
Towards Modelling Adaptive Attacker’s
Behaviour⋆

Leanid Krautsevich1, Fabio Martinelli2, and Artsiom Yautsiukhin2

1 Department of Computer Science, University of Pisa,
Largo B. Pontecorvo 3, Pisa 56127, Italy

krautsev@di.unipi.it
2 Istituto di Informatica e Telematica, Consiglio Nazionale delle Ricerche,

Via G. Moruzzi 1, Pisa 56124, Italy
{fabio.martinelli,artsiom.yautsiukhin}@iit.cnr.it

Abstract. We describe our model for the behaviour of an attacker.
In the model, the attacker has uncertain knowledge about a computer
system. Moreover, the attacker tries different attack paths if initially
selected ones cannot be completed. The model allows finer-grain analysis
of the security of computer systems. The model is based on Markov
Decision Processes theory for predicting possible attacker’s decisions.

Keywords: Attacker Model, Attack Graphs, Markov Decision Process

1 Introduction

Most methods for the analysis of security of computer systems (e.g., net-
works, Cloud, etc.) consider attackers as omniscient entities which know
all weaknesses of a computer system [4, 12]. In addition, attackers are
frequently assumed to make only right decisions during an attack and to
exploit only the best possible way for the attack.

In contrast, descriptions of real complex attacks (e.g., [7]) show, that
attackers have limited knowledge of a target system and explore the sys-
tem step by step during the attack. Attackers make mistakes in their
reasoning about the system, and search for alternative ways to compro-
mise the system when the initially selected attack fails. This means that
the model of powerful attacker does not provide a real description of a
situation, but prepares for a worst case scenario. In reality, security teams
have a limited budget and would like to concentrate on the most impor-
tant security issues that can be solved within a budget. Taking properly
into account attacker’s behaviour is important because some attacks may

⋆ This work was partly supported by EU-FP7-ICT NESSoS and 295354 SESAMO
projects.

be even not considered by the attacker because of her uncertain knowl-
edge about the system or lack of the resources. Wasting the budget on
preventing such attacks is not the most cost-effective decision.

In this paper, we strive for a more refined attacker model introduc-
ing the attacker’s view of a system, which is sometimes different from
the real system. This view drives the actions of the attacker depending
on the knowledge and resources the attacker possesses. Moreover, in our
model an attacker may give up on her current attack and follow an al-
ternative attack path. We use Markov Decision Process (MDP) to model
the behaviour of attacker as the method for the selection of attack steps.

The rest of the paper is organised as follows. Section 2 explains our
concerns on uncertain knowledge of an attacker about a system. Section 3
focuses on models of attacker’s behaviour. Related work is presented in
Section 4. Section 5 concludes the paper.

2 A System and an Attacker

We consider a computer system as an attack graph G that represents the
ways to compromise the system [4, 12]. A node si ∈ S of the attack graph
denotes a successfully exploited vulnerability and an edge aij ∈ A denotes
further possible exploitation of vulnerability sj after previously exploited
vulnerability si. Thus, successful exploitation of vulnerabilities leads an
attacker to new states with new privileges. There are several methods for
automated construction of attack graphs [12, 13].

Similarly to our previous work [3] we group attackers into attacker
profiles. Within a profile, attackers have the same goal and similar pa-
rameters such as money, skills, etc. Formally, the attacker profile is the
tuple X = {Γ, goal, intang, tang, skill} where Γ is the set of attacks
γ ∈ Γ known by the attacker, goal is the goal of the attacker, intang is
an amount of intangible resources possessed by the attacker, e.g., time,
tang is the amount of tangible resources possessed by the attacker, skill
defines how trained is the attacker. We modify the attack graph to cap-
ture properties of the attacker. First, we add to the graph an initial node
corresponding to initial privileges of the attacker. Second, we define the
goal nodes in the attack graph G that correspond to vulnerabilities that
complete the attack (the ultimate step of each attack).

We assume that the attacker has certain amount of time units to
perform the attacks. She spends a unit of time for executing a single
attack step. The attacker stays in a goal state if she reaches it before

spending all units of time. This situation is modelled by adding edges
that start and end in the same goal state.

We separate the real system and the attacker belief about the system.
When the attacker is omniscient, her view of the system coincides with
the real system. We consider a more realistic case, when the view does
not coincide with the real systems. The attacker’s knowledge about the
system determines the set of vulnerabilities that the attacker believes
present in the system. These believed vulnerabilities define a new graph
GB. This graph is similar to the attack graph for the real system while
has believed vulnerabilities as nodes:

GB = (SB, AB) : SB = Strue ∪ Sfalse, AB = Atrue ∪Afalse (1)

where Strue ⊆ S and Atrue ⊆ A are the subset of vulnerabilities and the
subset of attack steps really existing in the system and also believed by
the attacker to exist, Sfalse and Afalse are the set of vulnerabilities and
the set of action that are believed to exist but are absent in reality.

The set of vulnerabilities that are believed by the attacker is further
reduced according to attacker’s skills and tangible resources. Finally, the
attacker has her own view (a graph GX) of the system:

GX = (SX , AX) : SX ⊆ SB, AX ⊆ AB (2)

We assume that the system behaves probabilistically. We introduce
probability Prij of system transition from state i to state j in response
to an attacker’s action. For the attacker this probability is:

Prij = Prpij ·Prexpij (3)

where Prpij is the probability that the vulnerability j presents in the sys-
tems and Prexpij is the conditional probability that the vulnerability may
be successfully exploited in case it exists in the system. The probability
Prij depends only on the successive state j while we use both indexes i
and j for the uniformity with usual definition of transition probabilities.

We measure Prpij assuming that the attacker knows which software is
installed in the system but may not know whether the software is patched
or it is not. The probability of presence of the vulnerability in the system
depends on the period passed after the vulnerability was discovered: the
more time passed since the discovery the lower the probability of presence
of the vulnerability [8]. We assume Prpij decreases linearly in time:

Prpij = − 1
Tpatch

· t+ 1 if Tpatch ≥ t (4)

Prpij = 0 if Tpatch < t

Fig. 1. a) the network system, b) the attack graph of the network system

where Tpatch is the time required for patching all systems, t is time passed
since the release of a patch and for t > Tpatch we assume that all systems
are patched. The probability Prexpij may be computed on the basis of score
from vulnerability databases similarly to [2] or by security experts. Our
approach does not depend on the method of computation of Prpij and
Prexpij , thus, any other methods can be used.

Example 1. We consider a company which saves information in an on-
line database service. A competitor company would like to steal the in-
formation by attacking the server where the database is installed. The
server operates FreeBSD 7 and MySQL 5. The database is managed by
an administrator that uses a local workstation operated by Linux Mint
12 with Pidgin Messenger installed. Moreover, the administrator manages
the database from her home laptop using a VPN connection to the work-
station. The laptop runs Windows 7, Chrome browser, and TUKEVA
Password Reminder. The whole system is depicted in Figure 1a.

The attacker composes the following attacks to the system3:

– The shortest possible attack requires registration in the on-line database
service and execution of vulnerability CVE-2012-0484 in MySQL.

– Another possible attack is based on vulnerability CVE-2011-3108 in
Chrome browser and CVE-2009-4781 in TUKEVA where the admin-
istrator saves passwords to a database management tool.

– The attacker exploits CVE-2012-2369 in Pidgin gaining the access to
the workstation. Then she causes a buffer overflow on the server using
CVE-2011-486 and exploits CVE-2012-0114 against MySQL.

– Since the laptop is connected by VPN to the workstation, the attacker
gains the access to the laptop executing CVE-2012-0173 in Windows
7. Then she exploits CVE-2009-4781 in TUKEVA.

3 Please, follow http://nvd.nist.gov/home.cfm for details of vulnerabilities.

– The attacker may gain the access to the workstation after successful
attack to the laptop by executing CVE-2011-4913 in the Linux kernel.
Then she exploits CVE-2011-486 on the FreeBSD server.

The resulted attack graph is displayed in Figure 1b. We enumerate
the nodes for the sake of convenience. The node s0 is the initial node.
The nodes n3, n7 and n8 (coloured in grey) are goal nodes.

3 Model of Attacker’s Behaviour

We use Markov Decision Process (MDP) [9] to model decision making
process of attackers. An attacker observes a system and can influence the
behaviour of the system by making actions at moments of time (decision
epochs). The system responds to an action probabilistically. The attacker
does not make the decisions about actions blindly but takes into account
past, current, and possible future states of the system and also possible
rewards that are connected with the actions. The goal of the attacker is
to maximise the expected total reward according to a some criterion.

Formally, MDP is a set P = {S,A, P,R, T} where S is a set of system
states si, A is a set of sets Ai of actions aij ∈ Ai available for the attacker
in the state si, P is a set probabilities Prij that the system transits from
state si to sj in response to attacker’s action aij , R is a set of rewards
functions rij dependent on the state si and the action aij , T is a set of
decision epochs (moments of time) t. Regarding transition probabilities, in
general, the system may transit to any state available from si in response
to the action aij . We assume that the system only transits to the state
sj with probability Prij or stays in the state i with probability 1− Prij .

We model attacker’s behaviour as an MDP policy π which determines
how an attacker selects actions. The policy is composed of decision rules.
A decision rule is a procedure for the selection of an action for each
moment of time. The attacker always selects a certain action in a state if
the rules are deterministic. She may select at random any action available
at the state if the rules are probabilistic.

A total reward uπ obtained by the attacker as a result of the execution
of policy π is computed on the basis of instant and terminal rewards.
The attacker obtains an instant reward after execution of an action. The
instant reward depends on st, at and st+1. The terminal reward rN (sN)
depends on the state of the process at the last decision epoch N . Thus,
the total reward:

uπ =

N−1∑
t=1

rt(st, at) + rN (sN) (5)

Algorithm 1 Computation of a deterministic policy
t = N
for all sN ∈ S do

uN (sN) = rN (sN)
end for
while t > 1 do

t = t− 1
for all st ∈ S do

ut = max
a∈Ast

{
rt(st, at) +

∑
aij∈Ai

Prtij · ut+1(sj)

}

A∗
st,t = argmax

a∈Ast

{
rt(st, at) +

∑
aij∈Ai

Prtij · ut+1(sj)

}
end for

end while

Note, that we use upper index (e.g., st for a state) to denote the current
value of a variable at a moment of time.

We evaluate every attacker’s action as an amount of money. E.g., for
an attacker that tries to cause maximal damage to a system, the reward
are losses faced by the system owner in case of a successful attack.

Deterministic Attacker The simplest model of attackers behaviour [4,
12, 13] may be defined by an optimal deterministic policy of MDP. In this
case, an attacker always prefers the best possible action in a state which
belongs to the optimal attack path in the attack graph. The algorithm
for the computation of optimal deterministic policies is the backward in-
duction [9] (see Algorithm 1). Variables ut and un describe intermediate
values of total reward. The algorithm finds sets A∗

st,t of actions that max-
imise the expected total reward of the attacker.

Adaptive Attacker We modify the behaviour of the deterministic at-
tacker so that she may reconsider her course of action when she can-
not complete her current attack path. We assume that the attacker sets
Prpij = 0 (and Prij = 0) when she cannot complete an attack step aij and
understands that the vulnerability is absent in the system. In addition,
the attacker sets Prxj = 0 for all other edges entering sj from all states
sx. Then the attacker uses Algorithm 1 to compute a new strategy using
the updated attack graph and the amount of decision epochs left after
the initial part of the attack.

The attacker sets Prpij = 1 and Prij = Prexpij if she understands
that the vulnerability exists in the system as a result of the unsuccess-

ful attempt of the attack step. Then the attack strategy is recomputed
according to Algorithm 1 with the rest of the decision epochs. If the at-
tacker successfully exploits the vulnerability si she adds edges a0j and
sets Pr0j = Prij for all states sj reachable from si in one step. This mod-
ification is required to remember the privileges gained by the attacker for
future adjustments in her strategy.

Example 2. In our example, the attacker has N decision epochs and gets
terminal rewards ($10K) only if she reaches states 3, 7, 8 i.e. rN (s3) =
rN (s7) = rN (s8) = 10 other terminal rewards equal 0. Instant rewards
also equal to 0. Due to space limitations we skip the computation of
deterministic policies. For the attack graph presented in Figure 1, the
policy is π = (a1 = a08) at the initial state during the first decision
epoch. Suppose, the action is unsuccessful because the vulnerability was
timely patched by the administrator. The attacker sets the probability
Pr08 = 0, reconsiders her initial policies using N −1 decision epochs, and
obtains new policy π = (a1 = a05).

4 Related Work

There are several works which use attack graphs for the analysis of a sys-
tem [12, 13]. Sheyner et al. [12] determine possible attacks to the system
on the basis of attack graph assuming deterministic attackers behaviour.
LeMay et at. [4] and Sarraute et al. [11] proposed works that consider
attack planning where successful execution of an exploit is uncertain. In
contrast to our work, the authors assume that the attacker has complete
knowledge about the system and always selects the same path to his goal
during the attack. Several attacker models, which assume that attacker
may select alternative ways for compromising a system, were proposed for
the analysis of cryptographic protocols [1, 5, 6]. These models also assume
that attackers know the system, i.e., the protocol, while have bounded
resources. Those models indeed consider different limitations from ours,
e.g., computational power and message manipulation capabilities.

The very recent paper of Sarraute et al. [10] proposes to use Partially
Observable Markov Decision Processes (POMDPs) for attack planning
during penetration tests. The authors analyse the system considering net-
work configuration graph, while we consider an attack graph. In terms of
knowledge collecting, authors introduces special actions that allow scan-
ning network hosts. While we provide a way to update the graph as a
result of successful and unsuccessful attack steps, and adjust the reason-
ing during the attack.

5 Conclusion

This work presented our initial ideas on modelling the behaviour of an
attacker. We think, such approach is important if we would like to get
versatile analysis of our system and protect it in the most efficient way.
In particular, we considered an attacker which does not know every detail
about the system, but gains the knowledge step by step. In addition, we
made the attacker more flexible, i.e., the attacker is able to re-consider
her plans when the initial ones fail.

As for future work we would like to incorporate the notion of de-
creasing attackers resources in our model as penalties of MDP. Moreover,
within our approach we cannot take into account zero-day vulnerabilities,
but we believe that some statistical methods could be used to tackle zero-
day vulnerabilities at least approximately. Finally, we aim at creating a
software prototype to evaluate system security on the basis of different
metrics and versus various attacker types.

References

1. D. Dolev and A. C. Yao. On the security of public key protocols. IEEE TIT,
29:198–208, 1983.

2. L. Gallon and J.-J. Bascou. Cvss attack graphs. In SITIS, 2011.
3. L. Krautsevich, F. Martinelli, and A. Yautsiukhin. Formal analysis of security

metrics and risk. In WISTP, 2011.
4. E. LeMay, M. D. Ford, K. Keefe, W. H. Sanders, and C. Muehrcke. Model-based

security metrics using adversary view security evaluation (advise). In QEST, 2011.
5. D. Marchignoli and F. Martinelli. Automatic verification of cryptographic proto-

cols through compositional analysis techniques. In TACAS, 1999.
6. J. C. Mitchell, A. Ramanathan, A. Scedrovb, and V. Teaguea. A probabilistic

polynomial-time process calculus for the analysis of cryptographic protocols. TCS,
353:118–164, 2006.

7. K. D. Mitnik and W. L. Simon. The Art of Intrusion: The Real Stories Behind
the Exploits of Hackers, Intruders and Deceivers. Wiley, 2005.

8. Y. N. Pettersen. Renego patched servers: A long-term interoperabil-
ity time bomb brewing. http://my.opera.com/yngve/blog/2010/06/02/

renego-patched-servers-a-long-term-interoperability-time-bomb-brewing

was available online on 20/07/2012.
9. M. L. Puterman. Markov Decision Processes Discrete Stochastic Dynamic Pro-

gramming. Wiley-Interscience, 2005.
10. C. Sarraute, O. Buffet, and J. Hoffmann. Pomdps make better hackers: Accounting

for uncertainty in penetration testing. In AAAI, 2012.
11. C. Sarraute, G. Richarte, and J. L. Obes. An algorithm to find optimal attack

paths in nondeterministic scenarios. In AISEC, 2011.
12. O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated gener-

ation and analysis of attack graphs. In IEEE SSP, pages 273–284, 2002.
13. L. Wang, A. Liu, and S. Jajodia. Using attack graphs for correlating, hypothesizing,

and predicting intrusion alerts. CC, 29:2917–2933, 2006.

