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Abstract—Usage Control (UCON) enhances traditional access
control introducing mutable attributes and continuous policy
enforcement. UCON addresses security requirements of dynamic
computer environments like Grid and Cloud, but also raises new
challenges. This paper considers two problems of usage control.
The first problem arises when a value of a mutable attribute
required for an access decision is uncertain. The second problem
questions when to retrieve fresh values of mutable attributes and
to trigger the access reevaluation during the continuous control.

We propose quantitative risk-based methods to tackle these
problems. The authorisation system grants the access if the
security policy is satisfied and the risk level is acceptable. The
authorisation system retrieves fresh attribute values following
the strategy which minimises the risk of the usage sessions.
We integrate the authorisation system based on the U-XACML
language with quantitative methods for risk evaluation. We
present the architecture, the implementation, and the evaluation
of the overhead posed by the risk computation.

Keywords—Usage Control, Risk, Decision Making, Attribute
Retrieval.

I. INTRODUCTION

Traditional Access Control models [19], such as Mandatory
Access Control (MAC), Discretionary Access Control (DAC)
or Role-based Access Control (RBAC), check that subjects
hold the proper rights before granting them the access to the
requested objects [1]. With new technologies where access
sessions last for long time (such as Web Services, Cloud, Grid),
it is not enough to check access rights before granting the
access. Therefore further controls performed during the access
sessions are required to verify that the access right is still
valid. The Usage Control (UCON) model [13], [18], [26] was
introduced to satisfy these needs.

The UCON model defines three types of policy statements:
i) authorisations, which are the predicates over subject and
object attributes; ii) conditions, which are predicates over
environmental attributes; iii) obligations, which are actions
which must be performed. Hence, the decision process is
based on the attributes of the requesting subject, the accessed
object, and the execution environment. The UCON assumes
that the attributes are mutable and their values may change
while an access is in progress. To address this issue, the UCON
proposes continuous enforcement of the security policy, in
order to interrupt ongoing accesses when the corresponding
access rights are not valid any longer because of the new
attribute values.

Getting up-to-date attribute values to perform the decision
process is a crucial issue in the UCON. Attributes are collected

from attribute providers and sent to the UCON authorisation
system (UAS) which exploits them for the decision process
[17], [20]. Some attributes (e.g., reputation and location of
a subject) are remote, i.e., they are managed by attribute
providers located outside the administrative domain of the
UAS. Therefore, the attribute values may be received with
delays (e.g., due to delays in delivery or processing). Moreover,
in order to save resources of the attribute provider (e.g., a
sensor) and bandwidth of the network, up-to-date values of the
attribute are sent to the UAS periodically. In this case, some
attribute values may be lost and this may lead to an undetected
violation of the policy. E.g., if the UAS grants accesses only
to users in a given location, a mobile user may leave such
location right after the attribute check and come back right
before the next attribute check [4]. Thus, there are two issues
in the UCON: i) to ensure that the taken access decision is
correct even if the attribute value is received with a delay (i.e,
not up-to-date); ii) to set up the proper queries of the attribute
values to ensure efficient control during the usage session.

This article proposes the integration of quantitative meth-
ods for risk evaluation in UCON policies. In this paper, we
consider risks caused by unintentional uncertainties. First,
we use risk to evaluate possible gains and losses caused by
granting or denying access when the value of an attribute may
be not up-to-date. Second, risk evaluation is also exploited to
determine how often new values of attributes should be col-
lected to re-evaluate the policy during the continuous control.

The main contributions of this paper are:

• an architecture for the UCON system integrated with
risk service;

• an U-XACML language extended with risk functions;

• a Java-based prototype for risk-based access decisions
and computation of an attribute retrieval strategy;

• an analysis of the prototype performance.

This paper is organised as follows. We start with a running
example (Section II). Section III contains the mathematical
basis for decision making under uncertainties and efficient
attribute retrieval strategy. Section IV describes the architecture
and workflow of the prototype supporting U-XACML policies.
Section V is devoted to the prototype. We finish the article with
related work (Sections VI) and conclusions (Sections VII).

II. RUNNING EXAMPLE

We consider a federation of Clouds studied within the EU
funded project Contrail (http://contrail-project.eu) as a case-



study. We assume the following security policies expressed
in natural language which govern the execution of virtual
machines (VMs) in the Cloud federation:

• Access control authorizations: A user with a “good”
or “regular” reputation is allowed to create and
start VMs. If permitted, the user’s attribute num-vm-
running (the number of VMs running by the user)
is increased. When a VM is started, its attribute vm-
srartTime should be set to the current time.

• Usage control authorizations: If num-vm-running
exceeds 5, then the UAS interrupts the VM which
started first, i.e., the VM with the earliest value of
vm-srartTime. If the overall load of the Cloud fed-
eration becomes “high”, then the UAS interrupts all
machines running on a behalf of users of a “silver” or
“bronze” category. A user can avoid the interruption
and updates the category to “gold” by paying a fee.

• Usage control post updates: Either the VM is inter-
rupted by the UAS or it terminates normally, the value
of the num-vm-running attribute must be decreased.

User’s attributes (category, num-vm-running) and re-
source’s attribute (vm-sartTime), needed for the evaluation of
this policy, are under direct control of the UAS. Though, there
are some mutable attributes, i.e., a user reputation and a system
load, which values are uncertain.

For the reputation attribute we assume that every Cloud
provider participating in the Cloud federation collects the
information about execution of user’s VMs on its resources and
sends feedback to the central reputation management system of
the federation once in 6 hours. The Cloud federation combines
all information and produces the reputation attribute.

Assume, the UAS gets an access request from a user with
“regular” reputation to start a VM. The problem is that if
the last update in the reputation management system was 5
hours ago, then the reputation of the user might have changed
since that time. Some Cloud provider may already have the
information about the user which turns the reputation value to
“malicious”, however this information to be shared only in an
hour. Thus, using the stale reputation value the UAS grants
the access to the unauthorised user. To avoid such a harsh
decision, we propose to estimate possible effects of granting
and denying the access depending on the time elapsed since
the last observation of the attribute value.

For the load attribute, the Cloud federation should poll
every Cloud provider to estimate the overall load of the
federation. In fact, frequent checks of the load require some
computational power and bandwidth consumption and cannot
be done very often. The UAS should balance between the
frequency of checks and the potential violation of the security
policy caused by unnoticed changes of the federation load.

III. QUANTITATIVE RISK METHODS

In this section we recall quantitative methods for en-
forcement of UCON policies initially presented in [11], [12].
These methods are combined with usual mechanisms for
policy enforcement. We consider the following unintentional
uncertainties:

Fig. 1. CTMC for Mutable Attribute

• freshness 1 (delays in processing) assumes that there
are inevitable time delays in delivery and processing
of attribute values;

• freshness 2 (non-continuous checks) denotes the case
when some “intermediate” changes of a mutable at-
tribute are missed because the attribute retrieval pro-
cess is carried out through some time interval.

Suppose there are several changes of an attribute value
during a time interval. The values that completely describe
all the changes are real attribute values. Usually, real values
are possessed by the Attribute Manager (AM) which is not
controlled by the UAS. The UAS enforces policies querying
only a part of real values, called observed values.

Indeed, real changes of an attribute can be modelled as a
stochastic process. In [11], the mutable attribute is represented
as a discrete-time Markov chain (DTMC). Each value from the
domain of the attribute corresponds to a state of the DTMC and
the transition matrix defines possible changes of the attribute.
Continuous attributes can be modelled in a similar way with
continuous-time Markov chain (CTMC).

Example 1: Figure 1 shows the CTMC for the user’s rep-
utation attribute. The UAS gets the matrix Prob of possible
one-time transition probabilities from statistics:

Prob =

(
0.0 1.0 0.0
0.3 0.0 0.7
0.0 1.0 0.0

)
(1)

The UAS also gets rate parameters of the CTMC:

N = ( 0.25 0.5 0.2 ) (2)

A. Risk for Access Decision Making

Suppose a subject asks for an access to an object at time
ttry . The UAS queries a fresh value of an attribute and makes
the access decision at the time tperm. The UAS grants the
access correctly at tperm if observed value at ttry and real
value at tperm satisfy the policy. If the policy is violated at
any of these moments the access is denied.

The correct enforcement of access control is not always
possible, since there is an inevitable delay δt = tperm − ttry
between the attribute query and the decision (freshness 1).
The value may change several times during δt that may cause
the incorrect decision. In this case, we propose the risk-based
access decision making under uncertainties:

1) The UAS evaluates the policy using observed attribute
values.

2) If the observed values satisfy the policy, the UAS
estimates the probability Prperm that real attribute
values satisfy the policy too. If the probability is
acceptable, the UAS grants the access.



To evaluate the utility of a single access decision, we
assign utilities to all possible decision outcomes. The outcomes
are: grant access when policy holds which is evaluated with
a positive utility (gain CGH ); grant access when policy is
violated which is assessed with a negative utility (loss CGV );
deny access when policy holds (loss CDH ); deny access
when policy is violated (gain CDV ). We also denote the
utility (loss) of an attribute retrieval as Ca. Similar to other
risk-based methods (e.g., [21]) we assume that utility values
could be found using existing organisational documentation or
interviews with system and information owners.

We assume that the UAS knows the statistical behaviour
of the attribute (e.g., parameters of the CTMC which models
the attribute). If the UAS observes the attribute value at ttry, it
can compute Prperm. The risk of making an erroneous access
decision is Prperm ·CGV +Prperm ·CDH , while the benefit
is Prperm · CGH + Prperm · CDV . The UAS compares the
risk and benefit and makes the most profitable decision. The
UAS grants the access if Prperm is greater than or equal to
the threshold th, where:

th =
CGV − CDV

CDH + CGV − CDV − CGH
(3)

An average utility of a single access decision in case of
the risk-based enforcement is given by:

⟨C⟩th = Ca+ (4){
Prperm · (CGH − CGV ) + CGV if Prperm ≥ th
Prperm · CDH + CDV · (1−Prperm) otherwise

We refer the reader to [9], [10], [11] for the details on the
computation of th and Prperm. In short, to find the th we
should determine the ⟨C⟩th for all Prperm (we should take
an integral of ⟨C⟩th). Then we take the first derivative of it
and find th when the derivative equals to zero.

Example 2: Assume, that for our running example (see
Section II) the UAS defined the following utilities: CGH =
2.5, CGV = −5.0, CDH = −1, CDV = 0, and Ca = −1.5.

The UAS knows that the last update was 5 hours ago and
the observed value of the reputation attribute was “regular”.
The UAS computes that the probability to appear in any state
but “malicious” after 5 hours is Prperm = 0.48 while th is
0.59 (see Equation 3). Thus, the access decision taken by the
UAS is deny (since 0.48 < 0.59), and the utility of making
this decision is −2.9 (see Equation 4). Although, deciding to
deny the access we get negative income, this loss is lower that
the loss we get allowing the access.

B. Risk for Attribute Retrieval

The UCON model requires that the policy is continuously
enforced while the allowed accesses are in process. A policy
reevaluation is required each time an attribute used in the
policy changes its value. A UCON policy is correctly enforced
if the access is immediately revoked when a violation happens.

Frequent attribute querying may be impossible or ineffec-
tive, thus, the queries are done through time intervals ∆t. This
leads to freshness 2 uncertainty and the correct enforcement is
impossible in this case. Thus, we recall the notion of risk-based
attribute retrieval initially presented in [11]. The UAS:

1) Evaluates a policy and makes the decision based on
the observed attribute values. If the access decision
is “deny” then the UAS interrupts the access.

2) Computes when the next attribute query should be
performed.

3) Waits until this time elapses and then pulls fresh
attribute values and goes to the first step.

We would like to maximise the average utility of a usage
session. There are 2 new utilities for usage control: (i) cg is a
positive utility (gain) per unit of time ∆τ when all changes of
real attributes satisfy the policy; (ii) cl is the negative utility
(loss) per unit of time ∆τ when the policy is violated. The
utility Cs of the usage session depends on the amounts of
time during the session when the attribute value satisfies (τg)
and violates (τ b) the policy. Then:

Cs = cg · τg + cl · τ b + Ca · (n+ 1) (5)

where n+ 1 is the number of attribute queries in the session.

Let τAM
j be the time when a real attribute value changes

and τUAS
j is the time when the attribute value is observed by

the UAS. Then, τg and τ b are given by:

τg =
l∑

j=0

∆τj · θ(τAM
j ); (6)

τ b = τUAS
n − τUAS

0 − τg (7)

where l is the length of the session, θ(tAM
j ) = 1 if the policy

holds during ∆τj and θ(tAM
j ) = 0 if the policy is violated.

Let Prs be a probability that a certain session occurs. The
average utitlity of a single usage session is a weighted sum of
costs of all possible sessions:

⟨C⟩∆T =
∑
∀s

Prs · Cs (8)

where s is a sample session (sequences of observed attributes)
and ∆T = {∆t1,∆t2, ...,∆tn} is a set of intervals between
attribute queries. Then, the length of the session l is given by
l =

∑
∆t∈∆T

∆t.

Risk-based attribute retrieval implies that the UAS chooses
such ∆T that maximises profit of a session:

argmax
∆T

⟨C⟩∆T (9)

Set ∆T may depend on a history of attribute changes or
on a current value of the attribute. The type of dependency
follows from the type of a stochastic process that models the
attribute.

Example 3: We continue the running example. The UAS
retrieves the load attribute during the execution of the user’s
VM. Without loss of generality, we assume that the load
attribute has the domain of three values (“low”, “medium”,
and “high”) and it can be modelled with the same CTMC
presented in Figure 1.

For the CTMC, the future behaviour depends only on a
current value of the attribute. Thus, the set ∆T contains two
intervals for the cases when the attribute is observed in states
0 and 1 (if it is observed in state 2 the access is revoked).



The UAS uses the following utilities: cg = 2.5, cl = −5.0,
Ca = −1.5. After considering possible sessions and computing
their probabilities, the UAS finds the best average utility
⟨C⟩∆T = 7.2 per session and the time intervals ∆T =
{4.7, 1.5}. Hence, if the UAS retrieves the load attribute and
its value is “low”, the next attribute query will be sent after
4.7 hours.

Figure 6 shows the dependence of ⟨C⟩∆T on the intervals
between attribute queries ∆T = {∆t0,∆t1}.

IV. PROTOTYPE

A. Security Policies

Our UAS deals with the following security policies: U-
XACML policies, attribute retrieval policies and risk metadata.

1) U-XACML Policy: is written in the U-XACML policy
language [3], [14] which extends the XACML language [24],
the widely used access control language, with constructs for
usage control. This policy encodes access and usage control
general rules, e.g., the policy presented in Section II.

The U-XACML language is also very extensible and can
exploit user-defined functions over security attributes. We used
this feature to integrate the access decision making with the
risk evaluation. We introduce a boolean function isRisky
which outputs “true” if the risk level is negligible and the
access should be granted. As the input this function takes:

• Timestamped observed attributes whose values are un-
certain and contribute in the risk level. A timestamped
attribute is a structured data-type that is actually a
(value;time) tuple. For the sake of simplicity, we
model such structure as a single attribute, e.g.,

<AttrubuteValue DataType="string">
good;2013-02-07T20:22:26.705Z</AttributeValue>

• The id of the accessed resource. This id is needed
to allocate a utility matrix which should be used to
compute the risk threshold,

• An estimated time of the enforcement of the access
decision (i.e., tperm). Obviously, this time should
excel the current time value with the amount needed
for the policy evaluation and the risk computation.

The overall access decision is combined as “deny-
override”. The UAS grants the access if both the logical rules
and the risk function allow the access. For the policy example
given in Section II, the isRisky function is placed in the
U-XACML policy as follows:

<PolicySet PolicyCombiningAlgId="deny-override" ... >
<!-- U-XACML logic rules --!>
<Policy ... > ... </Policy>

<!-- Risk function --!>
<Policy ... ><Rule Effect="Deny" ... >

<Condition>
<Apply FunctionId="isRisky">

<AttributeDesignator Category="subject"
AttributeId="reputation"/>

<AttributeDesignator Category="resource"
AttributeId="resource-id"/>

<Apply FunctionId="addTimeDuration">
<AttributeDesignator Category="local"

AttributeId="decision-delay"/>
<AttributeDesignator Category="environment"

AttributeId="current-time"/>

</Apply></Apply>
</Condition>

</Rule></Policy>
</PolicSet>

We omit the complete description of the example policy
due to space limitations.

2) Attribute Retrieval Policy: specifies when to collect
fresh attribute values and trigger the access re-evaluation
during the ongoing access. We exploit an XML-based language
proposed in [14] to express these policies.

An attribute retrieval policy consists of two main ele-
ments Target and Prerequisites. The Target ele-
ment specifies identifiers of mutable attributes to collect. The
Prerequisites element includes a conjunctive sequence of
condition elements which must be satisfied before executing
the attribute retrieval. The Condition element is taken from
the XACML policy schema and it expresses a boolean function
evaluating the environmental factors, configuration settings
and local variables. The attribute retrieval policy is enforced
when the access is in progress. When the conditions in the
policy hold, the fresh attributes are collected and the access
re-evaluation is trigged.

We propose the model of the attribute retrieval based
on the quantitative methods discussed in Section III-B. We
introduce a getRiskTolerance function embedded into
the Condition element of the attribute retrieval policy. It
outputs an estimated time when a further enforcement of an
U-XACML policy becomes too risky and the UAS has to
interrupt the access or to mitigate the risk, e.g., by pulling
fresh attribute values. As the input the getRiskTolerance
function consumes:

• Timestamped observed attributes whose values are
not fresh and contribute in the risk level. Only last
observations of the mutable attributes should be given,

• The ids of all resources where access is ongoing.
These ids are needed to assign utilities of the usage
control enforcement and to compute the best strategy
for the attribute retrieval.

Below there is an example of a retrieval policy for the
system load. The next retrieval of the load is performed when
the current time is greater than the time computed by the
function getRiskTolerance:

<AttributeRetrieval>
<Target>

<AttributeValue>load</AttributeValue>
</Target>
<Prerequisites>
<Condition>

<Apply FunctionId="dataTime-greater-then">
<AttributeDesignator Category="environment"

AttributeId="current-time"/>
<Apply FunctionId="getRiskTolerance">

<AttributeDesignator Category="subject"
AttributeId="load"/>

<AttributeDesignator Category="resource"
AttributeId="resource-id"/>

</Apply></Apply>
</Condition>
</Prerequisites>

</AttributeRetrieval>



Fig. 2. UAS Architecture Integrated with Risk Service

3) Risk Metadata: contains a utility matrix for each re-
source and a specification of a stochastic process which models
a behaviour of a mutable attribute. The utility matrix is stored
in an XML file.

For the description of the stochastic properties of Markov
chains, we exploit the language used in the PRISM model
checker (http://www.prismmodelchecker.org). Each separate
Markov chain is described within expressions module NAME
and endmodule where NAME specifies the name of an
attribute. The number of states in the chain is presented using
variables. The stochastic properties of continues-time Markov
chains are expressed as commands. The PRISM description of
the reputation attribute:

ctmc
module REPUTATION
x : [0..2];
[] x=0 -> 0.25:(x’=1);
[] x=1 -> 0.15:(x’=0) + 0.35:(x’=2);
[] x=2 -> 0.20:(x’=1);
endmodule

Variable x : [0..2] denotes that the chain
contains 3 states numbered from 0 to 2. Command
[] x=0 -> 0.25:(x’=1) denotes that the transition
form state 0 is possible only into the state 1 with infinitesimal
transition rate of 0.25. Infinitesimal transition rates [22] for
the transition from the state i into the state j are given by:

qij = νi ·Prij

where νi is a rate parameter for the state i and Prij is a one-
time transition probability from the state i into the state j.

B. Architecture

Figure 2 shows the UAS architecture enhanced with the
component for the risk evaluation. As in most authorisation
systems [23], [24], the main components are:

Policy Enforcement Point (PEP) is integrated within
the system hosting resources and executes security relevant
actions.

Policy Information Point (PIP) provides an interface for
retrieving attributes. According to the requested attributes, the
PIP contacts the right Attribute Manager (AM) exploiting
the right protocol.

Context Handler (CH) is the front-end of the UAS, that
manages the protocol for communicating with PEPs and PIPs.
It converts and forwards messages sent between components
in the proper format.

Policy Decision Point (U-PDP) evaluates U-XACML poli-
cies for the requests received from the CH.

Risk Service (RS) is the novelty of the architecture, and
it computes functions isRisky and getRiskTolerance.
It is called during the decision making and when the time of
the next attribute retrieval is unclear. From the architectural
point of view, the nature of risk computed by isRisky and
getRiskTolerance is not specified. Indeed, the RS could
be used to compute other types of risks, e.g., intentional, but
this is out of the scope of this paper.

Access Table (AT) keeps meta-data of accesses in progress,
i.e., usage sessions. It contains a table of the current sessions
with their statuses, a table of ids of the attributes needed to
service each session, and a table of values of these attributes
retrieved the last time.

Session Manager (SM) manages usage sessions. The SM
creates a new entry in the AT for each new usage session. The
SM also enforces the retrieval policies for mutable attributes
and when the values of some attributes change, it triggers the
access right re-evaluation of each usage session in the AT that
exploits those attributes, until the access decision is deny or the
sessions end normally. If two usage sessions refer to the same
mutable attributes, the SM queries those attributes just once
instead of sending two disjoint queries. Then, the SM triggers
the access re-evaluation for both sessions with the new values.

Policy Administration Point (PAP) manages security
policies.

C. Workflow

Due to space limitation, we present a message workflow
only in the case when a session is revoked due to a policy
violation. The natural end of access is omitted here. Figure 3
shows the message workflow between main components of the
UAS architecture.

At the initialisation phase, the U-PDP loads U-XACML
policies from the PAP, the SM gets retrieval policies, and the
RS obtains U-XACML policies and risk metadata. For each
mutable attribute, the RS computes the time of the next check
(retrieval) assuming that the attribute has a given value. In fact,
the RS computes an interval for every state in the Markov chain
which models the attribute (see Equations 8 and 9).

The first message, tryaccess, is sent by the PEP to the
CH when the request for the execution of a security relevant
action is intercepted by the PEP. The CH retrieves the values
of the attributes that could be relevant to the decision process
by sending the attr query message to the PIP that, in turn,
contacts the relevant AMs exploiting their specific protocols,
and sends back these values to the CH through the message
attr value. The CH then sends the access request that includes
the attributes previously collected, to the U-PDP. The U-PDP
evaluates the policy and calls the RS to compute the isRisky
function. The RS computes the risk threshold and returns the
decision. Then, the U-PDP combines a risk-based and a logic-
based decisions and replies with the response to the CH.
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Fig. 3. Sequence Diagram of Usage Control Policy Enforcement in Case of Access Revocation

Let us suppose that the U-PDP allows the execution of the
requested action, then the CH replies with the permitaccess
message to the PEP. Before sending it, the CH sends the create
entry to the SM for creating a new entry that represents the
new usage session in the AT. Also, the create entry message
contains attribute updates which should be performed by the
SM before the usage session starts. When the access has began,
the PEP sends the startaccess message to the CH, that sends
the message update entry to the SM. The SM contacts the
AT to change the status field of the database entry related to
this usage session from pending to active, and triggers the
evaluation of the ongoing access for the first time. Hence, the
SM starts the continuous policy re-evaluation loop.

The SM enforces attribute retrieval policies and decides
when attributes should be refreshed. The SM calls the RS
to compute the getRiskTolerance function. For each
attribute, the RS just selects an interval which corresponds
to the current attribute value from a set of the intervals pre-
computed at the initialisation phase. The RS adds to this
interval to the current time values and replies to the SM.
Then, the SM awaits until this time passes and sends the attr
query message to the PIP to get the fresh values of attributes
that are relevant for the access. The PIP gets these values
from the AMs, and sends them back to the SM. If one of
the collected values is different from the one cached in the
AT, the SM contacts the CH sending the policy reevaluation
message; the CH translates it in the right format and sends the
request message to the U-PDP that performs the re-evaluation
of the access right. The U-PDP evaluates the policy and calls
the RS to compute the isRisky function the same way as
during the pre-authorisation phase. If the decision included in
the response message is permit, then the CH forwards this
answer to the SM. The SM continues the policy enforcement
by enforcing attribute retrieval policies, pulling fresh attributes,
and triggering the access re-evaluation. Instead, if the response
included in the response message sent by the U-PDP is deny,
the SM sends the revokeaccess message including the data to

identify the right PEP to the CH that forwards it to this PEP
that will force the access revocation.

V. IMPLEMENTATION OF THE PROTOTYPE

A. UAS as a Service

The UAS is a web service based implementation of the
architecture given in Fig. 2. We exploit two web-services: the
PIP service which implements the functionality of the PIP,
and the Authorisation Service (AS) which implements the rest.
We used the Apache Axis2 framework (http://axis.apache.org/
axis2) to implement and deploy these services.

The operations that can be performed by the AS correspond
to the tryaccess, startaccess, and endaccess. The Message
Exchange Pattern for the tryaccess is In-Out, and In-Only for
other operations. The CH processes incoming and outgoing
messages, i.e., access requests and responses, attribute queries.
These messages are compliant with the “SAML 2.0 profile
of XACML”. For the CH implementation we used Open-
SAML2.0 extension library (http://www.bccs.uib.no/∼hakont/
SAMLXACMLExtension).

The U-PDP implementation extended the Sun’s XACML
engine (http://sunxacml.sourceforge.net) with possibility of
enforcement of U-XACML policies. Also, the Sun’s XACML
engine permits to plug-in new functions and make them
available for any policy to use. Hence, the RS implemented the
Function interface and provided a new function isRisky.
We have developed our own implementation of quantitative
methods for the risk evaluation. In the future, we plan to out-
source computations related to Markov chain primitives to the
PRISM model checker (http://www.prismmodelchecker.org).

New instances of CH, U-PDP, and RS are created per every
access re-evaluation, while there is only one instance of the SM
for all concurrent sessions. The SM is started by the CH when
the U-PDP of the first usage session responses with the permit
after evaluation of the tryaccess. The SM dies when the last



usage session ends or it should be revoked. The SM keeps
information regarding sessions in the AT implemented as the
MySQL Database. The long-standing AS with the attributes
shared among the concurrent sessions was possible due to the
support of the state-full web services in Axis2.

At this stage, we do not provide an engine for the
evaluation of any attribute retrieval policy. We leave it for
the future work. Instead, in the current implementation the
SM retrieves attributes based on the results returned by
the getRiskTolerance function which is a part of the
RS. We exploited BOBYQA optimiser from apach.common.
math module to pre-compute time intervals used by the
getRiskTolerance function (Equation 9).

The PIP is a stateless web service. It receives SAMLAt-
tributeQueries and responses with SAMLAttributeStatements.

B. Performance Evaluation

We tested the performance of our UAS on a workstation
running Fedora 17 (Linux Kernel 3.7.3-101) with Intel Core 2
Duo P8600 2.40GHz and 4Gb RAM. Firstly, we evaluated
the performance of the isRisky function. The overhead
tall posed by the access decision making is the sum of the
following time intervals: tattr, tpdp, and tisRisky . The time
tattr is needed to build a SAML Attribute Query, to retrieve
fresh attributes from PIP, to construct the final XACML request
combining the access request and the attributes received from
the PIP. The time tpdp is needed to evaluate an XACML request
against the U-XACML and get an XACML response. The time
tisRisky is spent for the computation of the isRisky function.
We measured tall varying the number of attributes needed by
the U-XACML policy from 10 to 50. We considered only one
attribute with an uncertain value. The domain of values varied
from 2 to 10 (i.e., a number of states of CTMC modelling this
attribute). Table I shows the obtained results.

TABLE I. OVERHEAD OF DECISION MAKING

Numb. of Attr. 10 20 30 40 50
tattr , ms 84 85 87 88 90
tpdp, ms 9 13 26 29 30

tisRisky , ms 5/31 5/31 5/31 5/31 5/31
tall, ms 98/124 103/129 118/144 122/148 125/151

We received that the attribute retrieval contributes most in
the overhead tall. There is a slight growth of tattr with the
number of attributes. It takes 5 ms to compute the isRisky
function for the attribute with Markov chain of 3 states and
31 ms for the chain of 10 states. Empirical evaluation shows
that the time tisRisky grows exponentially as number of state
(the attribute domain) increases. tisRisky is of the same range
as tpdp for policies of 30 certain attributes and 1 mutable
uncertain attribute with the domain of 10 values. There is a
linear growth of tpdp with the number of attributes. The time
for the computation of isRisky function depending on the
number of states in the CTMC is displayed in Figure 4.

We evaluated the performance of the getTolerance
function. Figure 5 shows how the time of pre-computation of
the getTolerance function depends on the number of states
in the Markov chain. The computation of the getTolerance
function takes seconds (s), e.g., 4.36 seconds are required
for the chain of 3 states and 86.4 seconds for the chain of
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10 states. The time of the computation grows exponentially
with number of states. The exponential growth of time of
computation puts limitations on the size of the domain of
attribute that can be exploited within our framework. However,
the getTolerance function should be computed only once
at the initialisation phase. Then the pre-computed intervals are
reused during usage control. Moreover, to provide a reasonable
computational time we can exploit methods of approximation
(we leave it as a future work).

The example of the average utility ⟨C⟩ function is pre-
sented in Figure 6. The function is built for the attribute of
3 states (see Section III). Vertical axis corresponds to ⟨C⟩,
horizontal axes correspond to intervals δt0 and δt1 between
checks when the attribute is observed in the state 0 in the state
1 correspondingly. The maximum average utility ⟨C⟩ = 7.2 is
received when δt0 = 4.7 and δt1 = 1.5.

VI. RELATED WORK

Probabilistic models are widely used for the decision
making in security-related areas. Audun Jøsang proposed a
beta distribution based model for subjective reasoning [8]. The
model is used in reputation and trust systems. With respect to
our model, the reputation and the trust can be considered as
attributes of the UCON policies.

Risk-based specification of UCON policies was inspired by
several articles which used risk for access control decisions
[5], [15], [25]. For example, Diep et al., [5] enforced access
control with risk assessment by computation of risks for
access decisions taking into account various negative events
and their effects on confidentiality, integrity and availability of
objects. Zhang et al., [25] also considered application of risk
assessment to access control but they focus on propagation
of risks and benefits through a trust chain rather than to the
computation of risk. In our article we focus on risks for UCON,
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and consider the risk of making a decision with an uncertain
value of an attribute.

The approach of Gheorghe et al., [7] combines security
policies and attribute retrieval in a single XACML policy. In
contrast, we separate U-XACML policy and attribute retrieval
policy because the attribute retrieval is context-specific while
the U-XACML policy expresses general access and usage
rules. Several authors also paid attention to how integrate risk
in access policies [6], [2]. For example, Dimmock et al. [6]
extended OASIS XML policies to capture risk of an executed
operation (e.g., write in a file in a Grid File Storage). In
our article, we focus on usage control policies, moreover we
consider a different type of risk.

The problem of attribute freshness was considered by Niu
et al., [16]. The authors defined weak-stale and strong-stale
safety properties and used model checking to show that the
properties are satisfied. In contrast, we used a probabilistic
model to make a decision even in presence of uncertainty and
to ensure the maximal possible profit in average.

We presented mathematical model in details in [9], [10],
[11]. In this paper, we extended our previous approaches
with architecture for the enforcement of the UCON integrated
with risk-based methods. We implemented the prototype and
analysed the performance overhead of the proposed solutions.

VII. CONCLUSION

We applied risk-benefit analysis to find the most effective
attribute retrieval strategy. We found that very few modifica-
tions are required in order to implement the proposed ideas in
practice. For this purpose we provided required modifications
of U-XACML language and enforcement architecture. We have
found that the new functionality does not introduce much
overhead if we consider an attribute with a small number
of states. The fact, that computation of an attribute retrieval
strategy requires considerable amount of time, should not
affect the overall performance much since such computation
is performed only once during a policy deployment. As a
future work, we plan to consider risk-based decision making
for policies of several attributes. Moreover, the evaluation of
intentional risks (which require an attacker model) needs a
more complex computational model. Finally, we are going to
pay attention to the collection of statistical information about

the attribute behaviour and to the evaluation of the utilities for
the decision making.
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