
Towards Attribute-based Access Control Policy
Engineering Using Risk∗

Leanid Krautsevich, Aliaksandr Lazouski, Fabio Martinelli, and Artsiom
Yautsiukhin

Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche
Via G. Moruzzi 1, Pisa 56124, Italy
{firstname.lastname}@iit.cnr.it

Abstract. In this paper, we consider a policy engineering problem for
attribute-based access control. The general goal is to help a policy writer
to specify access control policies. In particular, we target the problem of
defining the values of attributes when access to an object should be
granted or denied. We use risk to quantify possible harm caused by mis-
uses and abuses of granted access rights and apply the risk-benefit anal-
ysis to maximize the profit from granting an access.

Keywords: ABAC, access control, attributes, policy engineering, risk,
risk-benefit analysis.

1 Introduction

Attribute-based access control (ABAC) [10, 17] is a recently proposed access-
control model which generalizes the existing models such as Discretionary Ac-
cess Control (DAC), Mandatory Access Control (MAC), and Role-based Access
Control (RBAC). Access decisions in ABAC are made on the basis of rules and
policies that consist of predicates over attributes. Thus, attributes of different
entities (i.e., subject, object, actions, environment, etc.) are the core of ABAC.
ABAC policies no longer need ids of the entities. Instead, a policy architect
should care only about relevant attributes required for policy specification.

Policies in the ABAC model may be complex and require more details than
policies for other access control model. Thus, we would like to consider a policy
engineering problem for ABAC to help a policy architect in and to facilitate
migration of enterprises to this new model. This problem is inspired by the
role engineering problem [5, 9] which aims at finding the most suitable RBAC
specification.

The main policy engineering problem has several sub-problems: find the at-
tributes required for writing a policy, assign attributes to subjects and objects,
determine the exact shape of the policy, and find the values of attributes which
make the policy applicable. In this paper, we would like to concentrate on the

∗This work was partly supported by EU-FP7-ICT NESSoS, EU-FP7-ICT ANIKE-
TOS, and 295354 SESAMO projects.

two latest sub-problems. We consider the case when we know which attributes
are available in the system and the results of our analysis could help to define a
policy and the attribute values satisfying the policy. Currently, these values are
determined by experts on the basis of their experience. A more objective way
of defining the policies requires the evidence of the reasons behind the policy
specification.

We propose to use a risk-benefit analysis to define the values of attributes
accepted by a policy. We assume that granting a permission to a user is connected
with the risk that the user may misuse or abuse the obtained access rights.
Thus, rules should constrain the attribute values in such a way that benefits of
granting or denying access exceed the possible risk for the system. In contrast to
the existing approaches which apply risk for access control [1, 4, 6, 19], we do not
use risk for making access control decisions on the fly, but help to write policies
in which risks are already balanced with benefits. Thus, the main contribution of
the article is a preliminary version of an approach which uses risk to specify the
policy that splits the domain of values of attributes into two sub-domains: values
for which an access should be granted and values for which an access should be
denied. We also show how our approach could be used in scope of bottom-up
and top-down policy engineering approaches.

The rest of the paper is organized as follows. Section 2 briefly presents a
statement of the policy engineering problem in the ABAC. Section 3 describes
how risk-benefit analysis can be applied to solve the policy engineering problem.
Section 4 discusses the preliminary results of our work. Section 5 presents the
related work. The paper is concluded by Section 6.

2 Policy Engineering Problem

The ABAC is a promising approach which provides a possibility to express com-
prehensive access control scenarios. Though, the formal definition of the ABAC
and its further configuration are challenging problems.

2.1 ABAC Core Elements

We introduce a simple ABAC model which it is inspired from the models pro-
posed in [10, 8]. The basic elements of our ABAC model can be defined as follows:

– U is a set of users that issue access requests.
– O is a set of objects that are subject to control under security policies.
– R is a set of actions that can be performed on the contents of objects.
– UA is a set of names for users’ attributes (e.g., “profession”, “location”).
– OA is a set of names for objects’ attributes (e.g., “type”). All attributes in

the ABAC system are denoted by the set A, A = UA ∪OA.
– D is a collection of attribute domains. Function DOM associates each at-

tribute name with a domain of values the attribute can take,DOM : A → D,
or simply dom(a) = Da, Da ∈ D.

– Attribute assignment associates users and objects with attributes and their
values, PAV = {(p, a, ν)|p ∈ U ∪ O, a ∈ A, ν ∈ Da ∪ {⊥}}. We assign ⊥
when the user does not posses the attribute.

– A range of the attribute ax ∈ A is given by AVx := {(a, ν)|ν ∈ Da ∪ {⊥}}.
– A policy is a function which maps a Cartesian product of all attribute ranges

and set of actions to a binary access decision, POL : AV1 × ... × AVn ×
R → {deny, grant}, and |A| = n. Decision making is a computation of this
function.

Here we considered attributes of subjects and objects only for simplicity.
Our model may be extended to use also attributes of actions, environment, etc.
Taking these attributes into account will increase expressiveness of policies, but
the reasoning will be the same.

Our ABAC model assumes a global security policy. However, some ABAC
models, e.g., XACML OASIS standard [17], exploits rules as constructs which
map attributes to a ternary access decision (grant, deny and non-applicable).
Then, rules can be combined into policies, and policies can be further combined
into complex policies during a computation of an access decision. All these com-
binations can be considered as additional assignments. In our ABAC model, we
do not consider such assignments for the sake of simplicity.

2.2 Problem Statement

We consider a policy engineering problem as a task of configuring the ABAC
system, i.e. defining all basic elements, automatically. The complexity of the
policy engineering problem depends on which elements are given and which el-
ements should be constructed or mined from the information available at the
configuration time. Solving general policy engineering problem is very difficult
because real ABAC implementations contain lots of functions to compose com-
plex rules and policies, and any information in the system can be represented as
an attribute.

When the policy engineering problem is defined, the algorithm which solves
it should be proposed. In fact the complexity of the policy engineering problem
suggests that the algorithm could provide multiple solutions of the problem.
Therefore, the ABAC system architect should assess obtained solutions and pick
the best one.

2.3 Our Approach

As an initial approach, we consider the policy engineering problem assuming that
all elements of the ABAC system excluding POL are known. Also, we assume
that there is some additional information regarding the user’s behaviour after
granting the access. These assumptions are applicable for systems which are
configured and work properly but additional security constrains could benefit
the system practicality (e.g., increase the revenue).

We use the notion of risk to tackle the problem. Moreover, risk helps choosing
the best possible solution of the problem. The following running example explains
our approach.

Running Example The on-line retailer (e.g., Amazon) provides the possibility
to pay for items that it sells at the time of actual delivery. This kind of service is
usually called as a “collect on delivery” (COD). However, the retailer may decide
whether to send an item based on some attributes of the user and/or the item.
These attributes might be considered as a guarantee of the eventual payment
and may mitigate risks of potential fake orders and dishonest customers.

We assume the following elements in the system:

– U is a set of customers, O is a set items, d is an action “delivery” (i.e.,
R = {d}).

– UA = {P,L, Y } is a set of user’s attributes, where P encodes user’s pro-
fession and the domain of P is DP = {Student, Engineer,Manager}, L
states the location and DL = {Livorno, Lucca, P isa}, Y is the user’s age
and DY = {18− 30, 31− 45, 46− 99}.

– OA = {T} is a set of object’s attribute, where T specifies the type of the
item bought by the user and DT = {Book,CD,DV D}.

Now the problem is to determine the policy (grant or deny delivery) based
on these attributes in such a way that minimizes risks for the retailer.

3 Policy Specification with Risk

A rigorous approach is required for policy engineering to make sure that policies
grant access rights only to trusted users. On the other hand, the access rights
may be abused even in case of correct policy engineering. We propose to exploit
a risk-based method which allows minimizing risk connected with granting and
denying access.

3.1 Risk Model

We consider possible risk connected with improper use of granted access rights
by a user. By improper use we mean incorrect assignment, intentional abuse
or (unintentional) misuse of granted access rights. Usually, risk of an event e,
i.e., Risk(e), is evaluated considering the probability of the event to occur Pr[e]
together with an outcome of the event U(e) (i.e., utility). Formally:

Risk(e) = Pr[e] · U(e) (1)

While the variables in the risk equation can be evaluated either qualitatively or
quantitatively. Qualitative approach can be more practical since the evaluation
of qualitative risk is an easier task, moreover qualitative values can be easier to

understand by security specialists. We further follow the quantitative approach
similarly to our earlier works [11, 12].

The purpose of risk in our model is to establish a mapping between attributes
values and access decisions. We assume that each policy depends on several
attributes of subjects, objects, and environment. The decision to grant an access
depends on the values of the attributes during access request. We assume that
each set of attribute values causes risk of different level to a system and the
system owner. A natural decision is to allow the accesses with low risk and to
forbid the accesses when the risk is high.

Suppose, there is a policy POL((a1, νa1), . . . , (an, νan)) that leads to granting
an access right. This policy depends on attributes ai ∈ A.

We can compute risk of granting an access for a set of attribute values. The
event e in this case is a set of attribute values used for an access decision:

e = {(a1, νa1), . . . , (an, νan)|νai ∈ Dai} (2)

We assume that there is a function Prvio : E → [0, 1] which maps the set E
of events e to a probability of a policy violation caused by granting access when
the attributes have some certain values. There is also function Procc : E → [0, 1]
which maps the set E of events e to a probability of occurrence of an event e.

Next we assume that a system owner obtains utilities granting an access.
These utilities are the cost of abusing the granted access U− (which is a negative
utility) and the gain of granting access U+ (which is a positive utility). Thus,
the risk of granting the permission to a user in case of event e:

Risk(e) = Procc[e] ·Prvio[e] · U− (3)

Similar, the benefit of granting a permission in case of event e is:

Ben(e) = Procc[e] · (1−Prvio[e]) · U+ (4)

Where Procc[e] ·Prvio[e] and Procc[e] · (1−Prvio[e]) are joint probabilities that
an event occurs and a policy is or is not violated correspondingly.

Let E = EG
∪
ED, where EG is a set of events when access is granted, while

events from ED lead to the denial of access. Our goal is to split the set of events,
i.e., to find the values of attributes, in such a way, that risk for the system is
acceptable.

Thus, the average utility for a single access is:

⟨UEG⟩ =
∑

∀e∈EG

Procc[e] · (Prvio[e] · U− + (1−Prvio[e]) · U+) (5)

Using this general model for the average utility we discuss several strategies
to mitigate the risk.

3.2 Risk Mitigation

We mitigate risk in a system by engineering ABAC policies such that only low
risk accesses are granted. We suppose that the goal for the mitigation strategy is

to maximize the monetary benefit. Thus, we would like to maximize the average
utility. Often other constrains, except risk, are also taken into account during
policy engineering. For example, the constraint may state that at least 10 users
must have access. Thus, we need to solve an optimization problem [2]:

maximize ⟨UEG⟩(x) (6)

Where x is a vector called an optimization variable of the problem, such that
every element of this vector xi ∈ {0, 1}, i = 1, . . . , |E| and xi = 1 if ei ∈ EG and
xi = 0 if ei ∈ ED. Let C(x) be any constraint function which could be bound
as follows:

C(x) ≥ 0 (7)

Using Equations 5 and 6 we obtain the following optimization problem:

maximize

|E|∑
i=1

Procc[ei] · (Prvio[ei] · U− + (1−Prvio[ei]) · U+) · xi (8)

C(x) ≥ 0

xi ∈ {0, 1}, i = 1, . . . , |E|

The set of feasible solutions for this problem can be determined by the desire
of a system owner to obtain a profit from the access in average:

⟨UEG⟩ > 0 (9)

While the problem is generally NP-hard, it can be solved in polynomial time
for some constraint functions C(x) using linear programming approaches.

Obtain Profit from a Single Access Assume, that no additional constraints
(C(x) = 0) are applied to Equation 9. Then, it is simply enough to balance risk
and benefits for every single access in order to maximize the average utility :

∀e ∈ E,Risk(e) +Ben(e) > 0 (10)

It means that we select only such sets of attribute values that lead to a gain from
the access rather than to a cost. Probability Procc[e] does not impact whether a
summand is positive or negative. Thus, we should find the threshold probability
Pr+vio to find the set of events solving the following equation:

(1−Pr+vio) · U+ +Pr+vio · U− = 0 (11)

Trivially, the solution of the equation is:

Pr+vio =
U+

U+ − U− (12)

Note, that U− < 0 because it is negative utility. Thus, 0 ≤ Pr+vio ≤ 1.
The set of events that grant the access is:

EG = {e : Prvio[e] < Pr+vio} (13)

The set of events that deny the access is:

ED = E \ EG (14)

Running Example We continue the running example started in Section 2.
We present here just some possible sets of attributes among 81 ones. There are
following events that can occur during access requests:

e1 = ((P, Student), (L,P isa), (Y, 18− 30), (T,Book)) (15)

e2 = ((P, Student), (L,Luca), (Y, 18− 30), (T,Book))

e3 = ((P,Engineer), (L,Livorno), (Y, 30− 45), (T,DV D))

e4 = ((P,Manager), (L,Lucca), (Y, 46− 99), (T,CD))

Let U− be equal for any item because a seller should only pay 7 Euros to
the post for a return of the item back to the warehouse:

U−(e1) = U−(e2) = U−(e3) = U−(e4) = 7 (16)

Moreover, suppose a seller obtain 0.3 Euro of gain U+ from each successful deal:

U+(e1) = U+(e2) = U+(e3) = U+(e4) = 0.3 (17)

Suppose we can obtain Prvio from system logs:

Prvio[e1] = 0.050 (18)

Prvio[e2] = 0.030

Prvio[e3] = 0.010

Prvio[e4] = 0.005

In the example, there are no additional constrains on the policies. Thus, we
may consider every single event separately as it is shown in Equation 10. Risks
and benefits in this case are:

Risk(e1) = 0.35, Ben(e1) = 0.29 (19)

Risk(e2) = 0.21, Ben(e2) = 0.29

Risk(e3) = 0.07, Ben(e3) = 0.30

Risk(e4) = 0.04, Ben(e4) = 0.30

From Equation 12, the threshold probability in this case is Pr+vio = 0.041.
Obviously, the user that provided the set of attributes values corresponding
to the event e1 = ((P, Student), (L,P isa), (Y, 18 − 30), (T,Book)) is denied to
access COD service. Users that provide the set of attributes values corresponding
to events e2, e3, e4 are granted with the access to COD.

4 Discussion

We would like to discuss a relation between role engineering in RBAC and risk-
based policy engineering in ABAC.

There are two approaches to solve the role engineering problem [5, 9]: a
top-down approach and a bottom-up approach. The top-down approach uses
business-related information (e.g., hierarchy of employees, structure of the en-
terprise, business processes executed by the company, etc) in order to specify
possible roles and subject-role (SA) and role-permission (RA) assignments. The
bottom-up approach uses the information about past accesses (as logs or access-
control lists) to infer the required information. The bottom-up approach that is
known as role mining often requires automatic support.

We also may apply a similar separation of approaches for a policy engineering
problem in ABAC. In Section 3 we said, that the information about the required
probabilities and utilities is provided by experts. Such a top-down approach is
useful when a new access control system is set up.

In contrast, if access control system is already in place, and the company
would like to migrate to ABAC which is easier to manage, then the same in-
formation may be received from the history of previous accesses. In this case,
we will have a bottom-up approach. We assume that there is a log containing a
comprehensive information about previous accesses, similar to the assumptions
made in role mining. Thus, for each abuse of a permission we can obtain an
information about attribute values during the abuse. Also probability Procc[e]
and Prvio[e] could be taken from statistics. For example, if transitions from one
value to another can be modeled with Markov Process, then these probabilities
could be seen as steady probabilities. The utility is the business-related informa-
tion and depends on possible harm to the guarded resources. If the information
about the losses caused by improper usages of access rights is contained in the
log, this information can be derived from the history.

On the other hand, the assumption that the information about possible losses
is contained in the log is very strong. More likely, that additional information will
be obtained during the operation of the system. Probabilities and utilities should
be correspondingly updated as new information is obtained. Such an update may
cause changes of risk and benefit and, thus, a reassignment of policies.

5 Related Work

To the best of our knowledge our work is the first one trying to formalize ABAC
policy engineering problem using risk. There are several risk-based approaches
tackling different issues of access control on the basis of risk.

There are approaches that enhance an access decision with risk [3, 4, 6, 11, 12,
15, 19]. Dimmock et al. [7] extend RBAC policies with risk and trust. Authors
propose to use risk and trust during an access decision together with usual cre-
dential. According to the model, risky actions should be allowed only to highly
trusted users. Zhang et al. [19] weight each access decision with risk and ben-
efit and make the decision on the basis of risk-benefit analysis. Similarly, Diep

et al., [6] enforced access control policies comparing risk of an action with a
predefined threshold. Celikel et al. [3] introduce risk-based approach for RBAC
that allows evaluating possible abuse and misuse of roles by a user in a database
environment. The risk assists a database administrator to make a finer-grained
decisions about granting or denying the access. Chen and Crampton [4] also
consider risk as additional parameter that helps to enhance decision making
in RBAC. Authors consider several factors impacting access decisions such as
user’s trustworthiness, degree of competence, and degree of appropriateness of
user-to-permission assignment. Ni et al. [15] assume that in critical situations
the access to a resource can be granted to a risky user if mitigation actions are
planed in the future. In contrast to the described approaches, we use risk to
engineer policies instead of enhancing accesses decisions.

Several risk-based approaches allow analyzing and managing different aspects
of RBAC model [1, 13, 16]. Nissanke and Khayat [16] propose to use risk for
evaluating permissions in RBAC model and then use the risk-based evaluation
to manage roles hierarchy. Aziz et al. [1] propose an approach for reconfiguring
RBAC policies such that risk in a system decreases. While these approaches
focus on the analysis and management of deployed access control systems, our
approach focuses on engineering and deploying a new attribute-based access
control system.

6 Conclusion and Future Work

This paper presents the first steps towards risk-based policy engineering. We
showed how a policy architect can use risk to specify the values of attributes
to guarantee the least risky policy specification. As future work, we would like
to consider mining probabilities and utilities from history of previous accesses
and updating probabilities and utilities during system exploitation. Moreover,
we are going to extend our approach to solve also the problem of identifying the
attributes required for policy specification and determination of a policy shape.
Also, we would like to use a more sophisticated ABAC model, e.g., Usage Control
(UCON) [14, 18], which introduces mutable attributes and a continuous policy
evaluation. Finally, the algorithm that solves the policy engineering problem
should be capable to generate security policies exploiting existing access control
languages, e.g. XACML.

References

1. B. Aziz, S. N. Foley, J. Herbert, and G. Swart. Reconfiguring role based access
control policies using risk semantics. Journal of High Speed Networks, 15(3):261–
273, 2006.

2. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

3. E. Celikel, M. Kantarcioglu, B. Thuraisingham, and E. Bertino. Usage control in
computer security: A survey. Risk and Decision Analysis, 1(1):21–33, 2009.

4. L. Chen and J. Crampton. Risk-aware role-based access control. In Proceedings
of the 7th International Workshop on Security and Trust Management, pages 140–
156, 2011.

5. A. Colantonio, R. D. Pietro, A. Ocello, and N. V. Verde. A new role mining
framework to elicit business roles and to mitigate enterprise risk. Decision Support
Systems, 50(4):715731, 2011.

6. N. N. Diep, L. X. Hung, Y. Zhung, S. Lee, Y.-K. Lee, and H. Lee. Enforcing access
control using risk assessment. In Proceedings of the 4th European Conference on
Universal Multiservice Networks, pages 419–424, 2007.

7. N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, and K. Moody. Using trust
and risk in role-based access control policies. In Proceedings of the 9th ACM
Symposium on Access Control Models and Technologies, pages 156–162, 2004.

8. D. Ferraiolo, V. Atluri, and S. Gavrila. The policy machine: A novel architecture
and framework for access control policy specification and enforcement. Journal of
Systems Architecture, 57(4):412–424, 2011.

9. M. Frank, J. M. Buhmann, and D. Basin. On the definition of role mining. In Pro-
ceedings of the 15th ACM Symposium on Access Control Models and Technologies,
pages 35–44. ACM.

10. X. Jin, R. Krishnan, and R. Sandhu. A unified attribute-based access control
model covering dac, mac and rbac. In Proceedings of the 26th Annual IFIP WG
11.3 conference on Data and Applications Security and Privacy, pages 41–55, 2012.

11. L. Krautsevich, A. Lazouski, F. Martinelli, P. Mori, and A. Yautsiukhin. Integra-
tion of quantitative methods for risk evaluation within usage control policies. In
Proceedings of 22nd International Conference on Computer Communications and
Networks, to appear, 2013.

12. L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Cost-effective
enforcement of access and usage control policies under uncertainties. IEEE Systems
Journal, Special Issue on Security and Privacy in Complex Systems, 7(2):223–235,
2013.

13. L. Krautsevich, F. Martinelli, C. Morisset, and A. Yautsiukhin. Risk-based auto-
delegation for probabilistic availability. In Proceedings of 4th International Work-
shop on Autonomous and Spontaneous Security, pages 206–220. Springer, 2011.

14. A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer security: A
survey. Computer Science Review, 4(2):81–99, 2010.

15. Q. Ni, E. Bertino, and J. Lobo. Risk-based access control systems built on fuzzy
inferences. In Proceedings of the 5th ACM Symposium on Information, Computer
and Communications Security, pages 250–260, 2010.

16. N. Nissanke and E. J. Khayat. Risk based security analysis of permissions in
rbac. In Proceedings of the 2nd International Workshop on Security in Information
Systems, pages 332–341, 2004.

17. OASIS. eXtensible Access Control Markup Language (XACML) Version 3.0.
www.oasis-open.org/committees/xacml.

18. R. S. Sandhu and J. Park. Usage control: A vision for next generation access
control. In Proceeding of MMM-ACNS, pages 17–31, 2003.

19. L. Zhang, A. Brodsky, and S. Jajodia. Toward information sharing: Benefit and risk
access control (BARAC). In Proceedings of the 7th IEEE International Workshop
on Policies for Distributed Systems and Networks, pages 45–53, 2006.

