
1

Cost-Effective Enforcement of Access and Usage
Control Policies under Uncertainties

Leanid Krautsevich∗, Aliaksandr Lazouski†, Fabio Martinelli†, Artsiom Yautsiukhin†
∗Department of Computer Science, University of Pisa, Largo B. Pontecorvo 3, Pisa, Italy

E-mail: krautsev@di.unipi.it
†Istituto di Informatica e Telematica, Consiglio Nazionaledelle Ricerche, Via G. Moruzzi 1, Pisa, Italy

E-mail: aliaksandr.lazouski@iit.cnr.it, fabio.martinelli@iit.cnr.it, artsiom.yautsiukhin@iit.cnr.it

Abstract—In Usage CONtrol (UCON) access decisions rely
on mutable attributes. A reference monitor should re-evaluate
security policies each time attributes change their values. Iden-
tifying all attribute changes in a timely manner is a challenging
issue, especially if the attribute provider and the reference
monitor reside in different security domains. Some attribute
changes might be missed, corrupted, and delayed. As a result,
the reference monitor may erroneously grant access to malicious
users and forbid it for eligible ones.

This paper proposes a set of policy enforcement models
which help to mitigate the uncertainties associated with mutable
attributes. In our model the reference monitor, as usual, evaluates
logical predicates over attributes and, additionally, makes some
estimates on how much observed attribute values differ fromthe
real state of the world. The final access decision takes into account
both factors. We assign costs for granting and revoking access to
legitimate and malicious users and compare the proposed policy
enforcement models in terms of cost-efficiency.

Index Terms—Usage Control, Mutable Attribute, Freshness,
Policy Enforcement, Costs, Markov Chains

I. I NTRODUCTION

Access controlaims to ensure that only trusted principals are
granted access to a resource [1].Usage controlis responsible
for guaranteeing that principals also remain trusted when
the access is in progress, i.e. when these principals use the
resource. The reference monitor evaluates an access decision
on the basis of the principal’s attributes. The attributes are
issued by the attribute provider and characterize subjectsand
objects participating in access and usage control [25], [28].

The UCON model proposed by Sandhu et al. [31] includes
access and usage control scenarios and operates with mutable
attributes to specify and continuously enforce security policies.
Access decisions in UCON are based on authorizations (predi-
cates over subject and object attributes), conditions (predicates
over environmental attributes), and obligations (actionsthat
must be performed by a requesting subject). The reference
monitor in UCON re-evaluates the access decision every time
when an attribute changes its value. However, identifying all
attribute changes in a timely manner is a challenging issue.

Some security attributes (e.g., the requester’s reputation
and location) areremote, i.e. the attributes reside outside the
control of the reference monitor, and can be only observed.
These attributes should be constantlypushedby the attribute

Manuscript received October 01, 2011; revised March 29, 2012.

provider (e.g., the requester) orpulled by the reference mon-
itor. The system usually allows only the current attribute
value to be pulled, and, as a result, some attribute changes
between adjacent pull queries might be missed. Worse still,
these unnoticed changes may violate security policies. For
example, if a security policy grants access rights to users
residing in a certain location, there is no evidence that these
users did not leave the location in-between checks [8].

In addition, system failures, delays occurring during at-
tribute delivery due to a network latency, as well as mali-
cious activities (e.g., a man-in-the-middle, eavesdropping and
impersonating of data by the attribute provider) contribute
to the problem of correct policy enforcement. The impact
of uncertainties associated with observed attributes should be
mitigated by the reference monitor [18], [24].

This paper proposes the cost-effective enforcement models
of UCONAC [31] security policies. Our basic idea is to take
into account possible uncertainties when an access decision is
made. In other words, an uncertainty-aware reference monitor
should adjust its decision according to information about the
relevant uncertainty. We propose to consider cost-effectiveness
as the main criteria for making such a decision. We assign
monetary outcomes for granting and revoking access to legit-
imate and malicious users and compare the proposed policy
enforcement models in terms of cost-efficiency.

The main contributions of this paper are:
• to identify uncertainties associated with attributes usedto

produce access decisions;
• to introduce models of a correct policy enforcement and

enforcement under uncertainties;
• to introduce a cost model for policy enforcement and

compare the cost-efficiency of proposed enforcement
models for access and usage control.

The paper is structured as follows. Section II provides basic
notes on UCON. Section III describes the running example
that we use throughout the paper. Section IV introduces the
model of a mutable attribute, and enlists all types of uncer-
tainties associated with mutable attributes. Section V presents
models of correct policy enforcement. Sections VI and VII
outline a cost model and estimate an average profit for policy
enforcement under uncertainties for access and usage control.
Section VIII presents the architecture of the reference monitor
for enforcement of policies under uncertainties. Section IX
summarizes related works. Section X concludes the paper.

2

In Appendix we describe solutions for several computational
problems of Markov chains.

II. U SAGE CONTROL

Usage control (UCON) [31] requires continuous control
over long-standing accesses to computational resources (e.g.,
an execution of a job in Grid, a run of a virtual machine in
Cloud). Continuity of control is a specific feature of UCON
intended to operate in a mutable context. The context is formed
by attributes of a requesting subject, an accessed object and
an execution environment.

An attribute is denoted ash.r whereh identifies a subject
requesting an object, the object itself, or environment, and
r refers to the attribute name. An assignment of an attribute
maps its name to a value in its domainVr, i.e.,h.r = v, where
v ∈ Vr. Without loss of generality, we assume that there is
only one attribute in the system denoted asr and that this
attribute has a finite domain of values.

Attribute mutability is an important feature of UCON, which
means that an attribute can change its value as a result of an
access request or another uncontrollable factor. We define the
behaviour of an attributeas a sequence of values assigned to
an attribute with time passage:{v0, v1, ..., vi, ...}, where v0
refers to the attribute value when a subject sends an access
request, and indexi ∈ N refers to a time point at which
the attribute changes its value. We define a strictly increasing
function cl which assigns a real time value to any index,
cl : N → R.

Access decisions in UCON are based on authorizations
(predicates over subject and object attributes), conditions
(predicates over environmental attributes), and obligations
(actions that must be performed by a requesting subject).
We consider security policies consisting of authorizationand
condition predicates only, that is, theUCONAC model [31].
We define a predicatep to be a boolean-valued computable
function mapping an attribute value to either true or false,
p : Vr → {true, false}.

Another important feature of UCON is that it specifies when
access decisions are evaluated and enforced. There are two
phases: pre-authorization, oraccess control, and continuous
policy enforcement, orusage control.

Access control starts at timettry when a user sends a request
to the reference monitor. The reference monitor acquires an
attribute valuev0, evaluates authorization predicates only once
and grants the access at timetperm if p(v0) = true, and
ttry = cl(0), ttry ≤ tperm.

Usage control begins at timetperm when the attribute takes
valuevi, andcl(i) ≤ tperm < cl(i+1). The reference monitor
re-evaluates authorization predicates each time the attribute
changes its value. The access should be continued by time
tnow = cl(j) only if p(vi) ∧ p(vi+1) ∧ ... ∧ p(vj) = true.
Although usage control ends as a result of the access revo-
cation or at the subject’s discretion, w.l.o.g. we consideronly
the first scenario. When a new valuevk violates the policy,
i.e., p(vk) = false, the reference monitor revokes the access.
Usage control is over at timetrev = cl(k).

III. RUNNING EXAMPLE

We consider a reputation of a user in Grid as an example
of a mutable attribute. The attribute changes its value based
on “bad”, “good” and “neutral” feedback received from other
parties. The attribute domain isVr = {“general”, “normal”,
“suspicious”, “malicious”}. There is a reputation management
system (RMS) which measures the reputation value for all
users in Grid. Every manager of a resource has an access
and usage control system (AUCS) which allows usage of
the controlled Grid resources only if the reputation of a
user is other than “malicious”. Each request for resources is
intercepted by the corresponding AUCS. The AUCS (reference
monitor) pulls the reputation value from the RMS (attribute
provider). If the value is “malicious” the AUCS denies access,
otherwise the AUCS grants access to the user. During the
usage session the AUCS periodically pulls the reputation from
the RMS.

The problem is that, at the time of the access request, a
user may be involved in several other jobs for which the RMS
has no feedback. In other words, the reputation that a user
has at the time of the access request could differ from the
real one. The AUCS, which uses only the current version of
the reputation, is opened to the following attack. A new user
with a good or neutral reputation gets involved in many jobs
in a short period of time. The user abuses his rights but, since
feedback about his behaviour is only provided at the end of
a job, his reputation remains good for some time. During this
time the malicious user is able to leverage resources of Grid.
The AUCS should take into account the uncertainty which is
in the system in order to make a right access decision.

After granting access to some resources the AUCS should
monitor the current reputation of the user. Now, during the
usage of the resource, the AUCS has another problem which
is also rooted in uncertainty. The AUCS has to define how
often the reputation of the user has to be requested from the
RMS. Checks after every change in the reputation value imply
the use of resources and are expensive to perform. Therefore,
the AUCS has to define the amount of changes after which
the check should be performed. In other words, there is a
need for a balance between security and benefits of usage of
the resource.

IV. ATTRIBUTE MODEL

Our main concern in this paper is the enforcement of a
UCON policy based on aremote attribute with observable
mutability. Remotemeans that an attribute is managed by
the attribute provider which is not under the control of the
reference monitor.Observable mutabilitymeans that the refer-
ence monitor observes only how the attribute behaves in time.
Thus, for the same attribute we distinguishreal attribute values
which truly describe the attribute behaviour in the system and
observed attribute valueswhich are obtained by the reference
monitor and used to evaluate authorization predicates.

A. Real Attribute Values

We assume that a change of the attribute’s value can be
modelled as arandom event. Let ω : r = v denote this event

3

which happens when the attributer takes the valuev. We
defineΩr to represent a set of all possible eventsω. Since the
attribute can takeany value from its domain, there is a one-
to-one correspondence between elements ofΩr andVr. Each
change of an attribute is paired with the value the attribute
takes as the result of this change.

In probability theory, it is often easier to deal with a value
associated with the random variable rather than with the event
itself. Therefore, we introduce a random variableA which
gives a numerical description of the eventω. A is a real
valued function onΩr, that is A : Ωr → R. The event
A = a represents the fact that the attributer takes the value
v, s.t.,A(ω) = aω. Let probability of the event to happen be
Pr[A = a]. The functionPr has all properties of a probability
function, e.g., for any eventE, 0 ≤ Pr[E] ≤ 1. We write
E1∩E2 for occurrence of bothE1 andE2 and writeE1∪E2

for the occurrence of eitherE1 or E2 (or both). Let the
eventP(A) denote the fact that an attribute takesany value
which satisfies a policy, i.e.,P(A) =

⋃

ω∈ΩG
(A = aω), and

ΩG = {r = v|p(v) = true, v ∈ Vr}. The eventP(A) specifies
the fact that the attribute takesany value which violates the
policy. Further, we useA to refer to the attribute value.

Let the behaviour of areal attribute be specified by a
scheme〈A, CLAP 〉, where:

• A = {Ai : i ∈ N} is a discrete-time stochastic process
modelling a behaviour of a mutable attribute. We callAi

the state of the process ati, andAi = ai denotes that
after i changes the attribute value equalsai;

• CLAP = {clAP (j)|j ∈ N} is an ordered set of times-
tamps assigned to each attribute change by the attribute
provider when it happens. We assume thatclAP (0) = ttry
and for all j ≥ 1, clAP (j) = clAP (j − 1) + Tj, where
Tj > 0 and it specifies a time interval between adjacent
attribute changes.

Example 1:A reputation attribute may be modelled as a
random variableA with values A(r = “general”) = 1,
A(r = “normal”) = 2, A(r = “suspicious”) = 3, and
A(r = “malicious”) = 4. The mutability of the reputation
attribute could be modelled as a discrete-time Markov chain
[16], [15] uniquely defined by the one-step transition matrix.
Thus, the entry in thei-th row andj-th column is the transition
probabilityPr(Ai = a |Ai−1 = b) giving the probability that
the attribute changes value toa if its current value isb.

Figure 1 shows the Markov model for our running example
with the transition probabilities collected in a transition matrix.
These probabilities could be used in order to find whether
reputation has a certain value (e.g.,Pr(A = 2)). The transition
probabilities are taken from the history of changes stored by
the RMS and shared with the AUCS:

Prob =

0.6 0.4 0.0 0.0
0.5 0.3 0.2 0.0
0.0 0.2 0.3 0.5
0.0 0.0 0.1 0.9

(1)

B. Observed Attribute Values

Only the attribute provider knows how the attribute behaves
in time, but the reference monitor can also observe this

Fig. 1: A Reputation Attribute Model

process. There are two basic models how attribute changes
are delivered to the reference monitor:push and pull. The
push model defines a scenario where every new attribute value
is timestamped and pushed by the attribute provider to the
reference monitor. The pull model defines a scenario where
the reference monitor queries the attribute provider to give the
current attribute value. The attribute provider replies with the
value, its timestamp and some additional information.

By analogy with real attribute values, letobserved attributes
be specified by a scheme〈Ã, CLRM 〉, where:

• Ã = {Ãi : i ∈ N} is a discrete-time stochastic
process modelling an observation of attribute changes
over time.Ãi = ai denotes that an attribute value afteri
observations equalsai;

• CLRM = {clRM (j)|j ∈ N} is an ordered set of
timestamps assigned by thereference monitor. A times-
tampj denotes when thej-th observation of an attribute
value was processed and the appropriate access decision
was enforced by the reference monitor. We assume that
clRM (0) = tperm.

Real and observed attribute values form a bipartite directed
graphW = (A, Ã,E), where edgesE connect real and ob-
served attributes via push/pull queries. If there exists anedge
e which connectsAc andÃc′ , we say thatAc corresponds to
Ãc′ and denote this asAc h Ãc′ . To evaluate authorization
predicates, the reference monitor can exploit observed attribute
values and timestamps of the corresponding real counterparts.

Example 2:Figure 2 describes the exchange of attributes
between the RMS and the AUCS from our running example.
The left part of the figure is devoted to access control. The
attribute valueA0 sent by the RMS atttry = clAP (0) is
observed by the AUCS attperm = clRM (0) as Ã0, i.e.,
A0 h Ã0.

For the right part of the figure, i.e., usage control, RMS
sends the fourth change of the attributeA4 at clAP (4), which
is observed by AUCS as̃A2 at timeclRM (2), i.e.,A4 h Ã2.

C. Intentional and Unintentional Uncertainties

Observed attributes differ from their real counterparts due
to attacks, noise, delays during delivery, missed attributes,
etc. We call uncertainty a property on real and observed
attributes which specifies how these values vary. The closer
observed values are to the real ones the more reliable the
enforcement of the policy. In this paper, we consider two types
of uncertainties:unintentional(freshnessandcorrectness), and
intentional(trustworthiness).

1) Freshness of Attributes:is an unintentional uncertainty
occurring due to the mutability of attributes. Generally, this

4

Fig. 2: Real and Observed Attribute Values

property means that the latest observed value of an attribute
is out-of-date, while the current real value of the attribute is
unknown. We introduce three types of freshness uncertainties.

Freshness I (non-continuous checks)corresponds to sce-
narios where only part of attribute changes is detected because
the checks are carried out through some time interval:

∃c ≥ 0, m > 0, c,m ∈ N : Ac+m h Ãc

In Figure 2 the attribute provider sendsA2 andA4 values,
while A3 is not sent. Thus, the reference monitor making a
decision after gettingA2 value (Ã1) uses the wrong input for
the decision.

Example 3:After granting access to the user the AUCS
has to monitor the reputation value during the usage. The
RMS sends the current reputation value only once per hour in
order to save resources. If the reputation of the user became
“malicious” between the checks he will still use the system
because the AUCS is not aware of this change.

Freshness II (delays in processing)implies that there are
inevitable time delays in delivery of an attribute value (due
to a network latency) and decision making (evaluation of
authorization predicates). That is:

∃c′ ≥ 0, c′′ ≥ 0, c′, c′′ ∈ N : Ac′′ h Ãc′

clRM (c′) > clAP (c
′′)

When the attribute provider gets a request for the attributeit
sends valueA0 to the reference monitor (see Figure 2 again).
Since the delivery takes some time (tperm− ttry) the attribute
changes toA1 and the access control system uses the wrong
value for the analysis.

Example 4:A user asks AUCS for an access. AUCS asks
RMS for the current reputation value of the user and gets
“suspicious”. The problem is that because of the delay in the
delivery when AUCS makes the decision the value becomes
obsolete, since a new feedback comes to RMS and the
reputation value changes to “malicious”.

Freshness III (pending updates)corresponds to scenarios
where the current attribute value is uncertain since some
update queries are pending at the time of the access re-
evaluation. In this case, the attribute provider sends two values:
(i) the last certain attribute value, (ii) additional information
on how the real value differs from the last certain value.

The presence of the uncertainty freshness III implies:

∃c′ ≥ 0, c′′ ≥ 0,m > 0, c′, c′′,m ∈ N : Ac′′ h Ãc′

clAP (c
′′ +m) ≤ clRM (c′)

In Figure 2, the reference monitor which is going to make
a decision after getting valueA4 may already know, that this
value is not certain. The attribute provider sendingA4 also
sends additional information that there should be one more
change (m = 1) in the attribute betweenclAP (5)− clAP (4).

Example 5:The RMS updates the reputation only when
an execution is ended and the RMS receives feedback from
a resource provider. Applications run concurrently and each
single execution may be long-lived and last for days. The
access decision to use the resource (made by the AUCS) is
based on the reputation value dated by the last registered
feedback and on the number of applications currently running
on the user’s behalf. Indeed, the ongoing applications can be
malicious but this fact will only be discovered afterwards.The
only way to make the certain decision is to block the access
until all running applications terminate. Instead, the AUCS has
to be set up to make an access decision with some uncertainty
regarding the current reputation of the user. This uncertainty
is contained in the amount of jobs still active (m value).

2) Correctness:is affected by additive noises that usually
exist in case of non-accurate measurements. For example, the
location attribute can be sensed only with the given precision.
Thus, observed attribute values differ from the real ones:

∃c′ ≥ 0, c′′ ≥ 0 , c′, c′′ ∈ N : Ac′′ h Ãc′

Ãc′ = Ac′′ +N

and N is a random variable that models additive noises
presented in observed attribute values. The reference monitor
may know that the attribute value measured by the attribute
provider is not precise. Thus, on getting a value (e.g.,A2) the
reference monitor makes the decision taking the mistakeN
into account. This case cannot be shown in Figure 2 directly.

Example 6: It is known that the RMS reputation values
may differ from the real ones by a maximum of1 for various
reasons (e.g., some feedback could be lost). The AUCS should
be aware of the possibility of such mistakes.

3) Trustworthiness:is an intentional uncertainty. It appears
as a result of the attribute provider altering attributes oras a
result of attacks during attribute delivery, storage, etc.Current
approaches guarantee only the integrity of an attribute by
validating a signature of the entity signing the attribute,but this
does not guarantee trustworthiness. This uncertainty assumes
that either an attribute value, or a time of issuance, or both
can be modified. It implies that the reference monitor does not
trust the attribute provider and assigns a confidence value for
each observed attribute. This value represents the reliability of
the attribute provider in the assertions it makes.

5

Approaches which consider trust as a probability that an
interaction will succeed or fail can be used for analysis the
probability for static attributes, i.e., the fact which can be
either true or false (e.g., [29], [10]). For the computation
of trustworthiness value a feedback collection mechanism
is required, which is powerful enough to detect whether
the received value was modified. Naturally, if such check
could be performed timely for all received values there is no
intentional uncertainty in the system. However, such check
may require significant amount of resources and time (e.g.,
checking the logs of service provider) and the information
about trustworthiness of a user may be collected only from
time to time just to compute the reputation value. The problem
of trustworthiness formutable attributes, i.e., the attributes
which have a wider domain of possible values, is an open
issue which is to be investigated. But our method only uses
the probability of policy violation and does not depend on its
way of computation.

The presence of the trustworthiness uncertainty states:

∃c′ ≥ 0, c′′ ≥ 0 , c′, c′′ ∈ N : Ac′′ h Ãc′

Pr[Ãc′ = Ac′′] = η, 0 ≤ η < 1

i.e., the probability that the observed attribute is equal to the
real counterpart is below 1 and we assume that the reference
monitor has the power to computeη. Similarly to Correctness
this uncertainty also cannot be shown in Figure 2.

Example 7:The RMS sends to the AUCS the reputation
attribute is equal to “normal”. The AUCS does not trust the
RMS entirely and based on its internal estimates the AUCS
considers that the observed attribute has the “normal” value
but with a probability of 0.8.

In the following sections we continue to use our running
example taking into consideration only the uncertainties of
Freshness III type for access control (Section VI) and Fresh-
ness I for usage control (Section VII).

V. CORRECTPOLICY ENFORCEMENT

The correct policy enforcement implies that having observed
attributes the reference monitor enforces the policy exactly in
the same fashion as with real attributes, and both observed and
real attributes satisfy authorization predicates.

A. Correct Enforcement of Access Control

Access control starts at timettry = clAP (0) when the user
sends the access request and the initial attribute value. The
reference monitor evaluates a policy only once and grants an
access to a resource at timetperm = clRM (0) if the policy
holds. We say that thepolicy holds for access controlif:

1) P(Ã0) happens, i.e., the initial observed attribute value
Ã0 satisfies the policy;

2) P(Am) happens, i.e., the real attribute valueAm at the
time the decision is made also satisfies the policy and
clAP (m) ≤ tperm < clAP (m+ 1) wherem ≥ 0.

Note, that some attribute changes may happen betweenttry
and tperm, but attribute values must satisfy security policy
exactly when the request is issued and later when the access
decision is evaluated.

Let H be an event specifying that the policy holds and
H specifies the opposite. Clearly, the policy satisfaction and
violation can be defined as:

H = P(Ã0) ∩ P(Am) (2)

H = P(Ã0) ∪ (P(Ã0) ∩ P(Am))

Definition 1: (Correct Enforcement of Access Control)
The reference monitor grants the access attperm if the policy
holds and denies it otherwise.

Let G be an event specifying that the reference monitor
grants the access andG specifies the opposite (i.e., denies the
access). Thus, the correct enforcement of access control is

G = H, G = H (3)

B. Correct Enforcement of Usage Control

We say that apolicy holds for usage controlon a time
interval [tb : te] if:

1) P(Ãk)∩P(Ãk+1)∩ ...∩P(Ãl) happens andclRM (k) ≤
tb < clRM (k + 1), clRM (l) ≤ te < clRM (l + 1);

2) P(Ai)∩P(Ai+1)∩ ...∩P(Aj) happens andclAP (i) ≤
tb < clAP (i+ 1), clAP (j) ≤ te < clAP (j + 1),

i.e., all real and observed attribute changes occurring within
this interval do satisfy authorization predicates.

If there is at least one attribute value (either real or observed)
which does not satisfy authorization predicates, we call this a
policy violation of usage control.

Definition 2: (Correct Enforcement of Usage Control) The
reference monitor correctly continues the usage session attnow
if a policy holds on interval[tperm : tnow]. The reference
monitor revokes the access immediately when the policy
violation occurs.

VI. ENFORCEMENT OFACCESSCONTROL UNDER

UNCERTAINTIES

Correct enforcement is not feasible in the presence of
uncertainties since the reference monitor is unable to show
that real attribute values satisfy a policy. The basic idea of the
policy enforcement ofaccess controlunder uncertainties is:

1) The reference monitor evaluates the policy with respect
to observed attribute values.

2) If the observed values satisfy the policy, the reference
monitor runs an experiment which estimates to what
extent the observed attributes vary from the real ones.
If this difference is negligible, the experiment succeeds
and the reference monitor allows the access.

A. Models for Access Control Enforcement

We suppose that the reference monitor is powerful to get
some probabilistic knowledge about a real attribute value
based on the observed attributẽA0 = a:

PrRM = Pr[P(Am)|Ã0 = a]

specifies a conditional probability that a value of real attribute
Am satisfies authorization predicates at timetperm if the

6

observed attribute value at timetperm is equal toa. The
reference monitor computesPrRM using the following data:

1) observed values of the attribute;
2) parameters of a stochastic process that models a real

behaviour of an attribute;
3) a list of uncertainties presented in the system.

Possible combinations of the last two factors produce a
variety of techniques onhow to computePrRM . As an
example, we refer the reader to [16], [15] where the behaviour
of an attribute is modelled as a Markov chain and freshness
uncertainties exist in the system. Another example given in
[5] studies a static attribute (i.e. the attribute does not change
its value over time) in the presence of the trustworthiness
uncertainty. In our running example for access control we
computePrRM considering only Freshness III uncertainty and
model the attribute behaviour as a discrete-time Markov chain.

Let Y be a random variable such that

Y =

{

1 if uncertainties are acceptable
0 otherwise

Let δ(x) be a function, that is

δ(x) =

{

1 if x ≥ th
0 otherwise

whereth is a real-value threshold.
We propose two models of enforcement for access control

under uncertainties: athresholdenforcement and aflip coin
enforcement. The reference monitor chooses one of these
models.

Definition 3: (Threshold Enforcement of Access Control)
The reference monitor computesPrRM and grants access at
tperm if:

1) P(Ã0) happens;
2) Y = 1, wherePr[Y = 1] = δ(PrRM),

otherwise, the access is denied.
That is, if the initial observed attribute value satisfies au-

thorization predicates, the reference monitor grants the access
if the probability that the real attribute valueAm also satisfies
authorization predicates is above a specified thresholdth.

Definition 4: (Flip Coin Enforcement of Access Control)
The reference monitor behaves exactly as in the threshold
enforcement but usesPr[Y = 1] = PrRM instead.

Hence, if the initial observed attribute value satisfies autho-
rization predicates, the reference monitor runs the randomex-
periment that succeeds (returns grant) with probabilityPrRM

and fails (returns deny) with probability1−PrRM .
In notation of events, we get for the enforcement of access

control under uncertainties (either threshold or flip coin):

G = P(Ã0) ∩ [Y = 1] (4)

G = P(Ã0) ∪ (P(Ã0) ∩ [Y = 0])

Example 8:Consider the access control part of our running
example (see Figure 2). The AUCS gets valueÃ0 = 3
(“suspicious”) at timetperm and it knows that there was one
attribute change betweenttry and tperm. Now the AUCS
should evaluate whether the current reputation value is still
a good one, e.g.,PrRM = Pr[P(Am)|Ã0 = 3].

The transition matrix (see Example 1) shows that if the
initial attribute value isA0 = 3, then there are three possibil-
ities for the value to evolve in one step: (i)(A1 = 4) with
Pr34 = 0.5; (ii) (A1 = 3) with Pr33 = 0.3; (iii) (A1 = 2)
with Pr32 = 0.2. Since, the good states are 1, 2, and 3 then
PrRM = 0.3 + 0.2 = 0.5.

B. Cost Matrix

We would now like to estimate the cost-effectiveness of
the proposed enforcement methods. Our goal is to find the
expected profit〈C〉 for enforcement of access control.

We assign monetary outcomes for granting and revoking
access. Correct enforcement is impossible in the presence
of uncertainties and mistakes in the decisions made by the
reference monitor are unavoidable. We have four scenarios
(events) of how the reference monitor acts under uncertainties:

• G ∩H true positive: grant access when policy holds;
• G∩H false negative: grant access when policy is violated;
• G ∩H false positive: deny access when policy holds;
• G∩H true negative: deny access when policy is violated.

True positiveand true negativeare well-chosen scenarios,
while false negativeand false positiveare erroneous.

Each scenario has a monetary outcome, i.e.cost, the refer-
ence monitor loses/gains if a scenario happens. LetCtp denote
the cost of the true positive scenario, when the reference
monitor grants the access and the policy really holds.Cfn,
Cfp, Ctn are the costs of the remaining scenarios, respectively.
The semantics of costs for access control corresponds to “pay-
per-access” attributes, and specifies exact benefits and losses
for a given access request. Naturally, well-chosen scenarios
have positive values, i.e.Ctp ≥ 0, Ctn ≥ 0, while the
erroneous ones have negative costs, i.e.,Cfp < 0, Cfn < 0.
Finally, let Ca be the cost to push/pull (observe) an attribute
value.

Finding correct costs is not an easy task and usually requires
a considerable amount of statistical data. Thus, we make the
usual assumption for risk-based methods that the reference
monitor has enough historical data to compute costs.

C. Cost of Access Control Enforcement

The expected profit received by the reference monitor
processing a single access request is the sum of the costs of
all 4 scenarios weighted on corresponding probabilities.

〈C〉 = Ctp ·Pr[G ∩H] + Cfn ·Pr[G ∩H] (5)

+ Cfp ·Pr[G ∩H] + Ctn ·Pr[G ∩H] + Ca

1) Correct Enforcement:Since H and H are disjoint
events, i.e.Pr[H ∩ H] = 0 andPr[H] + Pr[H] = 1, from
Equations 2, 3 and 5 we receive

〈C〉cor = Ctp ·Pr[H] + Ctn ·Pr[H] + Ca (6)

Pr[H] = Pr[P(Ã0) ∩ P(Am)] = (7)

Pr[P(Ã0)] ·Pr[P(Am)|P(Ã0)]

7

In what follows, we usePr[P(Ã0)] interchangeably with
α, andPr[P(Am)|P(Ã0)] with β. Note, that for the correct
access controlβ = 1. Finally,

〈C〉cor = Ctp · α · β + Ctn · (1− α · β) + Ca (8)

2) Threshold Enforcement:We point out that the probabil-
ity of a policy satisfaction for real attributes is conditionally
independent of the estimates made by the reference monitor
given that observed attribute values satisfy the policy. Using
this observation and Equations 2 and 4 we receive

Pr[G ∩H] = α · β ·Pr[Y = 1|P(Ã0)] (9)

Pr[G ∩H] = α · (1 − β) ·Pr[Y = 1|P(Ã0)]

Pr[G ∩H] = α · β · (1−Pr[Y = 1|P(Ã0)])

Pr[G ∩H] = α · (1 − β) · (1−Pr[Y = 1|P(Ã0)])

We assume that all access requests come with the same
initial attribute valuea which satisfies authorization predicates.
Such a situation is modelled with an assumptionα = 1. With
this assumption, we get thatPr[Y = 1|P(Ã0)] = Pr[Y =
1|Ã0 = a] andβ = Pr[P(Am)|Ã0 = a] = PrRM .

We denoteCg = β · (Ctp−Cfn)+Cfn andCd = β ·Cfp+
Ctn · (1 − β). From Definition 3 and Equations 9 and 5 we
get the average profit for a threshold enforcement:

〈C〉th = Ca +

{

Cg if β ≥ th
Cd otherwise

(10)

Cost-effective enforcement implies that we should pick a
threshold which gives the maximal profit for all possible
average costs. Since the cost is a function ofβ which takes any
value from 0 to 1, we should maximize the sum of costs for
all β. The argument, for which this sum attains its maximum,
constitutes theoptimal threshold value:

argmax
th

∫ 1

0

〈C〉th dβ

To obtain it, we solve the equation in which the derivative of
the integral takes zero:

(

∫ th

0

Cd dβ +

∫ 1

th

Cg dβ

)′

th

= 0

Hence, the optimal threshold value is given by

th =
Cfn − Ctn

Cfp + Cfn − Ctn − Ctp

(11)

3) Flip Coin Enforcement:All equations of a threshold en-
forcement are also valid for a flip coin enforcement. Taking the
assumptions made in the threshold enforcement and Definition
4, we obtain the average profit for a flip-coin enforcement per
access request:

〈C〉flip = Ctp · β2 + (Cfp + Cfn) · β · (1− β)+ (12)

Ctn · (1 − β)2 + Ca

Proposition 1: Threshold strategy is more cost-effective
than flip-coin, except the pointsβ = 0, β = 1, andβ = th,
where the strategies are equal:〈C〉th ≥ 〈C〉flip.

0 5 10 15 20 25 30
−6

−4

−2

0

2

4

6

8

m

<
C

>

Correct
Flip−coin
Threshold

Fig. 3: Cost-Effective Enforcement of Access Control

Proof: Consider the first case when1 > PrRM = β ≥
th. We do not consider the case whenPrRM = β = 1 since
it is easy to see that the two strategies are equal at this point.
Now let us derive the conditions where the flip-coin strategy
is better than the threshold one:

Ctp · β2 + (Cfp + Cfn) · β · (1− β)+

Ctn · (1− β)2 + Ca > β · (Ctp − Cfn) + Cfn + Ca

After algebraic transformations that gives:

β <
Cfn − Ctn

Cfp + Cfn − Ctn − Ctp

= th

We see that the condition for the flip-coin strategy is better
than that of the threshold violates the initial preposition
β > th. Thus, if 1 > β > th the threshold strategy is more
profitable.

In the same way we can compare the strategies with the
conditionsth > β > 0. We excludeβ = 0 point where the
strategies are equal. In this case we get thatβ > th, that
proving once again that the threshold strategy is better, except
the points where the strategies are equal.

Example 9:We show how different strategies cope with
Freshness III uncertainty in our running example.

The AUCS gets the attribute valuẽA0 = 2 at tperm and can
compute that there were exactlym attribute changes between
ttry andtperm. The AUCS must then compute the probability
β that the policy holds attperm and choose the model of
the policy enforcement. The probability matrix of the Markov
chain was given in Example 1 and the probabilityβ can be
found as (see also [16], [15], [13] and Appendix A1 and A2):

β = Pr[P(Am)|Ã0 = 2] =
∑

j∈{1,2,3}

(S ·Prob
m)[j]

the vectorS = [0; 1; 0; 0] specifies the initial attribute value.
The AUCS makes monetary estimations and determines the

following costs:Ctp = 10, Cfn = −15, Cfp = −1, Ctn = 0
and to query an attribute we payCa = −2.

8

We performed a set of simulations in order to illustrate our
theory. We computed the average profit per access request for
thecorrect enforcement〈C〉cor, for the threshold enforcement
〈C〉th, and for theflip-coinenforcement〈C〉flip. We varied the
uncertainties between real and observed attributes by increas-
ing the numberm of attribute changes that occur betweenttry
andtperm. We start fromm = 0 and go up to30 unobserved
attribute changes.

Figure 3 shows the results obtained. The average profit per
access request for thecorrect enforcementis always higher.
The decline of the correct curve occurs because while the delay
increases the probability that the received value would fail the
policy also increases (because ofPr[P(Am)|P(Ã0)] = β).
Since the attribute cannot get a bad value inm = 0 or m = 1
steps (starting from state2) all three curves have the same
maximal value in these cases. The flip coin enforcement shows
the worse results with respect to the threshold enforcement
which tallies with our theoretical findings.

VII. E NFORCEMENT OFUSAGE CONTROL UNDER

UNCERTAINTIES

Our model of usage control enforcement under uncertainties
imposes that the reference monitor iteratively performs three
main activities.

1) Evaluates a policy and makes the decision based on
the observed attribute values. If the access decision
is “deny”, the reference monitor terminates the usage
session and halts.

2) Computes when the next attribute query should be
performed.

3) Waits until the next check and when time elapses pulls
a fresh attribute value.

The reference monitor executes these actions on eachcheck. A
check is a time interval[tb : te] between two adjacent observa-
tions of the attributeÃk−1 andÃk, whereclRM (k− 1) = tb,
clRM (k) = te. The time of the first check istperm when
there is the observed attributẽA0. Theusage sessioncontains
a sequence ofn checks andn ∈ N.

A. Models for Usage Control Enforcement

1) Decision Making:The basic idea of a decision making
for usage control under uncertainties is the same as for
access control (see Section VI). The only difference is that
the reference monitor should take into account all possible
changes occurred on a check. We assume that the reference
monitor has the power to compute the probability that all real
attributes satisfy a policy on thek-th check

Pr
k
RM = Pr[P(Ai) ∩ ... ∩ P(Aj)|Ãk−1 = ak−1 ∩ Ãk = ak]

whereclAP (i) ≤ clRM (k − 1) ≤ clAP (i+ 1), clAP (j − 1) ≤
clRM (k) ≤ clAP (j).

We propose two models of a decision making for usage
control under uncertainties: a threshold and a flip coin.

Definition 5: (Usage Control Based on Threshold) The
reference monitor continues the access aftern policy checks
at tnow = clRM (Ãn) if:

1) P(Ã0) ∩ P(Ã1) ∩ ... ∩ P(Ãn) occurs, i.e., all attribute
changes observed withinn checks do satisfy the policy,

2) ∀k = 1, .., n : Yk = 1, wherePr[Yk = 1] = δ(Pr
k
RM),

i.e., for each check the probability that a policy holds
on this check should be above a specified threshold,

otherwise access is revoked.
Definition 6: (Usage Control Based on Coin Flip) The

reference monitor behaves as in the threshold enforcement but
usesPr[Yk = 1] = Pr

k
RM .

2) Attribute Retrieval: Fresh attribute values could be
pushed or pulled. Without loss of generality we assume
that the reference monitor is responsible for pulling attribute
values. Since frequent attribute queries are not always possible,
expensive and lead to a performance slowdown, we assume
that several attribute changes may occur on a single check.
Such scenario brings the inevitable Freshness I uncertainty
since the reference monitor will observe only a part of attribute
changes. The reference monitor should be aware that unnoticed
attribute changes may violate a policy and result in a loss.

Our main concern is to find such intervals between queries
that give the maximal profit for the enforcement of a usage
session. We propose two models of attributes retrieval. The
first one isperiodic pull of attributeswhen the interval between
attribute quires is constant. The second model isaperiodic
pull of attributes. We assume that the reference monitor may
increase the profit if it selects the interval between quires
according to the history of observed attributes during the
current session. Thus, there is a specific value of interval for
each specific check.

B. Costs of Usage Control Enforcement

Possible combinations of decision making and attribute
retrieval launch a variety of enforcement models. Due to space
limitations, we discuss only the models relevant for usage
control and do not consider models discussed previously for
access control. We examine the cost-effectiveness of models
when attributes are pulled periodically and aperiodicallywhile
the decision making is based on a threshold. In both models,
we set the threshold value to 0 and assume that no uncertainties
exist in the system except inevitable Freshness I. Such assump-
tions allows the reference monitor to skip the execution of the
random experiment and just continue access if the observed
attribute value satisfies a policy and revoke otherwise.

1) Cost of Usage Session in case of Periodic Checks:
We start with a cost gained from the enforcement of a
particular usage session. The semantics of costs for usage
control corresponds to “pay-per-time-of-usage” attributes, and
specifies the benefits and losses the system gains in a unit of
time. The system receives profit if a policy holds on a time
interval and this revenue is proportional to the duration of
the interval. In opposite, the system suffers losses duringthe
policy violation time. There are three costs for usage control:
(i) ctp - the gain per atomic interval of time when all changes
of real attributes satisfy the policy; (ii)cfn - the cost per
atomic interval of time when the policy fails; and (iii)Ca -
the cost paid for the attribute retrieval and the re-evaluation of
access decision.

9

The usage session is associated with a sample sequences
of a stochastic process which models the behaviour of a real
attribute. That is:

s : (A0 = a0) ∩ (A1 = a1) ∩ ... ∩ (Al = al)

Let n state a total number of checks in the session before
revocation. This means that after the last check the reference
monitor revokes the session, i.e.,P(Ãn) happens andAl h

Ãn. Let q be a number of attribute changes on a check. Since
checks are periodic,q is a constant for any check andl = n ·q.
A cost Cs of a particular usage session depends on the time
τg when an attribute satisfies a policy, on the timeτb when
the attribute violates the policy, and a number of checksn:

Cs = ctp · τg + cfn · τb + Ca · (n+ 1) (13)

Let θ(x) be a function such that

θ(x) =

{

1 if P(Ax) happens
0 otherwise, i.e., a policy violation happens

Then,τg andτb are given by

τg =

l−1
∑

j=0

(clAP (j + 1)− clAP (j)) · θ(j)

τb = clRM (n)− clRM (0)− τg

In fact, s is a random event and letPr[s] denote a
probability that s occurs. Thus, theaveragecost of usage
control enforcement will be a sum over every possible cost
weighted by the probability ofs:

〈C〉q =
∑

s∈S

Pr[s] · Cs (14)

where S contains all possible sample sequences associated
with usage sessions enforced under uncertainties.

Cost-effective enforcement implies that the reference moni-
tor should choose suchq that maximizes profit:argmaxq〈C〉q.

2) Cost of Usage Session in case of Aperiodic Checks:
In case of aperiodic checks, a number of attribute changes
occurred on each check is different. There is a setQ =
{q1, q2, ..., qn} and eachqi tells how many attribute changes
happened on thei-th check. All formulas given for periodic
checks are valid for aperiodic. Only a number of attribute
changes is different, and for aperiodic checks we have that
l =

∑

q∈Q

q. We also use〈C〉Q to denote the average cost of

the usage control enforcement under aperiodic checks.
Cost-effective enforcement implies that the reference mon-

itor should choose suchQ that gives the maximal profit, i.e.,
argmaxQ〈C〉Q. The simplex method can be used to findQ
for which 〈C〉Q attains the maximum. The application of such
methods is left behind the scope of this paper but initial ideas
can be found in [2], [27].

Proposition 2: Aperiodic checks are at least as good as
periodic checks in terms of cost-effectiveness:〈C〉Q ≥ 〈C〉q.

Proof: The proof follows from the fact, that the method
selects the setQ with the best average cost within all possible
Q’s. Note, periodic checks may be considered as a particular
case of aperiodic checks when all intervals are equal.

Example 10:We continue our running example comparing
periodic and aperiodic checks.

The AUCS selects the following costsctp = 3, cfn = −5,
and Ca = −2 on the basis of previous behaviour of the
reputation attribute. The AUCS exploits discrete-time Markov
chain (Equation 1) to model the behaviour of the reputation
and find the best strategy for querying this attribute.

For the periodic checks, the probabilityPr[s] is:

Pr[s] = Pr
∗
j0
· (

n−1
∏

y=1

Pr
ky

jyjy+1
(q)) ·Pr

kn

yn−1yn
(q)

WherePr
ky

jyjy+1
(q) is a probability of the reputation change

from the valuejy to the valuejy+1 taking the set of valuesky
on the interval between changes,Pr

∗
j0

is a probability that the
attribute will have the certain good value at the first check.

Pr
ky

jyjy+1
(q) =

q−1
∏

z=1

Prfzfz+1

Prfzfz+1
is an element of the matrixProb of one-time tran-

sition probabilities (Equation 1). Clearlyf1 = jy, fq = jy+1,
and ky determines concrete values of{f2, . . . , fq−1}. There
aremq−2 possiblePr

ky

jyjy+1
(q) if jy andjy+1 are fixed.

For aperiodic checks the computations are similar to ones
above. However, since the reputation is modelled as a Markov
chain, the probabilistic behaviour of the reputation signifi-
cantly depends on the current state of the random process.
Thus, q now depends on the current value of the reputation
and the AUCS selects a specific intervalqi on the basis
of the last observed valuẽAi−1 = ai−1. Markov process
quickly converges to a steady state. Therefore, the AUCS
considersqi < qmax, whereqmax is the number of changes
when the distribution of probabilities differs from the steady
state distribution by some small valueǫ. For a more detailed
description see Appendix B.

We performed several simulations to check the values
provided by our theoretical equation. To evaluate the aperiodic
checks we carried out an exhaustive search of the optimal
lengths of intervals between checks and found the values
q1 = 7, q2 = 4, and q3 = 1 if the current observed
value is “general”, “normal”, and “suspicious” respectively.
The computations ofqi are only required ones the policy is
deployed in the system.

The results of the simulations are shown in Figure 4. Since
there is no single interval for aperiodic checks, we display
aperiodic checks as a straight line.

First, both periodic and aperiodic checks are close enough
to the theoretical curves. Second, the simulations illustrate
our proposition regarding the fact that aperiodic checks are
at least as cost-effective as periodic ones. In our example,
aperiodic checks are about15% more cost-effective then
periodic checks. Third, the analysis of the periodic checks
shows that the average cost of the session has the maximum
value when the interval between checks is4. The smaller
interval is ineffective because we pay more for requesting
an attribute. The bigger intervals are ineffective, because the
system misses more policy violations.

10

1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

Interval between checks

<
C

>

Aperiodic checks (theory)
Aperiodic checks (simulation)
Periodic checks (theory)
Periodic checks (simulation)

Fig. 4: Cost-Effective Enforcement of Usage Control

Fig. 5: Architecture of Reference Monitor

VIII. A RCHITECTURE OFPOLICY ENFORCEMENT UNDER

UNCERTAINTIES

The architecture of the reference monitor should be tuned
to capture the presence of uncertainties. Figure 5 shows the
overall architecture consisting of the following components:

• Policy Enforcement Point (PEP) is a component which
intercepts invocations of security-relevant access requests,
suspends them before starting, queries the PDP for access
decisions, enforces obtained decisions by resuming sus-
pended requests, and interrupts ongoing accesses when
the policy violation occurs;

• Policy Decision Point (PDP) is a component which eval-
uates security policies and produces the access decision;

• Attribute Provider (AP) is a component which manages
attributes and knows their real values;

• Policy Administrative Point (PAP) is a component which
provides and governs security policies.

Note that in the settings of a distributed environment each
component can run on a different host.

The main novelty of the policy enforcement under uncer-
tainties is that the PDP also consists of several components:
the logic PDP, the risk PDP, and thescheduler.

The logic PDP behaves as a usual PDP [19] and evaluates
logical predicates over observed attributes. The risk PDP

computes all uncertainties associated with observed attributes
and runs the random experiment to get a value of a random
variableY . If Y = 1, the risk PDP outputs “grant” and “deny”
otherwise. Decisions of both PDPs are combined as “deny-
override”, i.e. the PDP sends “grant” to the PEP only if both
the logical and risk PDPs grant the access.

Policies used by the logical PDP can be written in any
appropriate language to formalize the UCON model, e.g. a
POLPA language [4]. The risk PDP additionally uses risk
policies, i.e. a cost matrix, specifications of stochastic pro-
cesses which model the behaviour of attributes, and values of
thresholds. In fact, security and risk policies can be provided
by different parties (security administrators).

The scheduler is managed by the risk PDP and is responsible
to collect and process attribute observations. When a new
attribute value is pushed to the reference monitor, the scheduler
transforms it into the proper format and triggers both PDPs
to re-evaluate the access decision. During usage control, the
scheduler usually pulls new attributes from the AP and then
again processes them and forwards these observations to the
PDPs. The risk PDP is responsible for informing the scheduler
about how and when attribute queries should be initiated:
either periodically or aperiodically.

IX. RELATED WORK

This paper is an extended and revised version of our pre-
vious works. An initial description of uncertainties impacting
access and usage control is given in [16], [15]. In addition,the
papers describe algorithms for the computation of probabilities
on the basis of discrete [16] and [15] continuous-time Markov
chains. This material is briefly presented in the Appendix.
Our work [17] focuses on the cost-effective enforcement of
access control under uncertainties. The current paper extends
the part on access control and adds the part on the cost-
effective enforcement of usage control. Moreover, we provide
an architecture of reference monitor for the enforcement of
access and usage control policies.

Data freshness is an important property of many com-
puter systems (e.g., data caching, replication systems, data
warehousing, etc). The property was widely studied by the
computer science community during past years [6], [26].
Recently, the importance of authorisation information to be
up to date during the access decisions was stated by Krishnan
et al. [18] and Niu et al. [24]. Authors formally define two
security properties:weak stale safetyand strong stale safety.
Authors design enforcement and decision points for group-
based Secure Information Sharing (g-SIS) system as State
Machines and use model checking to show that the points
satisfy defined properties. Instead, we empower the decision
making procedure with a probabilistic model, which takes into
account the possibility of unnoticed change of attribute. Also,
we show, that even if unnoticed changes occur, a system owner
can still obtain profit from the exploitation of the system.
Finally, we extend our approach for a more complicated case
of decision making in usage control.

Cost-effectiveness of access and usage control is frequently
analysed on the bases of a risk notion. Some authors use risk

11

as a static parameter which simply helps to assign correct
privileges taking into account possible losses [20], [12],[29].
For example, Skalka et al. [29] discuss an approach for risk
evaluation of authorisations. The formal approach is used to
assess and combine the risks of assertions that are used in the
authorisation decision. Other authors use risk as a dynamically
changing value which depends on the current value of possible
losses and benefits as well as on the probability of abusing
granting privileges by a concrete subject [9], [21], [7]. Deip
et al. [9] propose to compute the risk of granting the access
to the resource and to grant the access if the risk is less
than a threshold. Ni et al. [23] consider a risk-based access
control system which assumes that the access to a resource
can be granted to a risky subject if mitigation actions (post-
obligations) will be applied in the future.

Several authors paid more attention to incorporating risk
semantics in access policies rather than to the computationof
risk. For example, the policy language, proposed by Aziz et al.
[3], contains three types of risks: operational, combinatorial,
and conflict of interest. Dimmock et al. [11] show how OASIS
access control system and its role-based policy language can
be extended with trust and risk analysis.

X. CONCLUSIONS ANDFUTURE WORK

In this work we investigated how access and usage control
could work in presence of uncertainties. We have identified
several types of uncertainties which can affect the access deci-
sion made by the reference monitor and defined threshold and
flip-coin policy enforcement models which are able to make
a decision under uncertainties if the required probabilities are
available. We have shown that the threshold strategy is more
profitable and showed how to select the threshold to maximise
the profit.

Another important contribution of this work is that we have
discussed periodic and aperiodic models for usage control.The
simulation results conform the theory: aperiodic checks are
more cost-effective than the periodic ones. On the other hand,
periodic checks is a simpler model and the complexity of the
aperiodic model may outweigh the benefits.

In our future work we would like to consider computation
of probabilities of policy failure under intentional uncertainty
when mutable attributes are considered. Current state of the
art can be applied only to static attributes and we would liketo
extend the applicability of our theory for more general cases.

REFERENCES

[1] M. Abadi. Logic in access control. InLICS ’03: Proceedings of the
18th Annual IEEE Symposium on Logic in Computer Science, page 228,
Washington, DC, USA, 2003. IEEE Computer Society.

[2] M. Avriel. Nonlinear Programming: Analysis and Methods. Dover
Publishing, 2003.

[3] A. B. Aziz, A. S. Foley, A. J. Herbert, and A. G. Swart. Reconfiguring
role based access control policies using risk semantics.Journal of High
Speed Networks, 15(3):261–273, 2006.

[4] F. Baiardi, F. Martinelli, P. Mori, and A. Vaccarelli. Improving grid
service security with fine grain policies. InProceedings of On the Move
to Meaningful Internet System 2004. Springer, 2004.

[5] S. Bistarelli, F. Martinelli, and F. Santini. A semanticfoundation for trust
management languages with weights: An application to the rtfamily.
In Proceedings of the 5th international conference on Autonomic and
Trusted Computing, ATC ’08, pages 481–495. Springer, 2008.

[6] M. Bouzeghoub and V. Peralta. A framework for analysis ofdata
freshness. InProceedings of the 2004 International Workshop on
Information Quality in Information Systems, pages 59–67. ACM, 2004.

[7] P.-C. Cheng, P. Rohatgi, C. Keser, P. A. Karger, G. M. Wagner, and A. S.
Reninger. Fuzzy multi-level security: An experiment on quantified risk-
adaptive access control. InProceedings of the 2007 IEEE Symposium
on Security and Privacy, pages 222–230. IEEE Computer Society, 2007.

[8] M. L. Damiani, E. Bertino, and C. Silvestri. Approach to supporting
continuity of usage in location-based access control. InProceedings of
the 12th IEEE International Workshop on Future Trends of Distributed
Computing Systems. IEEE Computer Society, 2008.

[9] N. N. Diep, L. X. Hung, Y. Zhung, S. Lee, Y.-K. Lee, and H. Lee.
Enforcing access control using risk assessment. InProceedings of
the Fourth European Conference on Universal Multiservice Networks
(ECUMN’07), pages 419–424. IEEE Computer Society, 2007.

[10] N. Dimmock. How much is“enough”? risk in trust-based access control.
In Proceedings of the Twelfth International Workshop on Enabling
Technologies: Infrastructure for Collaborative Enterprises, pages 281–
282. IEEE Computer Society, 2003.

[11] N. Dimmock, A. Belokosztolszki, D. Eyers, J. Bacon, andK. Moody.
Using trust and risk in role-based access control policies.In Proceedings
of the 9th ACM Symposium on Access Control Models and Technologies,
pages 156–162, New York, NY, USA, 2004. ACM.

[12] Y. Han, Y. Hori, and K. Sakurai. Security policy pre-evaluation towards
risk analysis. InProceedings of the 2008 International Conference on
Information Security and Assurance, pages 415–420. IEEE Computer
Society, 2008.

[13] O. C. Ibe.Fundamentals of Applied Probability and Random Processes.
Elsevier Academic Press, 2005.

[14] O. C. Ibe.Markov processes for stochastic modeling. Elsevier Academic
Press, 2009.

[15] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Influ-
ence of attribute freshness on decision making in usage control. In
Proceedings of the 6th International Workshop on Security and Trust
Management, 2010.

[16] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Risk-
aware usage decision making in highly dynamic systems. InProceedings
of The Fifth International Conference on Internet Monitoring and
Protection (ICIMP’10), 2010.

[17] L. Krautsevich, A. Lazouski, F. Martinelli, and A. Yautsiukhin. Cost-
effective enforcement of ucona policies. InProceedings of the 6th
International Conference on Risks and Security of Internetand Systems,
2011.

[18] R. Krishnan, J. Niu, R. Sandhu, and W. H. Winsborough. Stale-safe
security properties for group-based secure information sharing. In
Proceedings of the 6th ACM Workshop on Formal Methods in Security
Engineering. ACM, 2008.

[19] A. Lazouski, F. Martinelli, and P. Mori. Usage control in computer
security: A survey.Computer Science Review, 4(2):81–99, 2010.

[20] Y. Li, H. Sun, Z. Chen, J. Ren, and H. Luo. Using trust and risk in access
control for grid environment. InProceedings of the 2008 International
Conference on Security Technology. IEEE Computer Society, 2008.

[21] R. W. McGraw. Risk-adaptable access control (radac). available
via http://csrc.nist.gov/newsevents/privilege-management-workshop/
radac-Paper0001.pdf on 16/08/09.

[22] M. Mitzenmacher and E. Upfal.Probability and Computing Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

[23] Q. Ni, E. Bertino, and J. Lobo. Risk-based access control systems built
on fuzzy inferences. InProceedings of the 5th ACM Symposium on
Information, Computer and Communications Security. ACM, 2010.

[24] J. Niu, R. Krishnan, J. F. Bennat, R. Sandhu, and W. H. Winsborough.
Enforceable and verifable stale-safe security propertiesin distributed
systems. Technical Report CS-TR-2011-02, University of Texas at San
Antonio, 2011.

[25] S. Osborn, R. Sandhu, and Q. Munawer. Configuring role-based access
control to enforce mandatory and discretionary access control policies.
ACM Trans. Inf. Syst. Secur., 3(2):85–106, 2000.

[26] V. Peralta. Data freshness and data accuracy: A state ofthe art. Technical
report, Universidad de la Repblica Uruguay, 2006.

[27] R. L. Rardin.Optimization in operations research. Prentice Hall, 1997.
[28] F. B. Schneider, K. Walsh, and E. G. Sirer. Nexus authorization logic

(nal): Design rationale and applications. Technical report, Cornell
Computing and Information Science Technical Report, 2009.

[29] C. Skalka, X. S. Wang, and P. Chapin. Risk management fordistributed
authorization.J. Comput. Secur., 15(4):447–489, 2007.

[30] H. C. Tijms. A First Course in Stochastic Models. Wiley, 2003.

12

[31] X. Zhang, F. Parisi-Presicce, R. Sandhu, and J. Park. Formal model
and policy specification of usage control.ACM Trans. Inf. Syst. Secur.,
8(4):351–387, 2005.

APPENDIX

In the appendix we present a brief solutions of several
computational problems related to Markov chains theory.

A. Computation of Transition Probabilities

We discuss in details a method for computation of transition
probabilities based on discrete-time (DTMC) and continuous-
time (CTMC) Markov chains. We define the following vari-
ables:r ∈ Ωattr is a value of an attribute. Byxi we denote the
value of the attribute in the statei; t0 is the time (step) when
we know the exact value of the attribute;t′ is the time (step)
when we make an access decision about the usage session.

1) Discrete-time Markov Model:First, we consider a ran-
dom process represented as a DTMC. Our goal is to compute
the probability Prij(q) of the process to be in the state
j if the process started from the statei and exactly q
transitions occurred. There is a vector of such probabilities:
Si(q) = [Pri1(q),Pri2(q), . . . ,Pri|Ωattr |(q)], where |Ωattr|
is the number of elements in the domainΩattr. Si(q) can be
found using Kolmogorov-Chapman’s equation [30]. Assume
that we know the initial valuexi of the process of the
attribute att0. Thus, onlyPrii(0) = 1 and others are0, i.e.,
Si(0) = [0, 0, . . . , 1, . . . , 0]. The value of the vectors att′ is

S(t′) = S(t0) · Probq (15)

whereProb is a transition matrix composed by probabilities
of transitions from a statei (row) to a statej (column),Probq

shows the matrix in powerq.
2) Continuous-time Markov Model:Now, we consider a

slightly different situation when we know only the time passed
from the last check of an attribute. We assume that the average
time between changes of the attribute value is exponentially
distributed with the rate parameterν. This assumption allows
modelling the behaviour of attribute values using CTMC. We
define the rate parameterνi of an exponential distribution for
the time of jumping from the statei to another state and the
average life-time1

νi
of the attribute in statexi. Also pij is the

one-step transition probability (the probability that theprocess
makes a direct jump from a statei to a statej without visiting
any intermediate state). Usingνi andpij we can evaluate the
probabilityPrij(∆t) of the attribute transition from the state
i to the statej during time interval∆t.

The transitions between the states are described with the
infinitesimal transition rates (qij ∈ Q). The infinitesimal
transition rates are defined as

qij = νi · pij , ∀i, j ∈ I and i 6= j (16)

The infinitesimal transition rates uniquely determine the
ratesνi and one-step transition probabilitiespij :

νi =
∑

∀j 6=i

qij , pij =
qij
νi

(17)

We apply auniformization method to compute transient
state probabilitiesPrij(∆t) [14], [30]. The method replaces

a continuous-time Markov chain by a discrete-time analogue,
which is more suitable for numerical computations. The uni-
formisation starts with replacing the transition rates of Markov
chainνi with a sole transition rateν, such asν ≥ νi, ∀i ∈ I,
where I is the set of nodes of the continuous-time Markov
chain. Ifν = max

∀νi∈I
νi, then the one-step transition probabilities

of the discrete-time Markov chain are defined as

pij =

{

νi
ν
pij =

qij
ν
, ∀i 6= j;

1− νi
ν

, ∀i = j
(18)

Now we have all required parameters for the computation
of Prij(∆t) and we skip the mathematical proofs, which can
be found here [30, pages 167-168].

Prob(∆t) =
∞
∑

n=0

e−ν·(t′−t0) · (ν · (t′ − t0))
n

n!
· p(n)ij (19)

for ∀i, j ∈ I, t′ > t0, andp(n)ij can be recursively computed

starting withp(0)ii = 1 andp(0)ij = 0 for i 6= j from

p
(n)
ij =

∑

xk∈I

p
(n−1)
ik · pkj , n = 1, 2... (20)

For fixedt′ > t0 the infinite series can be truncated because
of the negligible impact of the residue. The truncation number
U (upper limit of summation) in Formula 19 is chosen as

U = ν · t′ + c ·
√
ν · t′ (21)

for c with 0 < c ≤ c0(ε), ε is a tolerance number [30, p. 169].
Prob(∆t) is a matrix of all possible transition probabilities

probabilities after time∆t passed,Prij(∆t) is the element
on the crossing of theith row and thejth column.

B. Convergence of a Markov Chain to the Steady State

If the attribute behaviour follows the Markov property, the
probabilities of the attribute to be in a certain state converges
to a stationary (steady state) steady state distribution. We can
find the numbernst of transitions when the distribution of
probabilities differs from the steady state distribution by any
small value [22].

nst = τ(ǫ) ≤ ⌈ ln ǫ

ln(2c)
⌉T, τ(c) ≤ T, c < 1/2

τas
(t) = min{t : ∆as

(t) ≤ ǫ}, τ(ǫ) = max
as∈Ωattr

τas
(ǫ)

∆as
(t) = ‖ptas

− π‖ =
1

2

∑

as∈Ωattr

|ptas
(a)− π(a)|

Where ∆as
(t) is a distance between distributionptas

and
steady state distributionπ, when process starts from the initial
stateas and t transitions occurred.

