows.

• A novel scalable approach for security evaluation
that is based on attack surface and attack graph and
provides risk as an output.

• A way to gather the information for the evaluation
out of system specification, which can be potentially
automated or facilitated with a tool support.

• An evaluation method for computation of risk for the
system using the low level information.

• An evaluation method for computation of probabilities
to compromise the system using the software-related
information (attack surface).

The paper is organised as follows. First, we describe the
three existing approaches our approach is based on (Section II).
In Section III we provide the details for the proposed security
model of a complex system. Section IV contains the quantita-
tive analysis of the model which explicitly shows how attack
surface affects risk for the system. Conclusions and future
work are outlined in Section V.

II. BACKGROUND

Risk assessment [1], [2], [3] is an approach which com-
putes risk for different threats in terms of losses in some
period of time (e.g., Annualised Loss Expectancy (ALE)). Risk
assessment usually considers a system as a whole (i.e., with
little insight to the detailed structure of the system) and often
relies on statistics or experience of the evaluator. The main
advantage of the technique is that it is able to justify invest-
ments in security. In this work we focus on quantitative risk
assessment to establish relations between different techniques
formally. Since, quantitative risk assessment relies on statistics
the available data should be correct and large enough, which is
often not the case. Specific systems with small threat landscape



(e.g., e-motor) are not able to provide enough statistics for
analysis. Moreover, it is assumed that past data can be used to
approximate risk for the future and this assumption is not yet
proven [11]. Finally, risk assessment is very costly and time
consuming.

Attack graph [4], [5], [12], [24] is an approach that
aggregates the vulnerabilities existing in the system in a
graph, which can guide an attacker from an initial set of
privileges to a target set. The main advantages of the attack
graph is that it can be built automatically using the set of
identified vulnerabilities (e.g., by a network scanner) [12],
[4]. The graph building tools map the privileges required for
exploiting a vulnerability with the resulting privileges received
after exploiting other vulnerabilities. A number of qualitative
and quantitative methods are proposed for the further graph
analysis [13], [4], [14], [15], [22].

The main disadvantages of this technique are the following.
An attack graph is a snapshot of a system at the moment of
evaluation. Such graphs change after patching existing vulnera-
bilities, or discovering new vulnerabilities/exploits. Therefore,
the graph (and the results of its analysis) changes after a
short period of time. Thus, the only way to have up-to-date
information is to perform the analysis continuously, which
may be costly. Moreover, the technique can be applied only in
case of “standard” targets of evaluation. In fact, currently it is
applied only to network vulnerabilities. Other vulnerabilities
can also be analysed with this approach in theory, but they
require some sort of scanning tools and a database of possible
exploits (see [16] for an example with social engineering
vulnerabilities). Nevertheless, the technique can hardly be used
for analysis of systems with a custom-made software, since
their vulnerabilities are not known to the network scanners.
Moreover, application of the technique in a special unique sys-
tems (like SCADA, energy networks, e-motors, etc.) is almost
impossible. Finally, it is questionable whether the approach
can take into account zero-day vulnerabilities (although some
advances in this direction have been done [17]).

Attack surface [8], [18], [9] is an approach that evaluates
a software from a point of view of available interactions with
it: the more ways a user can interact with the system the less
secure it is. Here we would like to note, that the approach
itself has no specific quantitative metric for assessment and
originally was applied to different versions of similar systems
[8]. P. Manadhata and J. Wing [18], [9] advanced the idea and
defined a method for security assessment with attack surface.
The attack surface metric is similar to risk, but is evaluated
using ad-hock parameters: damage-potential (assumed to be
proportional to impact) and required effort (assumed to be
reverse proportional to probability of success). In this paper
we would like to extend the application of attack surface to
the analysis of complex systems and show how attack surface
for the installed software contributes to risk assessment of the
system.

III. BUILD GRAPH

First, we define a number of terms used in this article
in order to avoid misunderstanding. We do not insist on the
common acceptance of these definitions but just define a
vocabulary for this specific article. By a privilege we mean

a special right to interact with the system (e.g., read records
for a database, connect to a server, execute a program, etc.).
By a vulnerability we mean such a configuration of a system
which may lead to an unspecified increase of privileges (for an
attacker). By an exploit we mean an atomic action which uses a
vulnerability and leads to increase of privileges for an attacker.
Thus, an exploit is bound with the exploited vulnerability. In
general atomicity of an action may depend on the granularity of
the applied method. By an attack we mean a specific sequence
of exploits executed by an attacker to achieve its goal. In this
paper we assume, that every attacker has only one, specific goal
(i.e., reach some set of privileges). By a threat we consider all
possible attacks leading to achieving a specific goal of the
attacker.

Let P be a set of possible privileges in a system and p
be an atomic privilege (p ∈ P ). Let an account ac be a set of
privileges ac ∈ AC = P(P ) (we use P(P ) to denote the power
set of privileges). Let also AC ⊆ AC be a set of such accounts
relevant for the system. By “relevant” accounts we mean the
real accounts which exist in the system (e.g., “guest” or “root”
accounts for a Linux operational system). An account can be
seen as a set of privileges, which is guarded by an access
control system.

An attacker is able to increase her privileges by compromis-
ing the system. In other words, the attacker moves from one set
of privileges to another, i.e., from one account to another one.
The attacker is able to perform such a move by abusing the
interactions between the processes (e.g., an attacker performs
SQL injection to get the control over an administrator account
for a database). The main difference here with attack graph
approach is that we do not bind such a link with a specific
vulnerability/exploit. We assume, that if there is an interaction
between two accounts, then there could exist a possibility for
an attacker to increase her privileges. This idea is similar to
the one used for attack surface metric, where possible ways to
penetrate into software are considered similar to data inputs.

Manadhata et al. [9] have defined three ways of interactions
with a system that are called resources of a system: via directly
exchanging data with a running method (entry and exit points),
via sending data to a running service (via system channel),
via untrusted data exchange (e.g., though writing and reading
a file). In this work we will not go into these details and
simply accept that a resource allows one account to interact
with another account. Thus, by a resource we mean a running
software. Moreover we can consider a user as a resource.
People often are considered as the weakest link in IT security
and many attacks are purely social (e.g., asking a user to
provide his credentials) or socio-technical (e.g., asking user
to run a malicious program on his computer). A user may be
a system by itself (e.g., a partner), but in our paper it is treated
as one account which is later transformed to a resource (see
the discussion later in Section III-B).

Let A be a set of actions such that a = 〈acb, r, ace〉 ∈ A,
where acb is an account which the attacker uses to escalate
its privileges, ace is the desired account, and r ∈ R is a label
denoting the exploited resource (e.g., a software running on
behalf of the account to compromise) and R is a set of all
available resources. Then we obtain super-actions sa ∈ SA
by simply grouping actions which have the same starting and



ending accounts:

sa = 〈acb, ace〉 = {a ∈ A | ∀r ∈ R, a = 〈acb, r, ace〉} (1)

Definition 1: Let AC be the set of all accounts in the
system and SA be the set of all super-actions, then AG =
(AC,SA) is an account graph.

In short, Definition 1 is a usual definition of a graph
with existing accounts as nodes and super-actions as edges.
An account graph shows which accounts the attacker should
compromise before she is able to reach the desired privileges.

Thus, we start with identification of all possible accounts
AC existing in the system. Identification of accounts may
be possible by using the system specification. Then, it is
required to find all software/modules/services running with the
privileges of every account and all users who have credentials
for this account. All these resources define the set R. The
next step is to check which of these resources may interact
with other accounts A (note, that for many social engineering
attacks there is no need to have an account at all, i.e., we have
an “empty” account). Then, we deduce super-actions SA from
the actions as it is shown in Equation 1.

The account graph received with such procedure describes
the system completely. Sometimes, such graph contains a lot of
information which can be considered as redundant for the aim
of the desired analysis. Similar to the attack graph methods
[4], [19], we may analyse how the system is protected against
a specific attacker. An attacker may be characterised with her
initial privileges (e.g., network attacker may start with “empty”
or just “guest” account when an initial account of an insider
may be more privileged), target privileges and a set of means
which the attacker can use for her attack (similar to [22], [20]).
In this paper, we do not consider the means possessed by
an attacker, but they easily can be added to the model for
a more sophisticated analysis. Thus, we are able to reduce the
analysed graph by considering only the subgraph formed by
the paths from the initial account to the accounts, where the
target privileges are satisfied.

A. Assumptions

We would like to discuss the following assumptions for our
model.

• The attacker moves from one account to another one.
Thus, we may think that the attacker loses her privi-
leges, since she does not need the old ones any more.
Such vision is applicable if an attacker has a clear plan
and simply executes it (without possible deviations
and retreats). Alternatively, we may simply keep track
of the accounts compromised by the attacker to know
all the privileges the attacker possesses at a certain
point.

• The attacker can transfer from one account to another
one, i.e., no additional privileges are needed for the
transfer than the ones the attacker possesses at the cur-
rent state. Keeping track of the compromised accounts
may remove this assumption, but make the analysis
more complicated.

• Target accounts for an attacker contain all privileges
she aims for. In most cases the attacker has a specific

goal, e.g., get root privileges on a server, which refer
to the same account. Keeping track of compromised
accounts may be useful in the rare cases, when this
assumption does not hold.

• Similar accounts (e.g., accounts of the users playing
the same role in the organisation) are considered as
separate accounts. In theory, they can be considered
as one, i.e., the same, but we deal with this problem
in the future.

• Access control systems and firewalls are considered
robust, i.e., flowless. This assumption can be easily
removed by adding additional channels for access
control systems (e.g., access control system may be
broken by a brute-force attack) and do not remove
resources “guarded” by firewalls.

The first, the second and the third assumptions are linked
and deserve a particular attention. These assumptions follow
from the type of the chosen graph (exact definition of the
meaning for nodes and edges). The type of the graph we
consider in the paper is one of the most simple possible graphs.
Other two types of graphs used in the literature are:

• With accumulating privileges [14], [12], [21], [4], [22],
[19], [5]. Every node denotes all privileges the attacker
gained “so far”. In other words, the attacker, moving
through the graph, always accumulates her privileges.

• With single privileges [23], [24], [17]. Every node
is considered as an atomic privilege and every (hy-
per)edge starts with several nodes (required set of
privileges) and leads to the node(s) with received
privilege(s).

All these three types of graphs may describe the same
system but make more visible different aspects. The type
of graph we use clearly shows the accounts compromised
by an attacker and the structure of the system. The graph
accumulating privileges is acyclic and allows for analysis with
Markov Decision Process (MDP). The last graph helps to
specify the minimal set of privileges which is required for
compromising the system. Also the first and the third types
of graphs do not have the state explosion problem. In fact,
the first graph and the third can be considered as the same if
we use accounts instead of atomic privileges. Moreover, it is
possible to transform our graph to the second type.

The “classical” approach for attack graph starts with defini-
tion of existing vulnerabilities (by running a network scanning
tool), i.e., edges. The nodes are derived from the initial
conditions and results of exploiting these vulnerabilities. Our
approach starts with determination of accounts (i.e., nodes)
and resources (i.e., edges) extracting nodes and edges inde-
pendently. Therefore, our nodes contain privileges which can
be considered redundant for the further actions (but relevant for
determination of the potential of the attacker and the potential
damage she may cause). Note, that we do not need to reason
on the level of atomic privileges (required for third type of
attack graphs) since they are encapsulated by accounts.

B. Modularity

One more advantage of the used type of account graph is
its modularity.



The complexity of an attack graph is a known problem
[25] and the management of such graphs for complex systems
may require huge resources. Similar to attack graphs we also
would like to show that complexity of account graph may be
reduced if we break the system into sub-systems and delegate
evaluation of the parts to the corresponding local managers.

A sub-system in our model is just a set of accounts ACm ⊆
AC, which belong to the same organisational unit m. In case
we would like to hide the internal details of the sub-system,
for secrecy reasons (e.g., the internal structure of a division
should not be revealed to the overall system) or for easier
management of the graph, we may leave only the accounts
which interact with the parts of the complex system external
to the module. Let input accounts ACm

b be the accounts of
the model to which there are incoming external edges from
the system and let output accounts ACm

e be the accounts that
send data to the system.

The internal part can be hidden with simple rules:

• Substitute all paths from input accounts to output ac-
counts with an action, i.e., ∀acb ∈ ACm

b , ace ∈ ACm
e

if there is a path πi from acb to ace, then remove
all edges and nodes which belong to πi, apart of acb
and ace themselves, from the graph and add an action
〈acb, πi, ace〉.

• Collapse all actions from one account to another one
into one super-action, i.e., for all such πi get 〈acb, ace〉
(similar to Equation 1).

Fig. 1. Example of partial collapse.

With these simple reduction rules we easily hide the
internal details and save the structure of the graph (paths). It
is similar to actions (first reduction) and super-actions (second
one). See Figure 1 for example. We only should keep track
of such modifications in order to expand the collapsed parts
if necessary. The most important point to note is that such
simplification does not violate possible computations of risk
as well (this will be shown in the next section).

Furthermore, if the analyst decides to leave only input or
output accounts (depending on the analysis to perform), it is
possible to collapse the paths in a similar way.

Finally, it is possible to hide the modules completely
behind the edges passing “through” the module. See Figure 2
for example. Such simplification is reasonable in cases where
the internal structure is unknown, e.g., taking into account a
structure of a partner interacting with the system. In this case,
we simply accept, that the partner may be compromised in any
possible way and then consider the effect of such misuse case
on our system.

IV. RISK ANALYSIS USING ACCOUNT GRAPHS

In this section we show how traditional risk assessment can
be fine-grained with our model and how attack surface for a

Fig. 2. Example of complete collapse.

specific resource affects the risk for the whole system.

A. Computation of risk with account graph

The usual formula for computation of risk Risk is as
follows [26]:

Risk =
∑
∀I

AROI · SLEI (2)

where AROI and SLEI are Annualised Rate of Occurrences
and Single Loss Expectancy for a threat I correspondingly.
Annualised Rate of Occurrences is a number of occurrences
of the threat in some period of time (typically, a year). Single
Loss Expectancy is a loss from a single threat occurrence.

Now, consider risk computed in our model. Let riskI be a
risk from a threat I . Regarding the definition of threat given in
Section III we should consider all possible ways an attacker
is able to reach the target account ace starting with initial
account acb, i.e., all paths between the corresponding nodes.
Let riski be a risk caused by an attacker executing a specific
attack i ∈ I , i.e., traversing path πi from acb to ace. Risk in
this case is:

riski = prti · di ·Ni (3)

where di is a damage caused by the attack i to the organisation
running the system. This damage may be seen as a cost caused
directly by the attack, indirectly (via decreasing of reputation),
the cost of removal (e.g., virus cleaning), etc. Ni is a number
of attempts to execute attack i in a considered period of time
(e.g., a year), when N is a total number of attempts for all
attacks. The probability prti is the probability to successfully
traverse path πi. Let super-actions from πi be ordered from
0 to n, and prtk,k+1 be the probability to successfully move
from account ack to the next ack+1. Then:

prti =

n−1∏
k=0

prtk,k+1 (4)

Now we show how to find risk for all attacks belonging
to the same threat (similar to [20]). For doing this, we need
to sum up all risks for specific attacks. Let riskI , prtI , dI ,
NI be the parameters for a threat I and let them have similar
meanings to the ones defined for an attack i. Let prsi be the
probability for the attacker to select attack i. Then, we may
say that Ni = N ·prsi . Let prsk,k+1 be the probability to select
the next step to ack+1 being at account ack. Then:

prsi =

n−1∏
k=0

prsk,k+1 (5)



Further:

riskI =
∑
∀i∈I

riski =
∑
∀i∈I

prti · di ·Ni = (6)

(
∑
∀j∈I

prtj · prsj∑
∀l∈I pr

s
l

) · (
∑
∀i∈I

prti · prsi
(
∑
∀j∈I pr

t
j · prsj)

· di) ·NI

The first multiplier in Equation 6 is a mean probability of an
attack belonging to threat I to be successful, i.e., prtI . The
second multiplier is a mean damage among all these attacks,
i.e., dI (here we need a conditional probability that the damage
is caused by the attack i if the threat I actually took place).
Note, that

∑
∀l∈I pr

s
l = prsI and NI = N · prsI . In short:

riskI = prtI × dI ×NI (7)

The result for a threat is of the same form as it is for an attack
(see Equation 3). Note, that in classical risk assessment [3],
[2] a threat is often defined in more general way (e.g., virus,
insider attack). We can see such definition as a set of threats
(threats which start with different initial accounts and lead to
different target accounts). In this case we can simply apply
the same reasoning as we did for aggregating risk of different
attacks again, in order to match the definition used in classical
risk assessment.

Finally, if we do some re-definitions SLEI = dI and
AROI = prtI × NI and sum risks for all threats we will
come to the Equation 2.

There are several methods, which use the structure of the
graph and which find prsk,k+1, e.g., using MDP [22], [27],
[5] (first we need to transform the graph to the second graph
type to remove cycles). On the other hand, prtk,k+1 is usually
considered as given. In this work we would like to make one
step further and show how this value can be found if we
know probabilities of exploitation for specific resources (see
Section IV-B).

Finally, we would like to note, that since prtI and prsI
are defined though specified paths, then the proposed methods
of hiding details of the graph (Section III-B) do not vio-
late such computation. We only need to re-compute prsk,k+1

and prtk,k+1 for the new edges according to the probability
operations. For the first step of hiding we simply need to
multiply the values prtk,k+1 for the hidden path to find the
probability to traverse the path successfully (and prsk,k+1 value
to find the probability to select the path). For the second
step we should sum up values prsk,k+1 for alternative paths
and take average probability of successful exploitation (using
conditional probabilities of selection as weights).

B. Effect of attack surface on probability of exploitation

We see attack surface as a set of actions between two
accounts, i.e., all actions for one super-action. The impact of
an attack surface for a specific super-action on risk for the
whole system is straightforward: the larger the attack surface,
the more ways for the attacker to move from one account to
another one exist, the higher is the probability of success and
the higher is the risk for the system.

We are trying to quantify this effect. We cannot use the
attack surface metric defined in [9] since the defined metric

specify risk to compromise a specific software when we need
to consider a global picture. Moreover, the metric defined in
[9] even in theory only approximates risk, rather than computes
it.

Since the attacker is able to compromise the considered
super-action only through some pre-defined actions, then:

prtk,k+1 = 1−
∏
∀l

(1− prrl ) (8)

where prrl is the probability to compromise the action l from
super-action between accounts ack and ack+1. In other words,
the probability in equation is a selection out of probabilities to
compromise the resources available for the attacker, i.e., attack
surface probability. Moreover, now we have a parameter which
is system specific (prtk,k+1) expressed with the probability,
which, in most cases, is action specific (prrl ).

In many cases a resource is a COTS software, e.g., Linux,
Firefox, IMAP, etc. The probability to compromise such
software can be estimated by external experts and re-used
for different specific systems. For example, if the version of
the installed software is old, many vulnerabilities are known
for it and there are widely available exploits for them (such
information could be found in a CVE database) then the
probability should be high. The fully patched software can
have much lower probability. Moreover, here we may take
into account such measures as Common Criteria level [10].
Similar reasoning can be applied for analysis of custom made
software.

V. CONCLUSIONS AND FUTURE WORK

Our approach is based on the combination of attack surface,
risk assessment and attack graphs. Although, our proposal has
many similarities with these three approaches it also provides
new features. First of all we have shown how attack graph,
attack surface and risk relate to each other. Second, our
approach may be used for a detailed analysis of a system
even if the concrete actions of the attacker are unknown.
This is particularly important, since often we do not know
exactly the existing vulnerabilities in the system. Therefore,
the proposed approach can be also applied to new or custom
systems, where components are unique for the system and no
automatic support for searching vulnerabilities exist. This is
important for such systems as critical infrastructures where
existence of vulnerabilities is usually not tolerated at all.
Another advantage of our approach is that the analysis can be
shared between different stakeholders, and the complexity of
the analysis can be reduced. The whole graph may be seen as a
composition of sub-graphs, for which the analysis is performed
by local managers, who have deeper knowledge about their
sub-systems. If a sub-system is changed then we do not need
to redo the analysis completely, but just substitute the changed
part and re-compute the affected paths. Finally, the results of
the analysis should not only depend on the current security
picture, but be also valid for a longer period of time (if we
compare with the attack graph approach).

This paper is the initial step in defining the approach,
which contains mostly general idea. Much has to be done to
apply this approach in practice. In particular, a more practical
way of defining accounts is required. Currently we consider



accounts mostly as accounts of an operational systems (e.g.,
“guest” or “root”), but other software components also have
accounts (e.g., accounts for databases, limited access rights
for plug-ins of browsers, accounts for enterprise management
systems, etc.). On the other hand, many software which also
have accounts are not relevant for the analysis, since either
these accounts do not differ from security perspective or do
not lead to further propagation of attacker’s privileges.

Currently, the approach focuses mostly on seizing ac-
counts by attackers and then abusing the received privileges
(focusing mostly on injection attacks and attacks on users:
social-engineering attacks, session-hijacking, cross-site script-
ing, etc.). There are many attacks which allow the attacker
to simply receive some information. Such attacks can also
be added to the model. We need to assume, that an attacker
is able to get information from any account reachable from
the current account. However, it is difficult to know how the
received information may help the attacker to progress in her
attack. For example, an attacker may force a password storage
software to write the stored passwords in a visible file. Thus,
there is a need for a model for the information an attacker
may acquire. In this work we also do not consider availability
attacks, others than ones that can be performed by abusing
the received rights (e.g., executing many instances of “heavy”
software or deleting configuration/data files).

Our approach shows how attack surface affects risk in
qualitative and quantitative way. Quantitative computation re-
quires low level values, e.g., probabilities and cost. It is widely
accepted that such data are hard to find. On the other hand,
in our work we have shown, that an analyst may re-use the
system-independent information for his/her computations.

VI. ACKNOWLEDGEMENTS

This research was partially supported by SESAMO (n.
295354) and PRIN Security Horizons (funded by MIUR with
D.D. 23.10.2012 n. 719) projects.

REFERENCES

[1] M. S. Lund, B. Solhaug, and K. Stølen, Model-Driven Risk Analysis.
Springer, 2011.

[2] C. J. Alberts, A. J. Dorofee, and J. H. Allen, “Octave catalog of
practices,” Software Engineering Institute, Carnegie Mellon University,
Tech. Rep., 2001

[3] G. Stoneburner, A. Goguen, and A. Feringa, “Risk management guide
for information technology systems,” National Institute of Standards
and Technology, Tech. Rep. 800-30, 2001

[4] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing,
“Automated generation and analysis of attack graphs,” in Proceedings
of the 2002 IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 2002, p. 273

[5] C. Sarraute, G. Richarte, and J. L. Obes, “An algorithm to find optimal
attack paths in nondeterministic scenarios,” in Proceedings of the AISec.
ACM Press, 2011

[6] J. P. McDermott, “Attack net penetration testing,” in Proceedings of the
2000 Workshop on New security paradigms. New York, NY, USA:
ACM Press, 2000, pp. 15–21.

[7] B. B. Madan, K. Goseva-Popstojanova, K. Vaidyanathan, and K. S.
Trivedi, “A method for modeling and quantifying the security attributes
of intrusion tolerant systems,” Performance evaluatin journal, vol. 1-4,
no. 56, pp. 167–186, 2004.

[8] M. Howard, “Fending off future attacks by reducing attack surface,”
February 4 2003, available via http://msdn.microsoft.com/en-us/library/
ms972812.aspx on 22/08/2014.

[9] P. K. Manadhata, K. M. C. Tan, R. A. Maxion, and J. M. Wing, “An
approach to measuring a systems attack surface,” School of Computer
Science. Carnegie Mellon University, Tech. Rep. CMU-CS-07-146,
2007

[10] ISO/IEC, Common Criteria for Information Technology Security
Evaluation, 2nd ed., Common Criteria Project Sponsoring
Organisations, January 2004.

[11] A. Jaquith, Security metrics: replacing fear, uncertainty, and doubt.
Addison-Wesley, 2007.

[12] L. P. Swiler, C. Phillips, D. Ellis, and S. Chakerian, “Computer-
attack graph generation tool,” in Proceedings of DARPA Information
Survivability Conference & Exposition, vol. 2. IEEE Computer
Society Press, June 2001, pp. 307 – 321

[13] S. Jha, O. Sheyner, and J. Wing, “Two formal analys s of attack
graphs,” in Proceedings of the 2002 IEEE Computer Society Security
Foundations Workshop. Washington, DC, USA: IEEE Computer
Society, 2002, p. 49

[14] R. Ortalo, Y. Deswarte, and M. Kaaniche, “Experimenting with quan-
titative evaluation tools for monitoring operational security,” IEEE
Transactions on Software Engineering, vol. 25, no. 5, pp. 633–650,
1999.

[15] J. Pamula, S. Jajodia, P. Ammann, and V. Swarup, “A weakest-
adversary security metric for network configuration security analysis,”
in QoP ’06: Proceedings of the 2nd ACM workshop on Quality of
protection. New York, NY, USA: ACM Press, 2006, pp. 31–38

[16] K. Beckers, L. Krautsevich, and A. Yautsiukhin, “Analysis of social
engineering threats with attack graphs,” in Proceedings of the 3rd
International Workshop on Quantitative Aspects in Security Assurance.
To appear., ser. Lecture Notes in Computer Science. Springer-Verlag,
2014.

[17] L. Wang, S. Jajodia, A. Singhal, and S. Noel, “k-zero day safety:
Measuring the security risk of networks against unknown attacks,” in
Proceedings of the European Symposium on Research in Computer
Security, 2010, pp. 573–587

[18] P. K. Manadhata and J. M. Wing, “An attack surface metric,” IEEE
Transactions on Software Engineering, vol. 37, no. 3, pp. 371 – 386,
2010

[19] K. Beckers, M. Heisel, L. Krautsevich, F. Maritnelli, and A. Yaut-
siukhin, “Considering attacker motivation in attack graphs analysis in a
smart grid scenario,” in Proceedings of the second open EIT ICT Labs
workshop on Smart Grid Security. To Appear., ser. Lecture Notes in
Computer Science. Springer-Verlag, 2014.

[20] L. Krautsevich, F. Martinelli, and A. Yautsiukhin, “Formal analysis
of security metrics and risk,” in Proceedings of the IFIP Workshop
on Information Security Theory and Practice, ser. Lecture Notes in
Computer Science. Springer-Verlag, 2011, vol. 6633, pp. 304–319

[21] O. Sheyner and J. Wing, “Tools for generating and analysing attack
graphs,” in Proceedings of Formal Methods for Components and
Objects, ser. Lecture Notes in Computer Science. Springer-Verlag,
2005

[22] E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke,
“Model-based security metrics using adversary view security evaluation
(advise).” in Procedings of the 8th International Conference on
Quantitative Evaluation of SysTems, 2011, pp. 191–200

[23] L. Wang, S. Noel, and S. Jajodia, “Minimum-cost network hardening
using attack graphs,” Computer Communications, vol. 29, no. 18, pp.
3812–3824, 2006

[24] L. Wang, A. Liu, and S. Jajodia, “Using attack graphs for
correlating, hypothesizing, and predicting intrusion alerts.” Computer
Communications, vol. 29, no. 15, pp. 2917–2933, 2006

[25] S. Noel and S. Jajodia, “Managing attack graph complexity through
visual hierarchical aggregation,” in Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security.
New York, NY, USA: ACM Press, 2004, pp. 109–118

[26] L. A. Gordon and M. P. Loeb, Managing Cybersecurity Resources: a
Cost-Benefit Analysis. McGraw Hill, 2006.

[27] L. Krautsevich, F. Martinelli, and A. Yautsiukhin, “Towards modelling
adaptive attacker’s behaviour,” in In Proceedings of 5th International
Symposium on Foundations & Practice of Security, ser. Lecture Notes
on Computer Science. Springer-Verlag, 2012, vol. 7743, pp. 357–364


