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Abstract. Attribute-based Access Control (ABAC) was recently pro-
posed as a general model which is able to capture the main existing
access control models. This paper discusses the problems of configuring
ABAC and engineering access policies. We question how to design at-
tributes, how to assign attributes to subjects, objects, actions, and how
to formulate access policies which bind subjects to objects and actions
via attributes.
Inspired by the role mining problem in Role-based Access Control, in
this paper we propose the first attempt to formalise ABAC in a matrix
form and define formally a problem of access policy engineering. Our
approach is based on the XACML standard to be more practical.
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1 Introduction

Attribute-based Access Control (ABAC) [1] was recently proposed as a gen-
eral model which is able to capture the main existing access control models,
like Discretionary Access Control (DAC), Mandatory Access Control (MAC),
and Role-based Access Control (RBAC). The core components of ABAC are
attributes assigned to all entities, e.g., subjects, objects, actions. Access policies
define conditions (predicates over attributes) when access requests are permit-
ted. Although ABAC provides a rich flexibility in defining access policies, there
are a lot of challenges regarding a conceptual and formal definition of the model.

This paper discusses problems of configuring ABAC and engineering access
policies. We question how to design attributes, how to assign attributes to sub-
jects, objects, actions, and how to formulate access policies which bind subjects
to objects and actions via attributes. To the best of our knowledge, currently
there is not even a formal definition of these problems for ABAC neither solu-
tions. We see a role mining in RBAC [2] as the most relevant problem which
might be extrapolated and used to address similar problems of ABAC.

⋆ This work was partly supported by EU-FP7-ICT NESSoS (256980) and PRIN Se-
curity Horizons funded by MIUR with D.D. 23.10.2012 n. 719, and EIT ICT Labs
activity 13083.



Role mining, introduced in 2003 [3], gained a lot of attention in last years and
a large number of different approaches to the problem were proposed [4–6]. Role
mining is generally considered as the automatic creation of roles, assignment of
subjects to roles and roles to permissions (object-action pairs). Frank et al. [2]
specify three aspects of a role mining problem: (i) a formal definition, (ii) an
algorithm, and (iii) quality measures of the algorithm.

It is convenient to use matrices for defining the role-mining problems formally
[4, 2, 6]. Matrices help to capture relations between subjects and permissions
(UPA), subjects and roles (UA), and roles and permissions (PA). Operations
on matrices allow expressing the required relations (e.g., UPA = UA × PA)
and perform simplifications, if necessary.

Inspired by the role mining problem, in this paper we propose the first at-
tempt to formalise ABAC in a matrix form and define formally a problem of
engineering access policies. Our approach is based on XACML model, an open
standard of ABAC proposed by OASIS [7] and widely used in industry and re-
search. We define only the most general problem, and leave the space for further
detailed elaboration of the problem for future research, when concrete scenarios
are to be considered. We only propose a definition of the problem, and leave pos-
sible algorithms and their quality measurements for the future work. We show
that the role mining problem is a specific case of policy engineering problem.

The paper is structured as follows. In Section 2 we provide a simple for-
malisation of ABAC model, based on XACML. Section 3 contains the basics
for multidimensional matrix used for our model. We provide a matrix form of
ABAC formalisation in Section 4. In Section 5 the policy engineering problem for
ABAC is defined and exemplified for RBAC case. Finally, we provide discussion
(Section 6), related work (Section 7), and conclusions (Section 8).

2 General ABAC Model

We recall important notions relevant to the ABAC model. Currently, there is
not a formal definition of the general ABAC model. However, the first steps
towards definition were done by Jin et al. [1] where the authors presented ABACα

model. ABACα is developed to include existing models for access control such
as DAC, MAC, and RBAC. Moreover, there is an OASIS standard XACML [7]
that defines a language for access control policies for ABAC. Jin et al. [1] focus
on the basic, minimal features of ABAC, when the XACML standard is ready
for a practical use. In this paper we formalise the core ABAC features close to
the XACML standard to make our approach closer to practice. Naturally, we are
not able to capture all features of XACML. In the paper we focus on attribute
assignment, rules definition, and simple policy decision making. Moreover, we
operate with four possible decisions used in XACML. We leave formalisation of
policies for the future work.

The essential goal of any access control model is to guarantee that only legit-
imate subjects have permission to access objects. Following XACML, suppose
there is a set S of subjects s ∈ S, a set O of objects o ∈ O, a set Act of possible



actions act ∈ Act (e.g., “read”). We also may add environment to the model,
but skip this part for simplicity. We define a set of all entities in the system as
E = S ∪O ∪Act. We assume an attribute as a function ATTR which assigns a
value to an entity e ∈ E such that:

ATTR : E 7→ D (1)

where D is a finite set of values, i.e., the domain of the attribute. For example,
an attribute function mapping S 7→ N may specify the age of the subject.

The set of rules maps attributes into one of four possible outcomes:

RULE :
n⊗

∀ia=1

(Dia) 7→ {⊥,⊤,�,∅} (2)

where by
n⊗

∀ia=1

we mean, that a RULE function requires n attribute values of

entities. It is important to note, that to identify the used value precisely we need
to specify a triple: the entity (to which the attribute belongs to), the attribute
(we consider), and the value. In Equation 2 the information about the entity
and the attribute is present only implicitly, but in the following we will need to
specify the triple explicitly. Note, that a rule does not bind a value to a specific
entity when it speaks about the subject, object, or action of a request. We say
that an attribute is bound by a rule if the rule states exactly to which entity the
attribute belongs to. For example, consider the following rule “access is allowed
only if user John is on vacations”. Here we know, that the value “is on vacation”
of “current work status” attribute must belong to John. Consider a rule “access
is allowed only if the subject has an e-mail from iit.cnr.it domain”. Here we know
that the attribute “e-mail” belongs to a subject, but we do not know in advance
who the subject is. Thus, in the first example we have a bound (to a specific
entity) attribute, when in the second case we speak about a free attribute.

The result of the RULE function is one of four possible values of domain
ℜ = {⊥,⊤,�,∅}, where ⊤ means positive result (e.g., allow access), ⊥ means
negative result (deny access), � means undefined result (e.g., caused by division
by zero), and ∅ means not available or not applicable result. Rules are further
aggregated in policies (and further in policy sets) in XACML, but we skip this
part in our initial model.

Finally, a Policy Decision Point (PDP) should consider all rules (policies and
policy sets in the original XACML standard) and provide the final decision. In
short PDP collects all authorisation decisions provided by the rules and returns
“permit” if at least one rule returns “permit” decision, and “deny” otherwise.

PDP :

nr⊗
∀ir=1

(ℜir ) 7→ ℜ (3)

Ideally, the result of the PDP should be either ⊤ or ⊥, but � and ∅ are also
possible and leave the decision for Policy Enforcement Point.



Since matrix form has proven to be convenient for solving the role mining
problem, we aim for a similar matrix form for ABAC model. Indeed, the input
information for the attribute mining problem is simply the number of triples
(direct access control assignments): subject-object-actions, which were allowed
(or denied) in the latest period of time. Such information is a three-dimensional
matrix with dimensions denoting subjects, objects, and actions. Therefore, the
matrix form should explicitly link all functions defined in the current section
and result in direct access control assignments. Such assignments explicitly show
whether a user can perform an action on an object. Finally, using such form we
will be able to define the attribute mining problem.

3 Mathematical Basis

Before we will be able to define our model we would like to specify the math-
ematical basis for our model. In the paper we use multidimensional matrices,
i.e., the matrices which may have an arbitrary number of dimensions. Multidi-
mensional matrices are usually considered as tensors. In contrast, we build our
theory using Multidimensional Matrix Mathematics proposed by Solo [8]. This
mathematics adopts all operations from tensor analysis and keeps it simple and
close to the classical (2-dimensional) matrix mathematics.

In the paper we denote matrixes with bold capital capital letters e.g., A
(when functions are denoted with capital letters not in bold, e.g., RULE), and
minuscule letters to denote elements of this matrix, a. Elements always con-
tain indexes to specify the element, e.g., ai,j . Indexes denote the dimensions of
matrices. We use indexes for matrices (e.g., Ai,j) only when we would like to
specify the dimensions of the matrix explicitly. In this section we also use sets
of indexes. For example, if we have matrix Ai1,i2,i3 with elements ai1,i2,i3 for
brevity we write AI , where I = {i1, i2, i3}. Let IJK denote any combination
of indexes from sets I = {i1, i2}, J = {j1, j2}, and K = {k1, k2} preserving the
order for every set (e.g., i1, j1, j2, k1, i2, k2) and IJK denote the ordered set of
indexes where all indexes from I are followed by all indexes of J and then are
followed by all indexes of K (e.g., i1, i2, j1, j2, k1, k2).

In the paper we use summation of matrixes, two types of multiplication [8]
and a special diag operation, defined as follows.

Definition 1. Let AI and BI be two matrices of |I| dimensions. Then C =
A+B is also an |I|-dimensional matrix with values cI = aI + bI ;

Definition 2. The multidimensional matrix outer product is multiplication of
every element of one matrix by every element of another matrix. The multidi-
mensional matrix outer product AI ⊗ BK is a multidimensional matrix CIK

every element of which is computed as: cIK = aI ∗ bK .

Definition 3. The multidimensional matrix inner product is defined as a con-
tracted multiplication of elements of both matrixes with different indexes. The
multidimensional matrix inner product AIJ × BJK is a multidimensional ma-
trix CIK every element of which is computed as: cIK =

∑
∀j∈J aIJ ∗ bJK .



In our work, the elements of all matrices belong to a specific domain of results
ℜ = {∅,�,⊥,⊤} (we also use ℜ′ = {∅,⊤} ⊂ ℜ ). Thus, we have to define the
“∗” and “

∑
” (or “+”) operation on the elements of the domain to be able to

apply operations defined in Definitions 1, 2, and 3 on matrices.

Definition 4. Multiplication (“*”) and addition (“+” or
∑

) operations are
defined by two corresponding tables

“*” “+”
⊤ ⊥ � ∅

⊤ ⊤ ⊥ � ∅
⊥ ⊥ ⊥ � ∅
� � � � ∅
∅ ∅ ∅ ∅ ∅

⊤ ⊥ � ∅
⊤ ⊤ ⊤ ⊤ ⊤
⊥ ⊤ ⊥ ⊥ ⊥
� ⊤ ⊥ � �
∅ ⊤ ⊥ � ∅

(4)

In the following we will use multiplication of elements to indicate whether
a specific element should be considered (e.g., whether a rule should check the
value of an attribute). The addition operation indicates how considered elements
should be combined (e.g., whether there is at least one value of an attribute
satisfying a rule). Since a rule may result in either ⊥ and ⊤ if applicable we will
never meet the addition of ⊥ and ⊤ values in our work. For the final combination
of rules (see Equation 3) we use a simple algorithm, which allows access if at
least one rule allows it (similar to deny-unless-permit rule-combining algorithm
in XACML). One observation is useful here: if the access control system only
specifies when access is allowed (⊤) and simply ignores the rest (∅) then denoting
⊤ as 1 and ∅ as 0 we get usual boolean operations for and and or.

Proposition 1. The operations defined in Definition 4(proofs are in Appendix):

1. ∗ and + are commutative,
2. ∗ and + are associative,
3. ∗ is distributive over +.

Proposition 2. Let us have three multidimensional matrices AIJK , BIML,
CJMN and IJK

∩
IML

∩
JMN = ∅.

1. (C×B)×A = C× (B×A).
2. (C ×B) ×A = ((C ×A) ×B)T (K;L), where DT (K;L) means transposition,

i.e., interchanging of positions, of indexes from set K and L preserving order.

Two points can be derived from Proposition 2. First, if I = ∅ then B×A =
B ⊗ A, since there are no indexes for contraction. Second, changing the order
of matrices does not change the elements of the resulting matrix, but only the
order of dimensions.

Finally, we define an operation diag which reduces a set of dimensions J of
a matrix to one dimension, using only the diagonal elements of J .

Definition 5. Let A be a multidimensional matrix with dimensions IJK, where
∀jt ∈ J, t = 1...k for some finite k. Then,

C = diagJ(AIJK) ; cI{j}J = aI{j1=j,j2=j,...,jk=j}K (5)

Proposition 3. If matrix AIJK has only one dimension J = {j1}, then
diagJ(AIJK) = AIJK



4 Matrix form for ABAC Model

In this section we define a matrix form of ABAC similar to the one used for
the role engineering [2]. This form is required in order to explicitly link such
entities as subject, object and allowed actions. In other words, at the end of the
modelling process we should get a way to easily say which subject has access
to which object and which action it is allowed to do on the object. Note, that
although a similar link also exists in XACML policies, it is not explicit. For
example, a rule which says that every user from an IT department which has a
permanent position may access a document of a project requires some analysis
before saying that John may access description of work of the project.

4.1 Attribute Assignment

First we consider attribute assignments to different entities specified by functions
ATTR in Equation 1. Let A be a set of all attributes considered in the system,
i.e., for an a ∈ A we have one corresponding ATTR. All functions ATTR may
be considered as a three dimensional boolean matrix:

ATTR = (attrie,ia,id); attrie,ia,id ∈ {∅,⊤} (6)

ie = 1...|E|; ia = 1...|A|; id = 1...|Dia |

which assigns ⊤ to an element if an entity ie = index(e) e ∈ E has the value of
an attribute ia = index(a) a ∈ A equals to id = index(d) d ∈ Dia . By index()
we mean a function which returns the index of the input. In the following we
simply write ia = a. It is very important to note, that in our notations indexes
also explicitly point out the kind of dimension they refer to. This means, that we
should not care much about the order of indexes, since we always can identify
them using the name of indexes.

When we define a matrix we first specify its name and element with all
indexes, e.g., ATTR = (attrie,ia,id), then we specify the values of the ele-
ments (attrie,ia,id ∈ {∅,⊤}) and finally, we list the ranges of indexes. Indexes
of matrices, also denoting the dimensions, are specified as i with a subscript
pointing to the nature of the dimension, e.g., ie denotes an entity dimension.
Because of this explicit binding the order of indexes is not important in our
work. If we want to refer to a specific element we assign values to the indexes:
attrie=“John′′,ia=“age′′,id=“22′′ . We use superscripts in brackets for subjects (s),
objects (o), actions (act) to denote the corresponding subsets of entities (e.g.,
S = E(s) ⊆ E), attributes (e.g., A(s) ⊆ A), and domains (D(s) ⊆ D). We also
use a specific notation for indexes used only for a subset of entities (e.g., index
(i) for attributes (a) of subjects (s) is ias).

Note, that for computational reasons values are considered specific for each
attribute (i.e., Dia). In this case, one dimension of ATTR matrix will be differ-
ent for different attributes, but this deviation from the classical representation
of matrices does not affect further discussion (but simply requires careful con-
sideration when operations on matrices are defined). Also note, that although



some attribute domains may be infinite we almost always can make them finite,
e.g., a domain of natural numbers may be truncated at some value (e.g., 100)
and a special value (≥ 100) added to denote the other possible values.

We would like to separate subjects, objects, actions as it is done in XACML
(w.l.o.g., we do not use environmental types):

ATTR(s) = (attr
(s)
is,ias ,ids

); attr
(s)
is,ias ,ids

∈ {∅,⊤}; (7)

is = 1...|E(s)|; ias = 1...|A(s)|; ids = 1...|D(s)
ias

|

ATTR(o) = (attr
(o)
io,iao ,ido

); attr
(o)
io,iao ,ido

∈ {∅,⊤} (8)

io = 1...|E(o)|; iao = 1...|A(o)|; ido = 1...|D(o)
iao

|

ATTR(act) = (attr
(act)
iact,iaact ,idact

); attr
(act)
iact,iaact ,idact

∈ {∅,⊤} (9)

iact = 1...|E(act)|; iaact = 1...|A(act)|; idact = 1...|D(act)
iaact

|

4.2 Rules Definition

Now we need to specify the matrix for RULE functions. For this matrix we need
a set of rules r ∈ R. Every element of set R relates to one RULE function. We
also need to capture the parameters of the RULE function. Here we would like
to recall, that for precise description of the parameters of RULE function we
need to use triples: entity-attribute-value (or separate triples for subject, object,
and action; see Equations 7, 8, and 9). We define RULES matrix for RULE
functions (using the specified triples) as:

RULES = (rulesir,i1as
...ins

as ,i
1
ds

...ins
ds

,i1ao
...ino

ao ,i1do ...i
no
do

(10)

,i1aact
...i

nact
aact ,i

1
dact

...i
nact
dact

,i1e...i
na
e ,i1a...i

na
a ,i1d...i

na
d
);

rules... ∈ {⊥,⊤,�,∅}; ir = 1...|R|;
∀ias = 1...|A(s)|; ∀ids = 1...|D(s)|; ∀iao = 1...|A(o)|; ∀ido = 1...|D(o)|;
∀iaact = 1...|A(act)|; ∀idact = 1...|D(act)|;
∀ie = 1...|A|; ∀ia = 1...|A|; ∀id = 1...|D|;

The amount of dimensions in this most generic case is 1 + 2 ∗ ns + 2 ∗ no +
2 ∗ nact + 3 ∗ na, where ns, no, nact, na are the maximal number of attributes
for subject, object, action and bound attributes used for one rule. Since every
rule must be stated for a subject-object-action triple, ns, no, nact cannot be 0,
while bound attributes are optional and na can be 0. For example, if we want
to express a policy, consisting of one rule stating that “a user may get an object
only if the sum of his money at present and possible credit is higher than the
cost of the object”, we have 2 attributes of a subject (money the user has now,
possible amount of a credit for the user) and 1 attribute of an object (cost of



this object), one for action (type of action, e.g., “get”). Thus, ns = 2, no = 1,
and nact = 1 and the amount of dimensions to consider is 1 + 4 + 2 + 2 = 9.

It is important to note, that in practice, the table itself should not be defined
manually (unless specific modifications are required), but should be either au-
tomatically derived from the defined rules or found using attribute mining with
different heuristic methods (and then transformed to usual XACML policies).

Now, we are able to see which subject-object-action triples satisfy defined
rules. For this purpose we need to provide the required parameters for RULE
functions. In the matrix form, this means that we need to multiply RULES
matrix by a corresponding ATTR(s), ATTR(o), ATTR(act) or/and ATTR
matrix one time for a required attribute. Thus, in the case of the previous exam-
ple, we need to multiply RULES by ATTR(s) twice, by ATTR(o) once, and
once by ATTR(act). First we consider bound attributes (we hide all dimensions
which do not take part in the multiplication for brevity). Let RULES RES′,
RULES RES′′, RULES RES′′′ be three auxiliary matrices.

RULES RES′ = (...((RULES×ATTR)×ATTR)× ...×ATTR) = (11)

RULES× (ATTR)na

rules res′ir,... = (
∑

∀i1e,...,i
na
e

∑
∀i1a,...,i

na
a

∑
∀i1d,...,i

na
d

rulesir,...,i1e...i
na
e ,i1a...i

na
a ,i1d...i

na
d
∗

∗ attri1e...ina
e ,i1a...i

na
a ,i1d...i

na
d

By (ATTR)na we denote the outer matrix product applied several times to
the same matrix (Proposition 2 for the proof). Although i1e and i2e denote the
same dimension (i.e., entity) they refer to different entity-attribute-value triples.
Thus, we cannot apply contraction to them computing (ATTR)na .

When we multiply the resulting matrix on ATTR(s), ATTR(o), ATTR(act)

we do not simply do contraction of all indexes, as it was in case ofATTRmatrix.
In these cases the dimensions denoting the entities to which the attributes belong
to (i.e., free dimensions) are added to the resulting matrix. Since we would like
to consider one subject, one object and one type of actions we should take the
elements with the same indexes (i.e., apply diag function to Is = {its|t = 1...ns}).

RULES RES′′
ir,is,... = diagIs(RULES RES′ × (ATTR(s))ns) = (12)

diagIs(RULES RES′′′
ir,i1s...i

ns
s ,...)

Let Io = {ilo|l = 1...no} and Iact = {ikact|k = 1...nact}. The matrix of result
of rules for subjects performing actions on objects is:

RULES RESir,is,io,iact = diagIact(diagIo(diagIs(RULES× (ATTR)na)

× (ATTR(s))ns)× (ATTR(o))no)× (ATTR(act))nact (13)

Note, that according to Proposition 2 the order of multiplication changes
only the order of dimensions in the resulting matrix, but not the elements of
the matrix. Thus, we may apply multiplications in any order, respecting the
converged dimensions and diag operations.



4.3 Access Control Matrix

We know the decisions for every rule with respect to a subject-object-action
triple. A Policy Decision Point (PDP) should consider all rules and provide the
final decision. Let PDPir be the final rules-combining matrix, used by PDP to
combine all rules and make an authorisation decision.

PDP = (pdpir ); pdpir = ⊤; ir = 1...|R| (14)

In short PDP simply collects all authorisation decisions provided by the rules.
Thus, the access control matrix (ACM), which defines which action a subject
may perform on which objects, can be found as follows:

ACMis,ia,iact = RULES RESir,is,ia,iact ×PDPir (15)

4.4 Example

Assume we consider access control policies for a hospital. We consider four
subjects S = {John, Peter, Paul, Eve} which may access three records O =
{rec1, rec2, rec3} of three different patients {Ada, Felix,Rebecca}. In this small
hospital there are only two departments (surgery and infection departments

(D
(s)
1 = {sur, inf}) in which two doctors {John, Peter} and two nurses {Paul,

Eve} work (D
(s)
2 = {doctor, nurse}). Three rules are defined for the access con-

trol:

1. rule1: Doctors are allowed to write all patient records;
2. rule2: Nurses from surgery are not allowed to write the record of Rebecca;
3. rule3: Anyone from infection department can read all records;

We see, that there are 2 attributes of subjects we should consider: the role
in the hospital and the department the subject belongs to. For object we have
only one parameter: name of the patient. Finally, we would like to consider two
types of access: read and write. Thus, the three matrixes of attributes are:

ATTR(s) =
s1(John)
s2(Peter)
s3(Paul)
s4(Eve)



doctor nurse
⊤ ∅
⊤ ∅
∅ ⊤
∅ ⊤



sur inf
⊤ ∅
∅ ⊤
⊤ ∅
∅ ⊤


 (16)

ATTR(o) =
rec1
rec2
rec3


Ada Felix Rebecca
⊤ ∅ ∅
∅ ⊤ ∅
∅ ∅ ⊤

ATTR(act) = actw
actr

write read
⊤ ∅
∅ ⊤


(17)

Now we need to modelRULES table. We see that we use at most 2 attributes
of a subject in rule 2. As for attributes of object and action we use only one of



them maximum. Thus, we need 1 + 2 ∗ 2 + 1 ∗ 2 + 1 ∗ 2 = 9 dimensions. On the
other hand, since we have only one attribute for object and action we can skip
dimensions for them, using only the dimensions for the values of these attributes.
We also see that rules 1 and 2 are defined for the write action only, when rule
3 is defined for the read action. Thus, all elements related to rule 3 for action
read and 1 and 2 for action write are ∅. Therefore, for brevity, we show only
the meaningful parts of the RULES matrix (see Equation 18).

If one wants to read Equation 18 we propose to start unwrapping it from the
middle. Consider any smallest two-by-two matrix with elements easily singled
out in any place of the RULES matrix. Every row in such matrix means either
the role of the subject (marked as “role” for the corresponding rows) or the
department a subject belongs to (we use a mark “dep” for the corresponding

rows). The columns contain values of role (“doctor” for the first (d
(s)
1 ) row and

“nurse” for the second (d
(s)
2 )) or department (d

(s)
1 = sur or d

(s)
1 = inf). We

should not be scared by different meanings (and even different size) of domains
for different rows, since we will apply operations only with rows of similar kind.
Thus, the element of the matrix says whether a subject with a specific value of
an attribute is allowed to do something.

Next, we see these smallest two-by-two matrices are combined in other two-
by-two matrices (for which the smallest matrices are just elements). We see that
the rows again denote roles and departments, and columns denote possible val-
ues. We should not be surprised because we considered the attributes of subjects
twice. Finally, we see that there are three such higher rank matrices (for Ada,
Felix, and Rebecca), which are obviously related to the only object attribute we
consider and its three possible values.

Naturally, we should not forget about action value dimension (read and write)
and three rules. Thus, Equation 19 shows the final matrix. This matrix explicitly
indicates how a rule is applied to a subject-object-action triple.

Finally, the ACM matrix is (using Equation 15):

ACMis,io,iact = (20) rec1
rec2
rec3


actw

s1 s2 s3 s4
⊤ ⊤ ∅ ∅
⊤ ⊤ ∅ ∅
⊤ ⊤ ⊥ ∅




actr
s1 s2 s3 s4
∅ ⊤ ∅ ⊤
∅ ⊤ ∅ ⊤
∅ ⊤ ∅ ⊤




5 Engineering Access Control Policies for ABAC

Role engineering is a set of activities which aim at finding a suitable set of roles,
user-role and role-permission assignments. Role engineering is considered either
like a top-down approach (when external information about possible roles exists)
or as a bottom-up approach, usually referred to as role mining [4, 2]. Similar to
role engineering for RBAC we specify a policy engineering problem for ABAC.
Here we focus on an attribute mining problem.



RULES = (18)

d
(act)
1 = write; rule1

role
dep

role
dep



d
(o)
1 = Ada

role
doctor

d
(s)
1 d

(s)
2

⊤ ⊤
∅ ⊤




nurse

d
(s)
1 d

(s)
2

∅ ∅
∅ ∅


department

sur

d
(s)
1 d

(s)
2

⊤ ∅
∅ ∅




inf

d
(s)
1 d

(s)
2

⊤ ∅
∅ ∅







d
(o)
2 = Felix

role
doctor

d
(s)
1 d

(s)
2

⊤ ⊤
∅ ⊤
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RULES RESir,is,io,iact = diagiact (diagio (diagis (RULES × (ATTR
(s)

)
2
) (19)

× ATTR
(o)

) × ATTR
(act)

) =

rule1 rec1
rec2
rec3


actw

s1 s2 s3 s4
⊤ ⊤ ∅ ∅
⊤ ⊤ ∅ ∅
⊤ ⊤ ∅ ∅




actr
s1 s2 s3 s4
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅
∅ ∅ ∅ ∅
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Definition 6. (Basic Attribute Mining Problem (AMP)). Given a set of users
S, a set of objects O, a set of possible actions Act, a set of considered attributes
A and a subject-object-action assignments ACM, find:

– ATTR matrix (or ATTR(s), ATTR(o), ATTR(act) matrixes), i.e., the
values of the attributes entities have.

– RULES matrix, i.e., the amount of attributes used at most for one rule
(ns, no, nact, na); attributes required for every rule; the bound entities the
attributes belong to; values of all attributes required for satisfaction of rules;

The basic AMP is a general and complex problem. One may find a large
number of variations of this problem assuming, that some information is avail-
able. In some cases, ATTR matrix may be known (or at least partially known)
a priori [3]. For example, such information as age of a subject, its position in the
organisation, time of access, a level of criticality of an object may be known in
advance. Naturally, in these cases also the domains of the attributes are known.
Sometimes also ns, and no values may be known (or assumed, or bound). Further
elaborations on the problem, similar to [4] are possible.

The problem for engineering access control policies in more general, can be
defined similar to AMP, where instead of (or in addition to) ACM any rele-
vant information is available (e.g., business process, a structure of an enterprise,
possible losses of incorrect access granting/denying, etc).

5.1 Role Engineering in ABAC

Here we show how your model can be adapted for RBAC case. RBAC assigns
a role to a subject and then maps the role with permissions. Here we consider
RBAC without hierarchy, i.e., so called flat model [9]. Although ABAC model
also is able to use the role as an attribute, it also may work with other attributes
(also attributes of an object, an action, etc.) without the need to create (often
meaningless) auxiliary roles.

First, RBAC model specifies only when a subject is allowed (i.e., “Permit”
decision) to access an object, and uses “deny” decision otherwise. It does not
use neither explicit “deny” decision, i.e., ⊥, nor “undefined”, i.e., �. Thus, all
operations for matrices are boolean “and” for multiplication and “or” for addi-
tion.

There is one attribute we should consider in this case: a role of a subject.
Thus, ATTR(s) contains 3 dimensions, one of which, i.e., attribute dimension,
has only one element, e.g., “role”. Therefore, w.l.o.g., we may consider this ma-
trix as a two-dimensional boolean matrix which assigns subjects to their roles.
ATTR(o) and ATTR(act) are simple unit matrices, which simply state, that an
object is this object and an action is this action. We need only one attribute for
specifying this. Thus, these two matrixes are also two dimensional unit matrices
(similar to Section 4.4).

RULES matrix needs 1+2∗1+2∗1+2∗1+3∗0 = 7 dimensions. Note, that
attribute dimensions for subject, object, and action have only one element and we



can remove them for simplicity. Thus, we have 4 domains: role, attribute values
of subject (i.e., role values), attribute values of object (i.e., objects themselves),
attribute values of action (i.e., actions themselves).

Let M be a set of permissions m ∈ M , which may be defined as a pair of an
object and an action allowed on the object [2, 4]. We may define two matrices
RULES PERM and PERM OBJ to break RULES in two:

RULES PERM = (rule permir,ids ,im
); rule permir,ids ,im

∈ {∅,⊤}
PERM OBJ = (perm objim,ido ,idact

); perm objim,ido ,idact
∈ {∅,⊤}

ir = 1...|R|; ids = 1...|D(s)
1 |; im = 1...|M |; (21)

ido = 1...|D(o)
1 |; idact = 1...|D(act)

1 |;
RULES = RULES PERM×PERM OBJ (22)

rulesir,ids ,ido ,idact
=

∑
∀im

rule permir,ids ,im
∗ perm objim,ido ,idact

We define RULES PERM matrix as a three-dimensional binary matrix
assigning ⊤ to the element rule permir=r,ids=d(s),im=m if a rule r assigns a

permission m to every subject with an attribute value (i.e., a role) d(s) ∈ D
(s)
1 ,

and ∅ otherwise. Let also define PERM OBJ which assigns ⊤ to an element
perm objim=m,ido=d(o),idact=d(act) if a permission m is defined for the attribute

value of object (i.e., object itself) d(o) ∈ D
(o)
1 and for the attribute value of

action (i.e., action itself) d(act) ∈ D
(act)
1 .

In this section we do not strictly keep the required order of indexes to sim-
plify the discussion. This relaxation does not violate the computation, but only
changes the order of indexes (which can be always changed by transposition).

First, consider Equation 19:

RULES RESir,is,io,iact = ((RULES×ATTR(s))×ATTR(o))×ATTR(act)

= (RULES PERM×PERM OBJim,io,iact
)×ATTR(s) (23)

We removed diag operation, since there is only one dimension which has to be
considered in all three cases (see Proposition 3). For representation reasons, we
use the same matrix PERM OBJ for the result of operation (PERM OBJ×
ATTR(o)) × ATTR(act) denoted as PERM OBJim,io,iact , since in fact, this

operation does not change the matrix (because ATTR(o) and ATTR(act) are
unit matrices), but simply renames the dimensions ido to io and idact to iact.

Now, we add the result of Equation 23 to Equation 15:

ACM = (RULES PERM×PERM OBJ)×ATTR(s))×PDP (24)

= (RULES PERM×PDP)×ATTR(s))×PERM OBJ

Let ROLE PERM = RULES PERM × PDP. We see that this two di-
mensional matrix assigns value ⊤ if there is a role-permission assignment, and
∅ otherwise.



In role engineering matrixPERM OBJ is considered given. Now, letACM =
ACM′ × PERM OBJ, where ACM′ is a two-dimensional boolean matrix
which means that a subject has a permission. Then, we have, that:

ACM = ACM′ ×PERM OBJ

= (RULES PERM×PDP)×ATTR(s))×PERM OBJ (25)

ACM′ = ROLE PERM×ATTR(s) (26)

Equation 26 is equivalent to RBACmodel in a matrix formUPA = UA×PA
[2] which has a number of solutions presented in the literature [4–6].

6 Discussion

The first and the main point we would like to discuss is the complexity of the pro-
posed approach. Indeed, usage of multidimensional matrices makes the compu-
tation and representation hard. The following observation is useful here. Looking
to the matrixes required for role engineering to take into account one attribute
(role) we see that there is a need to specify all subject-role and role-permission
relations, which also highly increase complexity of the task, but this approach
proved to be useful in practice. In this paper we proposed a technique, which
should take into account any number of attributes. Thus, we should not be sur-
prised of increased complexity. Moreover, the process of creation of such matrices
should be automatic, rather than manual. Furthermore, computations can be sig-
nificantly simplified by marking the dimensions, which contain only ∅ symbols.
Thus, there is no need to compute every operation, but only meaningful ones.

One thing we did not consider in the paper is different environmental con-
ditions. Thus, access may be allowed during the working hours, and forbidden
in other time of the day. XACML uses environmental attributes together with
attributes of subject, object and action for analysis of access requests. Such di-
mension can be easily added to the model using the same strategy we apply for
subjects, objects, and actions.

XACML also assumes, that sometimes several subjects may be considered
for one access request. In this case we cannot simply apply diag function in
Equations 13, but must consider all subjects separately. In this article we do not
consider this sophisticated case, but simply note, that our framework requires
little changes for taking this possibility into account.

All in all, the proposed model is the first attempt, to our knowledge, to
define the policy engineering problem for ABAC using a matrix form. Thus,
we acknowledge that the proposed model may be simplified (e.g., in defining
RULES matrix) especially, when specific cases of policy engineering problem
for ABAC are used (e.g., when we model RBAC case). We also acknowledge
that the model can be tuned to address the features of XACML more accurately
(e.g., addition of policies and policy sets), but the current version had the main
goal to take into account the core concept of ABAC.



7 Related Work

ABAC is a generalisation of traditional access control models [1]. It is capable to
express complex security policies and it is resistant against scalability problems
which occur when a number of subjects accessing a resource is enormous. The
recent Usage Control (UCON) model [10, 11] is also an example of ABAC. The
specific features of the UCON model are mutable attributes and continuous
policy enforcement. The XACML framework [7], an open standard proposed by
OASIS, is an example of application-independent ABAC for access control. In
fact, XACML provides a language to express security policies and an enforcement
architecture. Recently, XACML was extended in order to encode usage control
policies and to support the continuous policy enforcement, i.e., it was extended
to capture features of the UCON model [12].

There were several attempts to formalise ABAC. A logic-based formalisation
of ABAC for access control is given in [13]. Crampton and Morisset proposed a
formal language for ABAC that addresses the same problem space as XACML
[14]. UCON formalisation based on temporal logic can be found in [15]. Martinelli
et al. [16] proposed a formalisation based on a process algebra. Although these
approaches are fruitful for automatic evaluation and enforcement of security
policies, they are not suitable for management of attributes and for engineering
of security policies. Management of mutable attributes in UCON was addressed
in [17, 18]. Authors described how the decision making is affected by uncertain
attribute values and how often mutable attributes should be refreshed.

Benefits, shortcomings, and open problems of ABAC models were surveyed
in [19]. Attribute design and engineering of security policies were named as
problems there. Our paper gives a first step towards defining and solving them.

We consider role mining in RBAC as a starting point. Indeed, the role can be
just considered as an attribute, and roles to permissions assignments as a policy.
Role mining, introduced in 2003 [3], gained a lot of attention in last years and
a large number of different approaches to the problem were proposed [4–6, 20].
The authors of these approaches showed that it is convenient to use matrices for
defining formally and solving automatically the role-mining problems.

8 Conclusions and Future Work

In this work we made the first steps towards defining access control policy en-
gineering problem for ABAC. We proposed a matrix-based formalisation of the
ABAC model. Our formalisation is based on the XACML standard, which should
help adapting our findings in practice. We provided the basic attribute mining
problem definition using our formalisation and showed how this bottom-up ap-
proach can be generalised for the policy engineering problem for ABAC.

In the paper we specified a large number of directions for future work: closer
adaptation of the approach to XACML, considering policies and rules-combining
algorithms; elaboration of policy engineering problem for ABAC; reducing the
complexity of the model, etc. Naturally, solutions for the specified problem is
the main future work we need to consider.
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Appendix

Proposition 4. The operations defined in Definition 4:

1. ∗ and + are commutative,

2. ∗ and + are associative,

3. ∗ is distributive over +.

Proof The commutative property of + and ∗ follows from the symmetry of
tables defined in Definition 4.

Now consider associative property of “+”: a+(b+c)=(a+b)+c

– Let a = ⊤, then the result of the left part is ⊤ is annihilating element of
“+”. The right part is also ⊤, since now we apply annihilating element twice
(a + b and ((a + b) + c)). Note, that this means that if any of the elements
is ⊤ then the property holds.

– Let a = ⊥ and b ̸= ⊤ and c ̸= ⊤. Then ⊥ is an annihilating elements for the
three values which are left and we have the same reasoning that we had for
a = 1.

– Let a = � b ̸= ⊤ b ̸= ⊥ and c ̸= ⊤ and c ̸= ⊥. Now � is an annihilating
element

– Let a = b = c = ∅. Trivial.

The proof for associative property of “*” is the same but we should do it
other way round (start with ∅, which is annihilating element for “*”).

Now we prove that a ∗ (b+ c) = a ∗ b+ a ∗ c.

– Let a = ⊤. From the definition of multiplication operator we see that 1∗d = d
for any d. Thus, a ∗ (b+ c) = b+ c = a ∗ b+ a ∗ c).

– Let a = ⊥ and a ∗ c and a ∗ b can be anything, but ⊤.

• Let b be either ⊤ or ⊥ then a ∗ b = ⊥. ⊥ plus anything, but ⊤ is equals
to ⊥. Then, since b+ c = ⊥ or b+ c = ⊤ then a ∗ (b+ c) = ⊥. The same
holds for c = ⊤ or c = ⊥

• Let b = �. Then a∗b = � and b+c = �. Thus, a∗(b+c) = � = a∗b+a∗c.
The same holds for c = �

• Let b = c = ∅. a ∗ (b+ c) = ∅ = a ∗ b+ a ∗ c.
– Let a = �.

• Let b be either ⊤ or ⊥ or � then a ∗ b = �. Moreover, b + c = is
⊤ or ⊥ or � and a ∗ (b + c) = �. Since a ∗ c is either � or ∅, then
a ∗ b+ a ∗ c = � = a ∗ (b+ c). The same holds if c is either ⊤ or ⊥ or � ;

• Let b = c = ∅. a ∗ (b+ c) = ∅ = a ∗ b+ a ∗ c.
– Let a = ∅ . From the definition of multiplication operator we see that

∅ ∗ d = ∅ for any d. Thus, taking into account that ∅+∅ = ∅ a ∗ (b+ c) =
∅ = a ∗ b+ a ∗ c).

�



Proposition 5. Let us have three multidimensional matrices AIJK , BIML,
CJMN and IJK

∩
IML

∩
JMN = ∅.

1. (C×B)×A = C× (B×A).

2. (C ×B) ×A = ((C ×A) ×B)T (K;L), where DT (K;L) means transposition,
i.e., interchanging of positions, of indexes from set K and L preserving order.

Proof Let the result of (C×B)×A be D.
dNLK =

∑
IJ(

∑
M (cJMN∗bIML)∗aIJK) =

∑
IJM ((cJMN∗bIML)∗aIJK) by

distributive property of ∗ over +. Now, by the associative property of ∗ we have,
that

∑
IJM ((cJMN ∗bIML)∗aIJK) =

∑
JM (cJMN ∗

∑
I(bIML∗aIJK)) = dNLK

by distributive property of ∗ in reverse direction and commutative property of
+. Thus, D = C× (B×A)

We also see, that dNLK =
∑

IJM ((cJMN ∗bIML)∗aIJK) =
∑

IJM ((cJMN ∗
aIJK)∗bIML) =

∑
MN (

∑
J(cJMN ∗aIJK)∗bIML) = d’NKL. Thus, D’

T (K;L)

NKL
=

((C×A)×B)T (K;L) = DNLK �

Proposition 6. If matrix AIJK has only one dimension J = {j1}, then
diagJ(AIJK) = AIJK

Proof Let C = diagJ (AIJK), then cI{j}J = aI{j1=j}K = aI{j}K . Thus, C =
AIJK �


