
The Meaning of Logs ?

Sandro Etalle??, Fabio Massacci and Artsiom Yautsiukhin
sandro.etalle@utwente.nl and {evtiukhi, massacci}@dit.unitn.it

University of Trento, DIT

Abstract. While logging events is becoming increasingly common in
computing, in communication and in collaborative work, log systems
need to satisfy increasingly challenging (if not conflicting) requirements.
Despite the growing pervasiveness of log systems, to date there is no
high-level framework which allows one to model a log system and to
check whether it meets the requirements it should satisfy.
In this paper we propose a high-level framework for modeling log systems,
and reasoning about them. This framework allows one to give a high-level
representation of a log system an to check whether it satisfies given audit
and privacy properties which in turn can be expressed in standard logic.
In particular, the framework can be used for comparing and assessing log
systems. We validate our proposal by formalizing a number of standard
log properties and by using it to review a number of existing systems.

1 Introduction

In the past few years we have witnessed a struggle between two competing forces:
privacy protection and fight against cyber-crime. Privacy protection has called
for new regulations [14, 5], new technological solutions [2, 4] and re-thinking of
business interactions [8]. On the other hand, efforts in countering cyber-crime,
have led to increasingly invasive laws [12] and new auditing and monitoring
techniques [23, 3, 1].

Such clash is most evident in the realm of auditing in general, and in the
regulations on how logs should be taken, maintained and deleted in particular.
A folklore pun well describes the problem as follows: if logs mention private in-
formation they are forbidden and if they do not - they are useless. For instance,
an important privacy requirement for log systems is the compliance with the
maximal retention period (the time after which a company has to delete user’s
data) which in some cases must be determined on a need basis [2, 4, 11] (e.g. ser-
vice providers have to delete logged data when they do not need it any longer to
offer their services). On the other hand, logs have to be kept for audit purpose or
for computer forensics. This problem goes beyond privacy in databases: Internet
Service Providers (ISPs) have similar regulations [10, 26]. A recent amendment
? This work was partly supported by the project EU-IST-IP-SERENITY, contract N

27587
?? Permanent address: University of Twente, the first author’s contribution took place

when he was visiting the University of Trento.

to EU Directive N 2002/58/EC [12] requires service providers (i.e. ISPs, e-mail
services, communication providers) to store their logs for not less than 6 months
to help law enforcement agencies. Consequently, sensitive information about a
user may be in the system after the user’s own account has been deleted.

We notice that even though logs are ubiquitous in computing and telecom-
munication security and there is a significant amount of work on analyzing logs1,
we find relatively few papers on design and analysis of log systems [27, 21, 13]
and on what security properties a log system may or should exhibit [16]. This is
somehow striking in comparison with the large body of work on security prop-
erties for e.g. security protocols or security models for access control.

In this paper we define a formal framework for modeling and analyzing log
systems, which allows one to provide a high level specification of a log system,
thereby allowing her to check whether it has the expected properties (e.g., if it
meets given privacy or audit requirements). in particular, our framework can be
used to compare different log systems with each other.

To validate our proposal, we include a survey of the requirements that are
applicable to log systems, and we show how to represent them formally. In addi-
tion, we have considered a number of log systems taken from the literature and
we show how they compare to each other when modeled in our framework.

2 Log Requirements

To be useful, logs often have to meet various requirements. Here we list the
most common of them (collected from various papers in the literature: ISO17799
[15], CC [16], [6]); later, we will be able to give a precise formalization of these
properties. First we need to specify some notation: here we talk about (real
world) events and call trace a sequence of events. In turn, a trace may be logged
in a log ; by recovering a trace we indicate the action of associating to a given
log the trace(s) of event that could have generated it.

– Completeness: All events in a trace of events can be recovered from its log.
– Partial Completeness: All events in a trace of events matching a given prop-

erty (relevant events) can be recovered from its log.
– Past Independence: In a trace, older events have no influence on the log and

recovery of newer events.
– Future Independence: In a trace, newer events have no influence on the log

entries of older events, nor on their recovery.
– Context Independence: The conjunction of past and future independence.
– Chaining : Valid logs become invalid if an intermediate record is altered.
– Exactness: The recovery of a log of a trace is unambiguous: given a log there

is a unique trace of events which could have generated it.

Events in a trace usually have attributes (e.g. date, user name, address); the
following properties concern whether a given log system allows or not to recover
a certain attributes. This is particularly important for privacy protection.
1 See the RAID conference series, for example.

2

– Complete Anonymity (w.r.t. attribute A) : The recovery of an event does not
give any information on the value of its attribute A.

– Ambiguity (w.r.t. attribute A): The recovery of an event does not allow one
to establish the value of its attribute A.

– Linkability (w.r.t. attribute A): It is possible to determine whether two re-
covered events had the same value for attribute A (notice that the system
could still be ambiguous w.r.t. A).

– Positive/Negative Monotonicity : Newer events do not introduce/reduce ano-
nymity in older events.

An example of a log system which is not past independent is e.g. Linux, which
records a user’s name together with the assigned pseudonym (note that in Linux
pseudonyms are used for convenience, and not to preserve users’ privacy). An ex-
ample of a system which does not satisfy future independence is one in which log
entries are destroyed after a given retention time. Positive monotonicity is impor-
tant when we do not want to lose information we logged. Negative monotonicity
is important from the privacy perspective.

3 A formal model of logs

To introduce our framework we start by providing the definition of the world
model, which is the environment where logging takes place. Here and in the
sequel, given a set X we denote by 2X its powerset and by X∗ the set of sequences
of elements from X.

Definition 1. A World Model is a tuple 〈E, T,AD, {AFi}i∈I〉; where: E is a
set of real world events; T ⊆ 2E∗

is a set of valid traces; AD is a general
attribute domain which includes all possible dimensions (e.g. strings, real, data,
etc.); {AFi}i∈I is a set of attribute functions, which given a sequence of events
return the corresponding sequence of attribute values: E∗ 7→ (2AD)∗ (e.g. user(),
date()).

Now we can define a log system which records events from the world model.

Definition 2. Let WM=〈E, T,AD, {AFi}i∈I〉 be a world model, then a Log Sys-
tem for WM is a tuple 〈R,L,Log(), Rec()〉; where: R is a set of records; L ⊆ 2R∗

is a set of valid logs in the system. Log: E∗ 7→ R∗ is the function mapping a trace
of events into a log. Rec: R∗ 7→ 2E∗

is the function which given a log returns the
set of traces with the log.

In other words, the recovery function Rec() maps a log into the set of traces
of events that could have originated the log. Considering that some information
might be lost during the logging process (e.g., in the case of anonymous systems),
it can well be the case that the Rec(l) contains more than one trace. We denote
events by e and records by r. A trace is represented by t = 〈e1, e2...en〉. Similarly,
a log is denoted by l = 〈r1, r2...rn〉. In the sequel, x ◦ x′ means that sequence x′

is appended to (after) sequence x preserving elements order.

3

Example. Let us describe a log system using pseudonyms (as in [17]). Consider
a hospital-based database containing medical and personal data of patients. The
hospital keeps track of all accesses to the database both to prevent data link-
age (privacy) and for accountability purposes. To define the World Model, we
introduce the following domains: Time is a set of positive integer values which
denote time; Operator is a set of users (represented as a strings) who have access
to patient data; Patient is a set of all possible patients of the hospital (repre-
sented as strings); Status is the set: {successful, failed} used to denote if an
action was accomplished by the system or not. The general attribute-domain is
AD=Time

⋃
Operator

⋃
Patient

⋃
Status. Finally, attribute functions are de-

fined and named according to as the domains above AF={Time(), Operator(),
Patient(), Status(), Data()}. In the world model, there are six types of events
(here, t ∈ Time; o ∈ Operator; p ∈ Patient; s ∈ Status):

E={ login(t,o,s) (Operator) o logged-in at time t ;
logoff(t,o,s) o logged-off at time t ;
add(t,o,p,s) o added the record of p to the system at time t ;
read(t,o,p,s) o read the record of p at time t ;
update(t,o,p,s) o updated the record of p at time t ;
delete(t,o,p,s) o deleted p from the system at time t}

Having defined the possible events, a valid trace is any ordered (in time) sequence
of such events. T = {t ∈ E∗| if ∀ei ∈ t ∧ ∀ej ∈ t . i < j =⇒ Time(ei) <
Time(ej)}. We can now move on to the definition of the log system. Let us
first define some additional domains: Patient id is a set of all possible iden-
tifiers (strings) of all patients; Record id is a set of integers which unambigu-
ously point at a log record. Note, that the Patient domain from the world
model differs from Patient id, as the real names of patients are substituted
with pseudonyms. We underline the identifier to refer to the pseudonym, so
p is the pseudonym of patient p. We also underline the records to distinguish
between records and events. The log system has four types of records (here,:
j ∈ Record id; t ∈ Time; o ∈ Operator; p ∈ Patient id; s ∈ Status;):

R={ add(j,t,o,p,s) o added the record of p to the system at time t ;
read(j,t,o,p,s) o read record of p at time t ;
update(j,t,o,p,s) o changed record of p at time t ;
delete(j,t,o,p,s) o deleted p from the system at time t }

Record identifiers (j) are assigned incrementally. We can now define the Log()
function:

Log(t) =

add(j, t, o, p, s) ◦ Log(t′) if t = e ◦ t′ and e = add(t, o, p, s);
read(j, t, o, p, s) ◦ Log(t′) if t = e ◦ t′ and e = read(t, o, p, s);
update(j, t, o, p, s) ◦ Log(t′) if t = e ◦ t′ and e = update(t, o, p, s);
delete(j, t, o, p, s) ◦ Log(t′) if t = e ◦ t′ and e = delete(t, o, p, s);
Log(t′) if t = e ◦ t′ and none of the above applies;
ε otherwise.

The mapping between a patient and his pseudonym is done with a special bind-

4

ing table to which access is restricted. Notice that we assume that login and
logoff events are not logged. To define the recovery function, let M be the set
of bijective mappings Patient id 7→ Patient; given m ∈ M we define Rm as
follows:
Rm(l ◦ add(j, t, o, p, s)) = Rm(l) ◦ add(j, t, o, m(p), s)
Rm(l ◦ read(j, t, o, p, s)) = Rm(l) ◦ read(j, t, o, m(p), s)
Rm(l ◦ update(j, t, o, p, s)) = Rm(l) ◦ update(j, t, o, m(p), s)
Rm(l ◦ delete(j, t, o, p, s)) = Rm(l) ◦ delete(j, t, o, m(p), s)

(where Rm(ε) = ε); then we can define the recovery function: Rec(l) = {t| t =
Rm(l) for some m ∈ M}. Notice that the recovery function maps a log into a set
of traces. Consider the following list of events: Login(8:58 21/10/2006,2,Edward
Green,successful) Add(10:30 21/10/2006,Edward Green,Mackle Daniels,successful)
Login(12:00 21/10/2006,Suzi Wallach,successful) Changed(12:21 21/10/2006,Suzi
Wallach,Paul Anderson,failed) Changed(12:22 21/10/2006,Suzi Wallach,Mackle
Daniels,successful) Then the corresponding log is:

Record ID Cause Time Operator Patient Status
1 Add 10:30 21/10/2006 Edward Green 102 successful
2 Update 12:21 21/10/2006 Suzi Wallach 101 failed
3 Update 12:22 21/10/2006 Suzi Wallach 102 successful

As one can see the log file itself (without knowledge of the bijection mapping)
does not disclose any information about the patients of the hospital other than
the fact that records 1 and 3 concern the same patient. If an operator who has no
access to the private data tries to recover the log he obtains six possible traces:
one for each pseudonym-user assignment.

4 Properties

The formal log system allows us to give a precise definition of the informal
properties stated in Section 2, this will provide us with a basis for assessing and
comparing different log systems.

Having a formal definition of these properties is very important to make them
precise, which is a less trivial task than it may seem at first. For instance, even
a simple property such as Completeness may be defined in different ways; in
particular, if we allow new events to cause the deletion of past records (which is
usual in the real world) the definition changes. Let WM=〈E, T,AD, {AFi}i∈I〉
be a world model, and 〈R,L,Log(), Rec()〉 be a log system for WM:

Definition 3 (Properties).
– Trace Completeness: ∀t ∈ T t ∈ Rec(Log(t)).
– Partial Trace Completeness (w.r.t. a property P . Here we simply indicate by

P (t) the subsequence of t consisting of all and only events satisfying property
P). ∀t ∈ T . P (t) ∈ Rec(Log(t)).

2 Time is stored as an integer value, but for the sake of simplicity it is represented as
usual.

5

– Future Independence: ∀t, t′ ∈ T . t′ ∈ Rec(Log(t)) ⇐⇒ ∀t1 ∈ T ∃t′1 ∈
T . t′ ◦ t′1 ∈ Rec(Log(t ◦ t1))

– Past Independence: ∀t, t′ ∈ T . t′ ∈ Rec(Log(t)) ⇐⇒ ∀t1 ∈ T ∃t′1 ∈ T . t′1 ◦
t′ ∈ Rec(Log(t1 ◦ t)).

– Context Independence: conjunction of future and past independence.
– Chaining: l ◦ 〈r〉 ◦ l′ ∈ L =⇒ ∀r′ 6= r l ◦ 〈r′〉 ◦ l′ 6∈ L.
– Exactness: ∀t ∈ T {t} = Rec(Log(t))

To express most privacy-related properties we need to be able to make the cor-
respondence between single events and single log entries. In particular, if e is an
event in a trace t and t′ ∈ Rec(Log(t)) we have to be able to tell which event in
t′ corresponds to the original e. We denote this event by t′ ↓ e. In most cases,
the correspondence function ↓ is realized quite simply by assigning consecutive
numbers to events and log entries.

Definition 4 (Privacy Properties). Let AF be an attribute function.

– Complete Anonymity (w.r.t. AF): ∀t ∈ T ∀t′ ∈ Rec(Log(t)) ∀e1, e2 ∈
t′, AF (e1) = AF (e2).

– Ambiguity (w.r.t. AF): ∀t ∈ T ∀e ∈ t |AF (Rec(Log(t)) ↓ e)| > 1.
– Linkability (w.r.t. AF): ∀t ∈ T ∀ei, ej ∈ t . AF (Rec(Log(t)) ↓ ei) =

AF (Rec(Log(t)) ↓ ej) ⇐⇒ AF (ei) = AF (ej)
– Positive Monotonicity (w.r.t. AF): ∀t, t′ ∈ T ∀e ∈ t AF (Rec(Log(t)) ↓ e) ⊆

AF (Rec(Log(t ◦ t′)) ↓ e)
– Negative Monotonicity (w.r.t. AF): ∀t, t′ ∈ T ∀e ∈ t AF (Rec(Log(t)) ↓ e) ⊇

AF (Rec(Log(t ◦ t′)) ↓ e)

Consider again the system shown in the Section 3. The system is not complete
since exist events (e.g., t′=Login(t,o,s)) that are not logged corresponding logs;
it is partially complete w.r.t. the property P which is true for all events except
for login and logoff. The system in our example is context independent because
the recovery of a record does not depend on other records; it is not chained
since changes in the log are not noticeable by the system since by definition of
L any sequence of records from R is valid; it is not exact because pseudonyms
are mapped back (by the recovery function) to any person belonging to the set
of patients; for the same reason, it is completely anonymous. Notice however
that the system is still linkable: it allows us to see if two events pertain to the
same patient (though the presence of the pseudonym does not allow to see which
patient it is) as every user has only one identifier and visa versa. It is monotonic
since it is context independent (see Theorem 1).

We can now relate some of these properties to each other. The proof of the
following theorem is given in the Appendix.

Theorem 1.
1. Every exact system is complete.
2. Every ambiguous system is not exact.
3. Every exact system is context independent.
4. Every exact system is (positively and negatively) monotonic.
5. Every future independent system is (positively and negatively) monotonic.
6. Every complete and anonymous system is ambiguous.

6

Examples. We now use the properties just defined to assess and compare some
existing logging systems.

Pseudonyms based systems [17–19]. These systems use pseudonyms to
hide user identities to regular log users while allowing special authorized parties
(who have access to the pseudonymization function) carry out precise auditing,
The basic idea is to substitute private information with an arbitrary string (the
pseudonym). The correspondence between pseudonyms and user identifiers is
stored in some binding database with restricted access (here we should mention
that even the use of pseudonyms does not guarantee complete protection from
the use of statistical methods to reconstruct the behavior of user [9, 19]).

Linux logs. Sometimes pseudonyms are used for convenience rather than
for privacy reasons. The Linux log system is an example of such pseudonymiza-
tion ante-literam: here, user identities are partially hidden using group and user
identifiers which can be considered as pseudonyms (e.g. user ”grayyoga” has
pseudonym 1001:100). The binding between user and her pseudonym is stored
in the /etc/passwd file. Still, all kernel audit information contains no references
to the username but only to the user id3. On the other hand, when a new user
is added in the system his identity and pseudonym are stored in a log file. This
means that even if access to the /etc/passwd file is denied it is possible to recover
a user identity by consulting the log file.

Buschkes-Kesdogan system [7]. Buschkes and Kesdogan proposes a log
system which uses group pseudonyms (e.g. for access right management). Before
logging into a server a user receives from a Trusted Third Party (TTP) a cre-
dential containing a Group Reference Pseudonym (GRP). When she connects
to the server, she reveals her credential and the server authenticates the user
as a member of a group according to the GRP. The main peculiarity of the log
system is that a pseudonym id corresponds to a set of user identifiers.

IDA system [24]. The IDA log system uses a pseudonyms as well, but
instead of substituting the private information with a pseudonym the data is
encrypted. The main advantage of the system is that for re-identification of logs
no binding database is required: the information needed for full recovery is a
decryption key.

Waters et al. [27]. Our last example is to the system of Waters et al.,
where log entries encrypted as a whole. This solution eliminates the need to store
the correspondence between users and their pseudonyms. The disadvantage of
this approach is that – in general – searching in encrypted logs is difficult. To
overcome this problem the system stores keywords of each log entry which in
turn are encrypted with a unique key. This allows the system to carry out limited
search actions while offering good data protection. The authors also use a hash
function to preserve the order and integrity of the log.

Finally, we can compare these systems in terms of some of the properties we
have defined above.

3 See http://www.die.net/doc/linux/man/man8/auditctl.8.html

7

C
on

te
x
t

In
d
ep

en
d
en

ce

C
om

p
le

te
A

n
on

y
m

it
y

A
m

b
ig

u
it
y

M
on

ot
on

ic
it
y

L
in

ka
b
il
it
y

E
x
ac

tn
es

s
4

C
h
ai

n
in

g

Linux logs – – –
√ √

– –
Lundin–Johnnson [17]

√ √ √ √ √
– –

Buschkes–Kesdogan [7]
√

–
√ √

– – –
IDA [24]

√ √ √ √ √
– –

Waters et al. [27]
√ √ √ √

– –
√

5 Conclusion and Related Works

In this paper we propose an abstract framework for formalizing and reasoning
about log systems. Our framework allows one to model a concrete log system
and to check whether it satisfies certain properties; in particular it allows one
to check whether the system meets the various requirements such as the one we
have collected from the literature [6, 16, 24, 7].

The practical motivation for realizing this framework is given by the need
compare and assess precisely different log systems against the properties they
have to satisfy, which in our system can be expressed in a precise way using
a simple logic formalism. To validate our framework, we have encoded in it a
number of different systems ([17, 7, 24, 27]). To the best of our knowledge, this
is the first framework of this kind.

Related works There are a few works focusing on audit log properties. Billable
and Yee in [6] introduce forward integrity property and propose a system en-
forcing it. The well-known Common Criteria security standard [16] reports some
requirements which we have referred to as properties. The audit requirements
specify what should be stored in the logs and how to use the logs collected.

Most log formalizations have been developed for monitoring purposes [22, 20,
25]. Roger and Goubauld-Larrecq [22] investigate linear time logic for log au-
diting and propose another logic consisting of Wolper-style linear-time formulae
which make auditing more efficient. Spanoudakis et al. [25] propose a formal
description of compliance checking for web-service based systems. Mansouri-
Samani and Sloman [20] present GEM (generalized event monitoring language)
which is used for monitoring networks and distributed systems. B. Waters et al.
[27] provide a formal description of a searchable temper-resistant log model.

4 Note, that all these systems except [7] become exact if the operator has access to the
inverse mapping from pseudonyms to user names. Also note, that in contrast to the
system shown in our example, the system in [17] is complete and, therefore, exact if
the above condition holds.

8

References

1. R. Agrawal, R. J. Bayardo, C. Faloutsos, J. Kiernan, R. Rantzau, and R. Srikant.
Auditing compliance with a hippocratic database. In M. A. Nascimento, M. T.
Özsu, D. Kossmann, R. J. Miller, J. A. Blakeley, and K. B. Schiefer, editors,
Proceedings of the 30th International Conference on Very Large Data Bases
(VLDB’04), pages 516–527. Morgan Kaufmann, 2004.

2. R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Hippocratic databases. In P. A.
Bernstein, Y. E. Ioannidis, R. Ramakrishnan, and D. Papadias, editors, Proceed-
ings of the 28th International Conference on Very Large Data Bases (VLDB’02).
Morgan Kaufmann, 2002.

3. J. Allen, A. Christie, W. Fithen, J. McHugh, J. Pickel, and E. Stoner. State of the
practice of intrusion detection technologies. Technical Report CMU/SEI-99-TR-
028, Carnegie Mellon, SEI, January 2000.

4. P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enterprise privacy
authorization language (EPAL 1.1). Technical report, IBM, October 2003. avail-
able via http://www.zurich.ibm.com/security/enterprise-privacy/epal/ on
31/05/2005.

5. D. L. Baumer, J. B. Earp, and J. Poindexter. Internet privacy law: a compari-
son between the united states and the european union. Computers & Security,
23(5):400–412, July 2004.

6. M. Bellare and B. Yee. Forward integrity for secure audit logs. Technical report,
University of California at San Diego, 1997.

7. R. Buschkes and D. Kesdogan. Privacy enhanced intrusion detection. In G. Mueller
and K. Rannenberg, editors, Proceedings of the Conference on Multilateral Security
for Global Communication, pages 187–207. Addison-Wesley-Longman, 1999.

8. L. Cranor, M. Langheinrich, M. Marchiori, M. Presler-Marshall, and J. Reagle. The
Platform for Privacy Preferences 1.0 (P3P1.0) Specification. W3C, 1.0 edition,
April 2002.

9. J. Domingo-Ferrer and V. Torra. Disclosure risk assessment in statistical microdata
protection via advanced record linkage. Statistics and Computing, 13:343–354,
2003.

10. Electronic Privacy Information Center. Data retention. available via
http://www.epic.org/privacy/intl/data%5Fretention.html on 30/12/2005,
2005.

11. EU. Directive 95/46/EC of the european parliament and of the council. available
via Euro-Lex site http://europa.eu.int/eur-lex on 30/12/2005, 1995.

12. EU. DIRECTIVE 2006/24/EC OF THE EUROPEAN PARLIAMENT AND
OF THE COUNCIL on the retention of data generated or processed in
connection with the provision of publicly available electronic communica-
tions services or of public communications networks and amending directive
2002/58/ec. Official Journal of the European Union, 105/54, 2006. avial-
ble via http://www.ispai.ie/DR%20as%20published%20OJ%2013-04-06.pdf on
21/06/2006.

13. J. V. Hansen. Audit considerations in distributed processing systems. Communi-
cations of the ACM, 26(8):562 – 569, August 1983.

14. HIPAA. Health insurance reform: Security standards; final rule.
Federal Register, 68(34):8333–8381, February 2003. available via
http://www.hipaadvisory.com/regs/Regs%5Fin%5FPDF/finalsecurity.pdf

on 31/05/2005.

9

15. ISO/IEC. Information technology Security techniques Evalu-
ation criteria for IT security, November 2001. available via
http://www.standardsdirect.org/iso17799.htm on 01/06/2006.

16. ISO/IEC. Common Criteria for Information Technology Se-
curity Evaluation. Common Criteria Project Sponsor-
ing Organisations, 2.2 edition, January 2004. available via
http://www.commoncriteriaportal.org/public/expert/index.php?menu=3

on 27/10/2005.
17. E. Lundin and E. Jonnson. Privacy vs. intrusion detection analysis. In Proceedings

of the 2nd International Symposium on Recent Advances in Intrusion Detection,
1999. available via http://www.raid-symposium.org/raid99/ on 28/02/2007.

18. E. Lundin and E. Jonsson. Anomaly-based intrusion detection: privacy concerns
and other problems. Computer Networks, 34(4):623–640, October 2000.

19. B. Malin and L. Sweeney. How (Not) to Protect Genomic Data Privacy in a Dis-
tributed Network: Using Trail Re-identification to Evaluate and Design Anonymity
Protection Systems. Journal of Biomedical Informatics, 37(3):179–192, 2004.

20. M. Mansouri-Samani and M. Sloman. GEM: a generalized event monitoring lan-
guage for distributed systems. Distributed Systems Engineering Journal, 4:96–108,
1995.

21. Y. Ohtaki, M. Kamada, and K. Kurosawa. A scheme for partial disclosure of trans-
action log. IRICE Transaction on Fundamentals of Electronics Communications
and Computer Sciences, E88(1):222–229, January 2005.

22. M. Roger and J. Goubault-Larrecq. Log auditing through model checking. In
D. C. Young, editor, Proceedings of the 2001 IEEE Computer Society Security
Foundations Workshop, pages 220–236. IEEE Computer Society Press, 2001.

23. B. Schneier and J. Kelsy. Secure audit logs to support computer forensics. ACM
Transactions on Information and System Security, 2(2):159 – 176, May 1999.

24. M. Sobirey, S. Fischer-Hoebner, and K. Rannenberg. Pseudonymous audit for
privacy enhanced intrusion detection. In L. Yngstroem and J. Carlsen, editors,
Proceedings of the IFIP TC11 13 international conference on Information Secu-
rity (SEC ’97) on Information security in research and business, pages 151–163,
London, UK, UK, 1997. Chapman & Hall, Ltd.

25. G. Spanoudakis and K. Mahbub. Non intrusive monitoring of service based sys-
tems. International Journal of Cooperative Information Systems, 15(3):325–358,
2006.

26. Statewatch. UK-EU call for mandatory data re-
tention of all telecommunications. available via
http://www.statewatch.org/news/2005/jul/05eu-data-retention.htm, 2005.

27. B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smetters. Building an en-
crypted and searchable audit log. In Proceedings of the 11th Annual Sympo-
sium on Network and Distributed System Security, San Diego, 2004. available
via http://www.isoc.org/isoc/conferences/ndss/04/proceedings/index.htm

on 28/02/2007.

10

A Appendix

We now report the proof of Theorem 1. Note: This appendix is included
solely for the reviewer’s convenience. Should the paper be accepted
the appendix will be removed from the paper; the proof it contains
will be made available as technical report.

1. Every exact system is complete.
According to the definition of exactness, ∀t ∈ T {t} = Rec(Log(t)). This
means t ∈ Rec(Log(t)) holds in this case. But this is the definition of com-
pleteness.

2. Every ambiguous system is not exact.
According to the definition of ambiguity: ∀t ∈ T ∀e ∈ t | AFi(Rec(Log(t)) ↓
e)| > 1. This means that the event itself is ambiguous |Rec(Log(t)) ↓ e| > 1,
and so the whole trace |Rec(Log(t))| > 1. Because of this, we certainly have
that {t} = Rec(Log(t)).

3. Every exact system is context independent.
Consider three traces: ∀t1, t2, t3 ∈ T such that t2 = t◦t1. Now apply the defi-
nition of exactness to these traces: {t1} = Rec(Log(t1)) and Rec(Log(t2)) =
{t2}. According to our assumption that t2 = t ◦ t1 the second equation may
be rewritten as Rec(Log(t ◦ t1)) = {t ◦ t1} This is the definition of past
independence. The proof that an exact system is future independent can be
done in the same way with the assumption that t2 = t1 ◦ t.

4. Every future independent system is (positively and negatively) monotonic.
According to the definition of future independence: ∀t, t′ ∈ T . t′ ∈ Rec(Log(t))
⇐⇒ ∀t1 ∈ T ∃t′1 ∈ T . t′◦t′1 ∈ Rec(Log(t◦t1)). Let us take two sets of events
which are received after recovering event e from a trace: E′ = {t′ ↓ e | t′ ∈
Rec(Log(t))} and E′′ = {t′′ ↓ e | t′′ ∈ Rec(Log(t ◦ t1))} where t′′ = t′ ◦ t′1
and e ∈ t′. These two sets are equal since the parts of traces from which we
took the events are identical by the definition of future independence. This
means that: AF (Rec(Log(t) ↓ e)) = AF (Rec(Log(t ◦ t1) ↓ e)) and that the
system is positive/negative monotonic.

5. Every exact system is (positively and negatively) monotonic.
The proof follows from the facts that: exact systems are context indepen-
dent, the context independent systems are future independent and the future
independent systems are (positively and negatively) monotonic.

6. Every complete and anonymous system is ambiguous 5.
Consider any two events ∀e1, e2 ∈ E which belong to some trace e1, e2 ∈ t
and have different attribute values AF (e1) 6= AF (e2). Since the system is
complete e1 ∈ AF (Rec(Log(t)) ↓ e1) and e2 ∈ AF (Rec(Log(t)) ↓ e2). Then,
according to the definition of complete anonymity : AF (Rec(Log(t)) ↓ e1) =
AF (Rec(Log(t)) ↓ e2) ⊇ {e1, e2}. This implies that |AF (Rec(Log(t)) ↓ e)| >
1

5 We also assume that there is more than one user in the system since, otherwise,
privacy protection does not make sense

11

