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Abstract—In usage control (UCON) security policies must be
re-evaluated each time when attributes change. Catching timely
all changes is a challenging issue. A reference monitor should be
aware with certainty when to pull fresh attributes which reside
outside of its control. Otherwise, some attribute changes would
be missed, and worse, these unnoticed changes might violate
security policies. Attributes mutability hardens the correct policy
enforcement.

This paper proposes a cost-effective enforcement of UCON
policies. We assign monetary outcomes for granting and revoking
access to legitimate users and those whose attributes violate
security policies. Additionally, we place a price paid to obtain
fresh attribute values. We introduce and compare a set of policy
enforcement models in terms of cost-efficiency to handle at-
tributes mutability. Besides mutability, we also take intoaccount
other factors that affect attributes trustworthiness.

Index Terms—Usage Control, Mutable Attribute, Policy En-
forcement, Cost, Markov Chain.

I. I NTRODUCTION

Access controlaims to assure that only trusted principals are
granted to access a resource [1].Usage controlis in charge to
guarantee that principals remain trusted also when the access
is in progress, i.e. when these principals use the resource.
The principal’s trustworthiness is evaluated based on security
attributes [13], [14], i.e. assertions done by trusted peers about
subjects and objects participating in access and usage control.

The UCON model proposed by R. Sandhu et al. [18]
encompasses access and usage control scenarios and operates
with mutable attributes to specify and enforce security policies.
The continuous policy enforcement poses new problems which
have never been addressed in access control:when should
a reference monitor query fresh attributes and perform re-
evaluation of the access decision? How attribute mutability
affects the policy enforcement?

Access decision checks should be triggered when attributes
change. When all attributes arelocal and reside under control
of the reference monitor, the system can follow some sort of a
locking protocol during policy enforcement [14]. For instance,
the system suspends ongoing usage sessions before updating
attributes, and awaits until all updates are executed. Then,
the system unlocks attributes and pushes new values to the
reference monitor which re-evaluates security policies.

The nature of security attributes is diverse and some at-
tributes (e.g., the requester’s reputation and location) are
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remote, reside outside the control of the reference monitor, and
can be only observed. These attributes should be constantly
pushedby the attribute provider (e.g. the requester) orpulled
by the reference monitor.

Continuous pushing of fresh attributes can be implemented
through subscription mechanisms1. Although, such approach
might be very expensive for volatile attributes since a se-
cure channel between the reference monitor and the attribute
provider should be keeping alive. Instead, light alarms could
be configured to notify the reference monitor when thresholds
are crossed on key attributes. Unfortunately, this affectsthe
privacy since security policies are disclosed to the attribute
provider.

Pulling attributes might be privacy-preserving and less ex-
pensive. Basic approach imposes aperiodic inquiring of all
attribute repositories and, if attributes change then a policy re-
evaluation is initiated [17]. The system usually allows pulling
only of the current attribute value, and as a result some
attribute changes between adjacent pulling queries might be
missed. Worse, these unnoticed changes might violate security
policies. For example, if a security policy grants access rights
to users resided in a certain location, there is no evidence that
mobile users remained in the same location and never was
leaving it in-between checks [5].

Krautsevich et al. [10], [9] introduced the model ofape-
riodic attributes pulling. Authors assumed that a mutable
attribute could be modelled as a stochastic process (e.g.,
a Markov chain) and the reference monitor knows the pa-
rameters of this process. Possessing the attribute value ata
particular time, the reference monitor computes the probability
that attribute might change since that time and a new value
violates the policy. With a time passage this probability
grows and when it overcomes the specified threshold, the
reference monitor pulls a fresh value and triggers the policy re-
evaluation. However, even if the fresh attribute value satisfies
the policy, there is still no guarantee that the policy was
holding in-between the checks.

Also, a system faultiness, delays occurred during delivery
due to the network latency, and malicious activities (e.g.,a
man-in-the-middle, eavesdropping and impersonating of data
by the attribute provider) contribute to the problem of correct
enforcement. The impact of uncertainties associated with
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attributes should be tolerated by the reference monitor.
This paper introduces the cost-effective enforcement of

UCON policies. We assign monetary outcomes for granting
and revoking access to legitimate users and those whose
attributes violate security policies. Additionally, we place a
price paid to obtain fresh attribute values noticing that frequent
attribute queries are too expensive whereas rare checks lead
to losses due to possible policy violations. We introduce and
compare a set of policy enforcement models in terms of cost-
efficiency to handle attributes mutability. Besides mutability,
we also take into account other factors that affect attributes
trustworthiness. The obtained results allow estimating the
average time of the usage session and the expected profit
preserving security.

The main contributions of this paper are:

• identifying and estimating the impact of all uncertainties
associated with attributes acquisition;

• introducing models of correct and effective enforcement;
• introducing a cost model for a policy enforcement and

attribute acquisition;
• identifying new attributes querying strategies needed to

support cost-effective policy enforcement.

The paper is structured as follows. Section II points to
the UCON model. Section III introduces attribute acquisition
models and enlists all types of uncertainties associated with
attributes. Sections IV and V present models of correct and
effective policy enforcement, respectively. Section VI outlines
a cost model and estimates an average profit and time of policy
enforcement. Section VII summarizes related works. Section
VIII concludes the paper.

II. U SAGE CONTROL

Usage control (UCON) [18] demands for persistent control
over resources. Continuity of control is a specific feature of
UCON intended to operate in an inconstant context. This
inconstancy is a result of the entire usage process or caused
by other uncontrollable factors. The context is formed by
mutable attributes of a requesting subject, an accessed object
and execution environment.

UCON security policies restrict subject’s behaviour and
define which usages for the subject are permitted. UCON
policy statements are built using authorizations (predicates
over subject and object attributes), conditions (predicates over
environmental attributes), and obligations (actions thatmust
be performed along usage process).

For the sake of simplicity, we consider a security policy
consists of authorization and/or conditions predicates only:
ppre andpon. ppre denotes predicates that should be satisfied
before granting access to a resource (access control), whilepon
denotes predicates that should hold during the access execution
(usage control).

Authorization predicates are assumed to consist of a set of
attribute clauses, built of one attribute variable and a threshold,
in a conjunctive normal form. An attribute value is a variable
a which might take a value from (in)finite domain of attribute

valuesA. The attribute clause (predicate) is a logical function
mapping the attribute value to either true or false.

III. A TTRIBUTE MODEL

A. Real and Observed Attributes

Security policies are based onremoteattributes withobserv-
able mutability. Remotemeans that the attribute is managed by
a remote attribute provider which is not under control of the
reference monitor enforcing the policy.Observable mutability
means that the reference monitor observes only partially how
the attribute changes in time, and it cannot influence (or even
block) the attribute modifications.

An attribute might change in discrete points of time and this
process is modelled via a finite sequence

RealA = {(areali , ti)|a
real
i ∈ A, ti ∈ T, ∀i : ti < ti+1}

where each element(areali , ti) specifies the attribute valueai
changed at timeti. T is a countable infinite set of natural
numbers which models time ticks. During time interval[ti :
ti+1] the attribute does not change, and the attribute value at
tcurr equalsareali , whereti < tcurr < ti+1.

Only the attribute provider can seeRealA, while the
reference monitor operates with a finite sequence of observed
attributes specified via

ObsA = {(〈aobsj , tj〉, t̃j)|a
obs
j ∈ A, tj ∈ T, ∀j : tj ≤ t̃j}

where〈aobsj , tj〉 corresponds to elements(areali , ti) of RealA,
i.e. ∀j = i, 〈aobsj , tj〉 = (areali , ti). t̃j specifies the time
point when the attribute was delivered to the reference monitor
and used to evaluate the policy. Attribute delivery and access
decision making are time-consuming operations, thust̃j is
usually bigger thantj (time when attribute was issued). Notice,
that the attribute provider and the reference monitor sharethe
same trusted clocks which start to work atttry = 0.

B. Basic Attribute Acquisition Models

In access and usage control two basic attribute acquisition
models exist:pushandpull.

Definition 1: Push Model defines a scenario when each
new attribute value is pushed from the attribute provider to
the reference monitor. Formally, this means thatObsA and
RealA have the same number of elements. i.e.

|ObsA| = |RealA|

∀i, (areali , ti) ∈ RealA ∃j = i, (〈aobsj , tj〉, t̃j) ∈ ObsA

where|S| specifies a number of elements in a sequenceS.
Definition 2: Pull Model defines a scenario when the refer-

ence monitor queries the attribute provider to give the current
attribute value.

There could be the case when the reference monitor queries
too often (more frequently than the attribute changes), andas



Fig. 1. Security Policy Enforcement with Pull Acquisition Model

a resultObsA may containredundant elements, i.e.

|ObsA| ≥ |RealA|

RealA = { ..., (areali , ti), (a
real
i+1 , ti+1), ... },

ObsA = { ..., (〈aobsj , tj〉, t̃j), ..., (〈a
obs
j+k, tj+k〉, t̃j+k), ... },

∀i, j ∃k ≥ 0 : ti = tj = ... = tj+k < ti+1

In opposite, the reference monitor might query too rarely (less
frequently than the attribute changes), and as a resultObsA

may containinsufficient elements, i.e.

|ObsA| ≤ |RealA|

RealA = { ..., (areali , ti), (a
real
i+1 , ti+1), ..., (a

real
i+k , ti+k), ... },

ObsA = { ..., (〈aobsj , tj〉, t̃j), (〈a
obs
j+1, tj+1〉, t̃j+1), ... },

∀i, j ∃k ≥ 1 : ti = tj , ti+k = tj+1

Obviously, the pull model with redundant elements is as
expressive as the push model, i.e. each change of the attribute
will be eventually captured by the reference monitor.

To the best of our knowledge, attributes pulling can be
scheduled during usage controlperiodicallyandaperiodically.

C. Intentional and Unintentional Uncertainties

This subsection summarizes uncertainties associated with
the attribute acquisition and discusses two types of uncer-
tainties: unintentionalwhich corresponds to afreshnessand
correctnessof attributes, andintentional which corresponds
to a trustworthinessof attributes.

1) Basic Notations to Measure Uncertainties:Let Ht be
an event specifying that a real attribute value(areal, t) does
satisfy a security policy, i.e.ppre/on(areal) = true, while Ht

specifies the opposite. The reference monitor operates only
with observed attributes and can computeHobs

t , i.e. the policy
holds for observed attributes at a given timet.

Let Gt represent a fact that the reference monitor grants
access (or continues a usage session) at timet. Gt states that
the access is rejected (the usage session is revoked).

Usually, the reference monitor possessesuncertainknowl-
edge about real attribute vales. Assume, the reference monitor
can measure this uncertainty by computing the conditional
probability Pr[Ht|H

obs
t ] that the policy really holds at t

knowing that observed attributes satisfy the policy att.
Let H[tperm:t̃now] specifies that the sequence of real attribute

values satisfies the policypon starting fromtperm till t̃now.

In usage control the policy is evaluated every time when
attribute changes. In case of the attribute pulling some values
might be missed. Thus, the reference monitor has less informa-
tion to prove thatH[tperm:t̃now] holds. Assume, that knowledge
of the reference monitor about the predicate satisfaction in this
interval is probabilistic and

Pr[H[tperm:t̃now]|H
obs
ta1

·Hobs
ta2

· ... ·Hobs
tak

]

specifies the probability that the policy really holds byt̃now
knowing that observed attributes satisfy the policy at timeof
issuing.

2) Freshness of Attributes:is unintentional uncertainty oc-
curring due to attributes mutability. Generally, it means that
Ht = Hobs

t 6= Ht+△t, i.e. attributes might change and new
attribute value could violate the policy. We launched three
types of freshness uncertainties.

Freshness Icorresponds to the scenarios where only a part
of attribute changes can be detected:

|ObsA| < |RealA|

∀(〈aobsj , tj〉, t̃j) ∈ ObsA, ∃(areali , ti) ∈ RealA

s.t. 〈aobsj , tj〉 = (areali , ti), and ti = tj = t̃j

Pr
I

fr[H[tperm:t̃now]|H
obs
ta1

·Hobs
ta2

· ... ·Hobs
tak

] < 1

As an example, assume the network of sensors provides the
current location of the user. Sensors have limited resources
(power, bandwidth, memory), and the reference monitor pulls
the location attribute only once per hour. Even if the attribute
does not satisfy the policy during this hour, the reference
monitor will make the incorrect access decision and continue
the access. There always exists a possibility of the policy
violation in-between despite that all pulled attributes satisfy
the policy.

Freshness II implies that an attribute may change during
inevitable time delays△ tproc = t̃ − t > 0 needed for
the delivery (due to a network latency) and decision making
(evaluation of logical predicates). From the prospective of the
reference monitor, freshness II means that

∀(〈aobs, t〉, t̃) ∈ ObsA : t < t̃

for access control : Pr
II

fr [Ht̃|H
obs
t ] < 1

for usage control : Pr
II

fr
[H[t:t̃]|H

obs
t ] < 1



Freshness III corresponds to scenarios where the current
attribute value is uncertain since some update queries are
pending and may not be committed by the time of the policy
re-evaluation.

In this case, the attribute provider sends two attributes:
(i) the last certain attribute value and, (ii)some additional
informationon how the real value varies from the last certain:

(areali , ti), (△ areali , ti+1), where ti < ti+1

Accordingly, the reference monitor receives:

(〈areali , ti〉, t̃j), (〈△ areali , ti+1〉, t̃j), where ti+1 = t̃j

As an example, assume a policy which allows users with a
“normal” reputation to submit a huge number of applications
for execution in Grid environment. The reputation is updated
only when the execution is ended and the system receives
feedback from a resource provider. Applications can run
concurrently and each single execution can be long-lived and
lasts days. The access decision to submit a new job is based on
the reputation value dated by the last registered feedback and
on the number of applications currently running on the user’s
behalf. Indeed, the ongoing applications can be malicious but
this fact can be discovered afterwards. The only way to obtain
the fresh reputation value is to block the access until all
running applications terminate. Instead, the system has tobe
set up to make an access decision with some uncertainty on the
current reputation of the user. For the given example,△ areali

specifies how many applications were submitted for execution
in interval (ti : ti+1) and are currently ongoing.

The presence of the uncertainty freshness III implies:

for access control : Pr
III

fr [Ht̃j |H
obs
ti ] < 1

for usage control : Pr
III

fr [H[ti:t̃j ]|H
obs
ti ] < 1

Notice, the existing pull/push query standards (e.g. XACML,
SAML) should be extended to support sending of two at-
tributes upon the single request.

3) Correctness of Attributes:is affected by additive noises
that usually exist in case of non-accurate measurements. For
example, the location attribute can be sensed only with the
given precision. Thus, observed attributes might differ from
the real counterparts:

∀(〈aobsj , tj〉, t̃j) ∈ ObsA, ∃(areali , ti) ∈ RealA

s.t. aobsj 6= areali , and ti = tj = t̃j , i.e. △ tproc = 0

The presence of the correctness uncertainty implies that
∀t,Pr[Ht|H

obs
t ] < 1.

4) Trustworthiness of Attributes:appears as a result of
altering attributes by the attribute provider or as the result
of attacks occurred during attributes delivery, storing, etc.
Current approaches guarantee only integrity of an attribute by
validating a signature of the entity which signs the attribute,
but this does not guarantee trustworthiness.

This uncertainty assumes that either an attribute value,
or a time of issuance, or both can be modified by the at-
tribute provider. Indeed, on each attribute request the attribute

provider might respond with the same value which always
satisfies the policy.

The presence of the trustworthiness uncertainty implies that
∀t,Pr[Ht|H

obs
t ] < 1.

IV. CORRECTPOLICY ENFORCEMENT

The correct policy enforcement implies that having observed
attributes, the reference monitor enforces the policy exactly in
the same fashion as with real attributes.

A. Correct Enforcement of Access Control

Figure 1 shows how the enforcement of access control
evolves in time. It starts atttry, and proceeds with querying
current values of attributes. Either push or pull model is used,
the reference monitor processes only the first received value
and evaluatesppre once.

Definition 3: (Correct Enforcement of Access Control)
The reference monitor correctly grants access att̃pre if the
following holds (see Figure 1):

(ppre(a
real
ac+i) = true) ∧ (ppre(a

real
ac ) = true)

RealA = { (arealtry , ttry), ..., (a
real
ac , tac), ..., (a

real
ac+i, tac+i),

(arealac+i+1, tac+i+1) ... }

ObsA = { (〈aobsac , tac〉, t̃pre) }, tac+i ≤ t̃pre ≤ tac+i+1, i ≥ 0

and the reference monitor is powerful to prove the following
conditional probabilities:

Pr[Gt̃pre |Hac] = Pr[Gt̃pre |Hac] = 1

Pr[Gt̃pre |Hac] = Pr[Gt̃pre |Hac] = 0

whereHac = Htac
· Ht̃pre , and it means that the reference

monitor always grants the access when it should be granted,
and denies otherwise.

Notice, the correct enforcement of access control requires
that the predicates are satisfied exactly attac andt̃pre although
the policy might not hold in-between.

B. Correct Enforcement of Usage Control

Access control ends attperm, and usage control begins
where the reference monitor re-evaluatespon every time
attributes change.

Definition 4: (Correct Enforcement of Usage Control) The
reference monitor correctly continues the usage session by
t̃now after evaluating the policyk times, if the following holds
(see Figure 1):

pon(a
real
m ) = true, 1 ≤ m ≤ ak + i,

RealA = {(areal1 , t1), ..., (a
real
ak , tak), ..., (a

real
ak+i, tak+i), ... }

ObsA = { ..., (〈aobsak , tak〉, t̃now)}

tperm = t1, tak+i ≤ t̃now ≤ tak+i+1, i ≥ 0

or the reference monitor revokes the access if the following
holds:

∀ak, s.t. (arealak , tak) ∈ RealA, pon(a
real
ak ) = false,

∃(〈aobsak , tak〉, t̃now) ∈ ObsA, t̃now = tak



and the reference monitor is powerful to prove that:

Pr[Gt̃now
|Huc] = Pr[Gt̃now

|Huc] = 1

Pr[Gt̃now
|Huc] = Pr[Gt̃now

|Huc] = 0

whereHuc = H[tperm:t̃now], and it means that the reference
monitor continues the usage session when the policy holds,
and revokes otherwise.

Proposition 1: The correct enforcement of access and usage
control is possible if the attribute provider pushes certain
attribute values and the processing time is negligible:

∀j(〈aobsj , tj〉, t̃j) ∈ ObsA, t̃j = tj , i.e. △ tproc = 0
Proof: This comes from the definition.

V. EFFECTIVE POLICY ENFORCEMENT

Neither push no pull model can guarantee that observed
attributes are equal to real in the presence of uncertainties.
The correct policy enforcement implies that uncertainties
associated with attribute are deterministic, while effective -
probabilistic.

A. Effective Enforcement of Access Control

The reference monitor is powerful to compute:

PrRM = Pr[Hac|H
obs
tac

] = Pr[Htac
·Ht̃pre |H

obs
tac

]

or using conditional probabilities

PrRM = Prcor∗tr[Htac
|Hobs

tac
] ·Prfr[Ht̃pre |H

obs
tac

] (1)

where the first multiplier corresponds to trustworthiness and
correctness of attributes, and the second - to freshness. Usually,
all types of uncertainties exist in the system and summing
these uncertainties implies the multiplication of their corre-
sponding probabilities. How to calculate a probability of a
freshness uncertainty is given in [10], [9].

Definition 5: (Effective Enforcement of Access Control)
The reference monitor enforces the policy effectively by
computingPrRM and picking one of the following strategies:

(i) enforce by comparing with a thresholdPrth: if PrRM ≥
Prth, the reference monitor grants the access, and denies
otherwise. Formally:

Pr[Gt̃pre |PrRM ≥ Prth] = 1,Pr[Gt̃pre |PrRM < Prth] = 0

(ii) enforce by flipping a coinwith PrRM of choosing
a grant decision. If the coin flipped to grant, the reference
monitor grants the access and denies otherwise. Formally:

Pr[Gt̃pre ] = PrRM

For better efficiency, we introduce anon-oblivious enforce-
ment of a security policy. The basic idea is that the reference
monitor grants the access and remains aware on additional
informationE suitable to estimatePrRM better. When this
information arrives, the reference monitor recomputes previous
positive access decisions. If the initial decision was erroneous,
the reference monitor invokes some forensic security mecha-
nisms and expects a reward for accesses which were granted
wrongly. In some cases, the non-oblivious enforcement can be
as cost-effective as the correct enforcement.

Let an attribute be uncertain because of freshness II. Assume
that, the reference monitor grants the access and after some
period of time queries the attribute value att̃pre. Let this value
satisfy the policy, i.e.E = Ht̃pre . Thus, the reference monitor
recomputesPrRM = Pr[Htac

· Ht̃pre |Htac
· E] = 1, and

realises that the initial access was madecorrectly.
As another example, let the policy grant the access to the

storage service if the user provides the self-signed assertion
that information to store does not contain illegal data (i.e.
circulation of it violates third party copyrights). The attribute
uncertainty should be less then a specified thresholdPrth.

The attributea is pushed with the initial request, and
assume that only its trustworthiness is uncertain, i.e.PrRM =
Prtr[H ], whereH = Htac

|Hobs
tac

. If PrRM ≥ Prth holds, the
reference monitor grants the access. Further, the system does
not impose any control and the usage session can be ended
only on the user’s demand. Imagine, that during the access
the reference monitor receives the evidenceE from a trusted
party, that the data stored by the user is illegal. In this case, the
reference monitor understands that the initial access decision
was incorrect. For the given example, assume that:

• Pr[E |H ] denotes the probability of seeing the evidence
E if the data is actually correct, i.e. the evidence is false
positive;

• Pr[E |H ] denotes the probability of seeing the evidence
E if the data is actually illegal. This probability always
equals to1;

• Pr[H |E] denotes the probability that the stored data is
illegal if the evidence of such violation is present.

The reference monitor revises previous estimates of the at-
tribute trustworthiness usingBayesian inferenceand the re-
evaluated probability of the policy satisfaction is given by:

Pr
new
RM = Prtr[H |E] =

=
Pr[E|H ] ·Prtr[H ]

Pr[E|H ] ·Prtr[H ] +Pr[E|H ] ·Prtr[H ]

In fact, if Pr
new
RM < Prth the reference monitor revokes the

access immediately upon receiving the evidence. Notice, that
revision can be forward, and backward, i.e. the evidence may
state that the stored content is perfectly good.

B. Effective Enforcement of Usage Control

Suppose, the reference monitor only pulls attributes, oper-
ates with observed attributes and evaluates the policyk times
Hobs

ta1
, Hobs

ta2
, ..., Hobs

tak
, then:

PrRM = Pr[Huc|H
obs
ta1

·Hobs
ta2

· ... ·Hobs
tak

] =

= Pr[H[tperm:ta1] ·Hta1
· ... ·H[tak−1:tak] ·Htak

·H[tak:t̃now]|

Hobs
ta1

·Hobs
ta2

· ... ·Hobs
tak

]

Using conditional probabilities:

PrRM = Prfr[H[tperm:t̃now]|H
obs
ta1

·Hobs
ta2

· ... ·Hobs
tak

] ·

Prcor∗tr[Hta1
·Hta2

· ... ·Htak
|Hobs

ta1
·Hobs

ta2
· ... ·Hobs

tak
]

The first probability corresponds to freshness of attributes, and
the second to correctness and trustworthiness of attributes.



If trustworthiness and correctness remain constant, e.g. the
attribute is measured always with the same precision, then:

Prfr[H[tperm:t̃now]|H
obs
ta1

·...·Hobs
tak

]·(Prcor∗tr[H |Hobs])
k

(2)

Important result shown by this formula is that the probability
of the policy satisfaction (in presence of all uncertainties)
decays exponentially in number of attribute queries and policy
checks.

Definition 6: (Effective Aperiodic Enforcement of Usage
Control) The reference monitor effectively enforces the policy
under uncertainties by timẽtnow and:

1) computes the probability of the policy satisfaction since
the last observed attribute:

PrRM = Pr[H[tak:t̃now]|H
obs
tak

]

2) idles untilPrRM ≥ Prth and then performs attributes
pulling;

3) if pulled attributes satisfy the policy - continue the usage
session and go to 1, otherwise - revoke the access.

VI. COST MODEL OF THEPOLICY ENFORCEMENT

We assign monetary outcomes for granting and revoking
access to legitimate users and those whose attributes violate
security policies. Additionally, we place a price paid to obtain
fresh attribute values. Notice, the frequent attribute queries
are too expensive whereas rare checks lead to losses due to
possible policy violations. We estimate theaverage time of the
usage session(tav) and theexpected profit(Cav) preserving
security.

A. Cost Matrix

The reference monitor chooses between twoalternatives
(grant access and deny/revoke access) only one, which is
as good as possible. Good means that the reference monitor
grants access to legitimate users and the policy holds, and
forbids the access to unauthorized entities otherwise. In the
presence of uncertain attributes, the reference monitor is
unable to infer accurately whether the policy holds, and,
consequently, to choose a good alternative. There are four
scenarios how the reference monitor acts processing uncertain
attributes:

• true positive: grant access and the policy holds;
• false negative: grant access and the policy is violated;
• false positive: deny access and the policy holds;
• true negative: deny access and the policy is violated.

True positiveand true negativeare good-chosen alternatives,
while false negativeand false positiveare erroneous. Each
scenario has a monetary outcome, cost, the reference monitor
loses/gains choosing this scenario.

Let Cac
tp denotes the cost of the true positive scenario,

when the reference monitor grants the access operating with
observed attributes and the policy really holds for real at-
tributes.Cac

fn, Cac
fp, Cac

tn are costs of the remaining scenar-
ios, respectively. The semantics of costs for access control
corresponds to ‘pay-per-access’ attributes, and specifiesthe

exact benefits and losses the system gains for a given access
request. It is difficult to determine costs for every policy,but
if the reference monitor behaves correctly the costs should
be positive:Cac

tp ≥ 0, Cac
tn ≥ 0; and negative in the case

of erroneous decisions:Cac
fp < 0, Cac

fn < 0. For simplicity,
assumeCac

tn = 0.
The semantics of costs for usage control corresponds to

‘pay-per-time-of-usage’ attributes, and specifies the exact ben-
efits and losses the system gains in a unit of time for a given
usage session. Costs for usage control are given by:cuctp , c

uc
fn,

cucfp, cuctn . Average cost of a usage sessionCuc
av = cuc · tav,

wheretav is session’s duration.

B. Costs of Attribute Queries

Let Cph denotes a cost to push a current attribute value with
a time stamp indicating when the last change happened. For
pulling, costs are:

• C
pl
0 is paid to pull a current attribute value with a time

stamp of the last change;
• C

pl
1 is paid to pull an attribute value at a given timet;

• C
pl
2 is paid to pull a time stamped attribute value and a

number of changes since that;
• C

pl
3 is paid to pull all time stamped attribute changes

during a time interval.

Obviously,0 < Cph = C
pl
0 ≤ C

pl
1 < C

pl
2 < C

pl
3

C. Cost of Access Control Enforcement

For access control, along with a cost of granting the access
there is at least one cost paid to pull/push an attribute:

Cac
av = Cac

tp ·Pr[G ·H ] + Cac
fn ·Pr[G ·H]

+ Cac
fp ·Pr[G ·H ] + Cac

tn ·Pr[G ·H] + Cph
(3)

or using conditional probabilities:

Cac
av = Cac

tp ·Pr[H ] ·Pr[G|H ] + Cac
fn ·Pr[H ] ·Pr[G|H ]

+Cac
fp ·Pr[H ] ·Pr[G|H ] + Cac

tn ·Pr[H ] ·Pr[G|H ] + Cph

1) Correct Enforcement:If the reference monitor enforces
the policy correctly, then there are only 2 possible scenarios:
true positive and true negative.

The average profit per access request is given by (see
Equation 3):

Ccor
av = Cac

tp ·Pr[Hac] + Cph

2) Effective Enforcement:The reference monitor is pow-
erful to compute the probability of the policy satisfaction
operating with observed attributes. If the reference monitor
enforces a policyeffectively by flipping a coinit will gain the
average profit per access request:

Cflip
av = Cac

tp ·(Pr[Hac])
2+(Cac

fn+Cac
fp)·Pr[Hac]·Pr[Hac]+Cph

When the reference monitor enforces a policyeffectively by
comparing with a thresholdthe average profit depends mostly



on the selectedPrth. It can be inferred from [10], [9] that the
maximum profitCthr

av would be if:

Prth =
Cac

tn − Cac
fn

Cac
tp − Cac

fn − Cac
fp + Cac

tn

In case ofeffective non-oblivious enforcement, the average
profit per access request is almost as in the case of the correct
enforcement including the cost of additional queries during the
access and possibility to deny the access to legitimate users:

Cobl
av = (Cac

tp + C
pl
1 ) ·Pr[Hac] + Cac

fp ·Pr[G ·H ] + Cph

3) Simulation Results:Following the approach in [10], [9]
we consider a mutable attribute which encodes a reputation
of a requester. The attribute mutability is modelled as a
stochastic process, i.e. a time-homogeneous ergodic discrete
Markov chain [8] (see Figure 2). The attribute domain is

Fig. 2. A Reputation Attribute Model

A = {1, 2, 3, 4} and let the policy deny the access ifa = 4.
The attribute is pushed with the initial request attac.

Impose, that the value observed by the reference monitor is
uncertain due to inevitable delays occurred during delivery (i.e.
freshness II). Thus, the reference monitor needs to compute
PrRM to enforce the policy effectively (see Equation 1). We
make an assumption, that the reference monitor knows the one-
step transition matrix of the Markov chainProb (see Figure
2). Thus,PrRM is given by [10], [9]:

PrRM = Pr
II

fr [Ht̃pre |H
obs
tac

] =
∑

j∈{1,2,3}

(ST
tac

·Prob
n)[j]

where the vectorStac
specifies the probabilities distribution

over good states attac.
Let the attribute valuea change every time tick, thusn =△

tproc = t̃pre − tac means that the attribute changed its value
n times since the reference monitor observed it.

Next, we picked the following costs:Cac
tp = 50, Cac

fn =
−10, Cac

fp = −5, Cac
tn = 0, and to query an attribute we pay

Cph = −2.
Then, we performed a set of simulations (100000 per each

n) to show which of the enforcement models is the most cost-
effective for a given access control scenario. We computed the
average profit per access request for thecorrect enforcement
Ccor

av , for the effective by comparing with a thresholdCthr
av ,

and for theeffective by flipping a coinCflip
av . We varied the

time interval between the attribute was observedtac and the
access decision enforced̃tpre. In fact, as bigger this gap, the
more changes of the attribute value occur.

Figure 3 shows the obtained results. Obviously,∀n : Ccor
av ≥

Cthr
av , Ccor

av ≥ Cflip
av , i.e. the average profit per access request
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Fig. 3. Cost-effective Enforcement of Access Control

for thecorrect enforcementis always higher. Interestingly, that
for n ≤ 4 it is more profitable to enforce the policy flipping
a coin, while for a bign comparing to the specified threshold
is more effective.

D. Cost of Usage Control Enforcement

For usage control, we assume that a user never ends sessions
on demand, and each session will be eventually revoked due
to the policy violation.

1) Correct Enforcement:The policy is enforced correctly if
all attribute changes satisfy the policy. Thus, for usage control
there is a geometric distribution for the policy satisfaction and
the average usage time is given by:

tucav = λ

∞∑

k=0

(k ·
∏

0≤i≤k

Pr[Hti ])

where k is a number of policy checks, andλ denotes the
average number of attribute changes between adjacent checks.

The average profit per usage session:

Cuc
av = tucavc

uc
tp + Cph(1 +

∞∑

k=0

(k ·
∏

0≤i≤k

Pr[Hti ]))

If Cph = 0 we receive the maximum possible profit for a
usage session when security is preserved.

VII. R ELATED WORK

Unintentional uncertainties related to freshness of attributes
can be seen as particular cases oftimelinessand currency
factors from Bouzeghoub and Peralta [4]. Freshness of the first
type relates to the problem of defining the frequency of updates
(timeliness), while freshness of the second and third types
is caused by natural delays in delivery of the authorization
information (currency).

There are several related work on risk in access and usage
control. Aziz et al. [3] assess policies considering different
types of risk - operational, combinatorial and conflict of
interest. The approach is focused on reconfiguration of policy



in a way to reduce its risk and save its strength. Han et al.
[7] describe the approach to pre-evaluate security of policy
using risk before enforcement. We don’t consider composing
of policies and assume that they are created in a secure
way. Instead, our approach discusses peculiarities of collecting
uncertain attribute values and problems connected with this
issue.

Several approaches [16], [6], [12] use risk assessment to
analyze cost of possible outcomes of access and employ a cost-
benefit analysis to make an access decision. These methods
consider a static decision making process while our approach
analyzes the dynamic behavior of the system.

Few methods describe trustworthiness of policy arguments
and update mechanisms. Skalka et al. [15] discussed the
approach to evaluate credentials for distributed authorization
with risk. Next to paying attention to trustworthiness of
attributes our approach is also focused on their freshness.

The approach proposed in [11] empowers the UCON model
with risk assessment. This paper describes an approach for
selection of service providers (data consumer) in a service
oriented architecture (SOA). The model of risk-aware usage
policy enforcement is devoted to another problem: enforce-
ment of policies by a resource provider rather by a requestor
and making a rational decision about further accesses.

An examples of dealing with uncertain attribute values in
UCON is given in [2]. Each remote attribute is associated
with a security label which represents the trusted status of
the attribute, and could change as the result of the attribute
update. Since updates can run on a remote host, the behavior
identifies whether the current value of the attribute is trusted
within a specific platform. The model examines how to ensure
the correct enforcement of the UCON policy particularly if the
reference monitor is placed on the requestor’s side.

VIII. C ONCLUSIONS ANDFUTURE WORK

We introduced the model of the cost-effective enforcement
of UCON policies. We specified uncertainties associated with
security attributes and defined correct and effective policy
enforcement models. We analysed the most cost-effective en-
forcement models for access control scenarios. We highlighted
the idea of the non-oblivious enforcement for each access
decision done using uncertain attributes. We pointed to a bunch
of novel attribute pull queries which may help enforcing usage
control policies.

As drawbacks, we do accept the assumption that the un-
certainty can be modelled with the probability of the policy
violation and this probabilities are known. In fact, there are
inevitable difficulties on determining probabilities, andon
assigning the costs.

For a future work we are going to address these issues.
Besides, UCON policies also containactions, e.g. attribute
updates and obligations whose fulfilment can be uncertain too.
We would like to capture these uncertainties and focus more
on the continuous policy enforcement. Last but not least, we
would like to take into account the diversity of users and
instead of accepting an universe Markov chain for all users

to implement a Markov decision process adopting on-fly to a
particular user.
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