
Mitigating Security Risks in Web

Service Invocations: Contract-Based

Approaches

Gabriele Costa

University of Genova, Italy

Roberto Mandati, Fabio Martinelli, Ilaria Matteucci, ArtsiomYautsiukhin

Institute of Informatics and Telematics of CNR, Italy

ABSTRACT
The pervasiveness of Web services increases the necessity for consumers to access and use them

in a secure way. Besides secure communications, consumer security also involves providing

strong guarantees that a requested security policy is satisfied. Needless to say, remote services are

adverse to most techniques of control and analysis that usually require direct access to either

execution or implementation. In this chapter, we classify service execution paradigms and

provide a characterization of the security threats that may affect a Web service infrastructure

depending on the elements composing it. In particular, we provide a discussion of the threat

models for several different Web service paradigms involving service consumers, providers, and

platforms and illustrate how and when contract-based security approaches and its variants can be

applied for mitigating risks in service invocations in the identified paradigms.

INTRODUCTION

Web services offer various functionalities to its consumers, including data storage, information

retrieval, social interaction, and more. A service and its clients interact through specific interfaces

defining the syntax and semantics of the exchanged messages (and their parameters). Papazoglou

(2007) defines some key roles for Service Oriented Computing; among them, the service

consumer and the service provider are the two most important ones. The two entities share

knowledge only about the service interface, i.e., the protocols that they use to communicate.

Existing protocols can guarantee security properties, e.g., authenticity and secrecy, on these

communications. However, messages can carry complex data or even executable instructions, for

example, mobile code, which makes the computation distributed over the involved systems.

Needless to say, mobile systems exacerbate the problem of providing security guarantees for both

service consumer and provider.

Recently, some proposals highlighted the advantages of including a third entity in services

architectures, that is, the service platform. In general, a service platform offers support to both

consumers and providers. For instance, consumers may ask the platform for information about a

service, e.g., its cost and its provider identity. Similarly, providers may obtain support for the

orchestration with other services. Clearly, each feature of the platform must be implemented by

appropriate components. When consumers and providers interact with a service platform, they

implicitly accept it as a trusted entity and they expect it to provide protection against possible

misbehaviors. According to its designated purpose, the platform may include support for service

publication and discovery, service composition, mobile code signature, and even execution.

In this chapter, we provide a characterization of the security threats which may affect a Web

service infrastructure, according to the elements composing it. In particular, we provide a

classification of the threat models for different Web service paradigms involving service

consumers, providers, and platforms. We consider the consumer point of view and examine three

main resources in each paradigm: the service code, the service contract, and the consumer policy.

Furthermore, we survey techniques that have been proposed for assessing security issues. Then,

according to the availability and reliability of the resources, we show how contract-based

approaches, such as Security-by-Contract and its variants can be applied to guarantee the security

of Web services. The result is a precise characterization of the necessary conditions for the

application of the security assessment methods for the Web services.

The chapter is organized as follows. The next section provides background information on

protection techniques for assessing security aspects in a service-driven environment and presents

related work in the area. Next, service composition paradigms considered in this work are

discussed followed by an illustration of how and when Security-by-Contract and its extensions

can be applied for guaranteeing security. Finally, a discussion about future work and some

concluding remarks are presented.

BACKGROUND

Several techniques have been proposed to tackle specific security aspects. These approaches may

be combined in security frameworks or used to guarantee the reliability of third-party provided

resources. In our context, resources are the service code, the service contract, and the consumer

policy.

We assume that each consumer specifies its security requirements, herein referred to as policies.

A policy is a security requirement that a consumer wants to apply to a service execution. In

general, consumers want to be sure that their policies will be respected during service execution.

A violation happens when a service S behaves in a way that is not allowed by the policies. Thus,

a threat corresponds to the possibility that a service violates a policy. Usually, consumers have

more than one policy to be satisfied by a service.

Generally, service providers release interface information about the provided service, called the

service contract. A service contract is a formal description of the service behavior. Contracts

typically describe the service in terms of interaction protocol (e.g., input and output channels,

message syntax, parameter types, and encryption algorithms) and service computation (e.g.,

message semantics, service state transitions, and resource usage).

The techniques listed below exploit these resources for obtaining security guarantees. In general,

these guarantees consist in proving that precise relations exist among (two or more) resources.

Evidence checking: In order to verify a piece of code statically, some methods use an entity

provided proof (evidence) and validate it. This entity can be a trusted third party or the developer

itself. The proof is linked to the code, e.g., through instrumentation, and the provider originally

computes it. Verifying the validity of the proof is more efficient than generating it. The

verification procedure follows the steps of the proof and if all of them are correct, validates its

conclusion. In our context, the proof conclusion can be the compliance either with a contract

(code-contract verification) or with a policy (code-policy verification). Notice that, as the proof is

computed by the provider, allowing customers to specify their own policies requires new proofs

to be generated. By the way, that makes this solution extremely cumbersome for service

providers. An instance of this approach is the model-carrying code method (Sekar et al., 2003).

Compliance verification (Matching): Static analysis techniques can be applied in order to certify

that a specification, e.g., a contract, is compliant with a required policy (contract-policy

matching). However, tools for verification suffer from the high complexity that rapidly grows

with both the expressiveness of the formalisms and the size of the specifications. Moreover, since

the steps of the verification chains can take place at different locations, we need some guarantee

on the reliability of these results.

Enforcement: The run-time enforcement approach consists of running a service code inside the

scope of a controller, which checks its execution step by step. At each operation, the behavior of

the service is compared with the consumer policy (policy enforcement). As violations are

prevented, the controller guarantees that the service running in the controller context satisfies the

policy. Many implementations of the policy enforcement approach have been proposed (Bauer,

Ligatti, & Walker, 2005). Nevertheless, they poorly fit with the distributed computation, typical

of Web services, where often there is no single location where the code is executed. In addition,

the reaction of the enforcement mechanism to violation detection can modify the standard service

behavior, e.g., by closing a session beforehand, thus introducing session failures. However, in

some cases, an enforcement facility can be included in the service execution environment,

provided by a service platform.

Monitoring: In contrast to enforcement, the monitoring approach only observes the behavior of

the service. The monitor does not intervene in the execution and only notifies the interested party

(e.g., consumer) about the events that occur. This information (e.g., audit logs) is analyzed and

decisions are made about possible violations of the contract (contract monitoring) or the policy

(policy monitoring). Such a monitor, which does not alter the behavior of the code, is called a

passive monitor.

Quantitative assessment: Security metrics aim at assessing security threats by releasing the

assumption that a system is either secure or not. These techniques use non-binary quantities, e.g.,

real or natural numbers, in security domains for representing the available knowledge about a

system. For instance, metrics can describe a system in terms of its reputation in a community,

number of past successful interactions, or average number of failures per year. Then, these values

are exploited in order to make security aware decisions. Among the others, trust and risk aspects

are receiving major interest.

Henceforth, we will discuss contract-based approaches that are able to guarantee security at run-

time in Web services. These approaches cover almost all functionalities described above

combining several aspects of these assessment techniques in an integrated way. In (Dragoni &

Massacci, 2007), the Security-by-Contract framework has been applied to Web services for

client-server interactions. In particular, the authors only consider cases in which the client

retrieves and executes the full service implementation. In this chapter, we cover this case and

extend the application of the Security-by-Contract framework by presenting new variants, which

fit better with more realistic and common scenarios.

Jones & Hamlen (2011) present a mechanism for securing remote service execution. Briefly, they

propose a reference monitor in-lining system able to inject security instructions in service

implementations. Although they can produce a secured version of the service implementation,

their method can only be applied when the whole computation takes place on the client side.

Recently, OSGi (OSGi Alliance, 2012) technology has received major attention for the

development of service platforms and several authors have proposed techniques to enhance its

security. In (Phung & Sands, 2008) the authors use a program transformation based approach to

add security monitoring instructions in OSGi bundles. Since they did not aim at assessing the

security of Web services in general, they did not consider the assumptions discussed in the

present work and we cannot compare their technique with those described here. Still, their work

shows how a service platform can automatically instrument a piece of code with security checks.

The Security-by-Contract methodology has also been proposed to deal with OSGi security issues

in (Gadyatskaya, Massacci, & Philippov, 2012), where the authors consider the case of an OSGi

platform applying a local security policy. Under these assumptions, they can apply the Security-

by-Contract framework with minor modifications. This approach offers no guarantees to bundle

providers and users; nevertheless, the extensions we describe can be applied to this work.

Carminati, Ferrari, & Hung (2006), consider the problem of guaranteeing that the composition of

Web services complies with security constraints. In practice, they propose a secure Web service

broker, i.e., a component that can generate a composition satisfying the security goals of both

provider and consumer. Since their proposal does not consider the necessity of handling mobile

code, it does not apply to our assumptions. However, our service platform definition is compliant

with the security components presented in (Gadyatskaya, Massacci, & Philippov, 2012), and they

can be included in our model.

The next section presents the security assessments under different Web service paradigms.

ASSESSING SECURITY IN WEB SERVICE PARADIGMS

In this section, we describe the possible architectural models considered in this chapter, which

arise from different service deployment configurations.

Beyond security specifications, which we assume to be always present, service networks differ in

their organization. In other words, a service implementation can be carried out by different

network participants, i.e., provider, consumer, and if present, a service platform. We classify

different paradigms according to the parties actually executing the service implementation.

Needless to say, the party executing a piece of software has full access to its structure and

behavior, including its security properties.

We identify three basic paradigms:

 Consumer-based paradigm: where code is entirely executed by the consumer.

 Provider-based paradigm: where code is entirely executed by the provider.

 Platform-based paradigm: where code is entirely executed by the platform.

Moreover, the recent trend is to distribute the service implementation over multiple entities. In

particular, we identify the following hybrid paradigms.

 Provider-Platform paradigm: where the service is implemented by the provider that also

uses platform-provided facilities.

 Consumer-Provider paradigm: where the service implementation is the composition of

consumer and provider executions.

 Consumer-Platform paradigm: where the service implementation consists of consumer

and platform execution.

Below, we detail this classification, also providing examples of each paradigm and highlighting

specific threats for each of them.

In order to provide a better understanding of the different paradigms and assumptions presented

in this chapter, we propose a simple example. The example consists of two services, i.e., H and T.

Service H offers access to a hotel reservation infrastructure, while T implements a travel booking

service. Since the tasks of T may include hotel booking, its developer is interested in composing

T with H. There is also an alternative service H', being a competitor of H, which offers a different

hotel booking service. The developer of T may select either H or H' for hotel booking. Thus, T is

a consumer for both H and H', while T itself is a service provider to its customers. Along the text,

we will adapt this example to the presented cases.

Consumer-based Paradigm

First, we consider a paradigm allowing a consumer to execute the provided code in order to get

some service. In this paradigm, the consumer has complete control over the execution. Thus, the

consumer is responsible for searching for a service it prefers, downloading the execution code of

the service, and executing the service on its own platform. Despite the fact that the consumer is

not often allowed to modify the downloaded service itself, it still has full control over what and

how it is executed on its platform. Examples of this scenario are plugins and applets. Plugins are

software packages that extend a client application, e.g., a web browser, with new functionalities

necessary to access certain network contents, e.g., audio and video streams. Applets are small,

general-purpose applications that the user can interact with, e.g., for data insertion. Moreover,

similar approaches are commonly used in other contexts like software bundles and smart-phones

applications.

Threat models: The typical threats experienced when running untrusted software provided by a

third party are viruses and Trojans. Since the attacking code runs on the target system, illegal

accesses may be extremely harmful. However, security mechanisms installed by the service

consumer can significantly reduce the chances for threats. For instance, applets can be executed

in a sandbox guaranteeing isolation of policies and plug-ins and can be guarded by reference

monitors, e.g., access control policies.

In this case, the consumer holds enough security resources (policy, code, and contract) for

applying the security analysis and enforcement techniques. Indeed, the consumer can verify

contract validity, compare a contract against the policies, and eventually enforce a policy during

the execution.

Example: Assume H’s developer has released a software library implementing H’s

functionalities. Hence, T’s developer just needs to include this code and invoke proper functions

in T’s workflow. Moreover, the developer can apply several kinds of security analyses and

runtime controls to H library.

Provider-based Paradigm

The most traditional service implementation consists of a remote execution, i.e., on the provider-

side, satisfying consumer requests. A consumer, which invokes the service, interacts with the

provider by sending the required information. Once the consumer has sent data to the server, the

consumer cannot check if the data is used according to consumer’s requirements; the consumer

can only trust the service contract.

Threat models: In this case, the consumer has no control on the execution. The only information

available to the consumer is the contract offered by the service provider. In fact, this contract

could be fake or incorrect and no security guarantees are based on it. Thus, most of today's

service usages are merely based on the user’s perception of provider’s reliability or reputation.

Example: Many web applications still work in this way. For instance, online document storage

and editing services allow users to manage their text documents via their browser without

executing any word processing task on their machines. In this case, H is a web application, which

can be invoked through a predefined communication protocol. Thus, T’s implementation sends

messages and collects return values according to the protocol defined by H. Even if H provides T

with a contract, T can only compare the protocol flow against it, with no actual control on the

internal activities of H.

Platform-based Paradigm

The lack of security guarantees and the need for service standardization are among the

motivations favoring the creation of a service platform. A platform is a collection of facilities,

i.e., support services, which aim at mediating the service provision. If these facilities include a

service execution environment, service code can be hosted and executed by the platform. Hence,

the platform plays the role of a trusted third party (TTP) for the consumers. In particular, the

consumer trusts the contract provided by the platform. Examples of platforms are SAP's

NetWeaver (SAP, 2012) and Microsoft's Azure (Microsoft Corporation, 2012).

Threat models: Similar to the previous case, the consumer has no control on the execution.

However, relying on the trust relationship, consumers can assume contract validity and use them

for policy verification.

Example: Assume T and H are implemented as mobile Apps, running on tablets or smartphones.

In this case, T’s developer can invoke H by launching it with appropriate parameters. Being

hosted in the same location, i.e., the mobile device, each application can rely on platform-

provided security mechanisms and check other’s permissions.

Platform-Provider Paradigm

This configuration consists of a platform and a provider that share the execution of a service.

Basically, the provider delegates part of the service implementation to the platform while keeping

the ownership on some operations. This solution allows the distribution of responsibilities (e.g.,

orchestration and business logic) and computational load and it is receiving attention from

platform and service developers. An instance of this paradigm is Amazon Web Services (AWS).

Threat models: This scenario may be exposed to vulnerabilities similar to those for platform-only

and provider-only paradigms. Indeed, the platform support and guarantees cannot be applied to

the part of the service running outside. Hence, consumers can only exploit the trust relationship to

verify that the platform-implemented part of the service meets the security requirements.

Consumer-Provider Paradigm

This paradigm can be seen as a hybrid of consumer-based and provider-based paradigms. The

consumer is required to execute some piece of code, when the other part is executed by the

provider. Such fragments of code may fulfill different purposes like performing operations, which

depend on consumer's resources, e.g., file system synchronization, or lightweight support

operations, such as animation scripts. In this model, the consumer has complete control only over

the part of the code it executes. Nevertheless, in most cases, the client is not allowed to modify

the code.

Threat models: In this case, the consumer can only check the compliance between the contract

and the policy and control the part of the code that it is going to execute. If the consumer trusts

the provider for executing the part of the code that resides in the provider, then the consumer can

be guaranteed that the provider will satisfy its security requirements and simply continue to

monitor the communication between the pieces of code, i.e., code run by the consumer and the

provider. If the consumer does not trust the provider, it has no guarantee that the service will

satisfy security requirements.

Consumer-Platform Paradigm

This paradigm is almost identical to the previous one. The only difference is that the second part

of code is executed by the trusted platform, rather than by the provider itself. Thus, the consumer

trusts that the execution is correctly controlled as much as it trusts the platform.

Threat models: In this case, the consumer can only check the compliance between the contract

and the policy and control the part of the code that it is going to execute. If the consumer trusts

the platform for providing the contract and executing the part of the code that resides in the

platform, then the consumer can be guaranteed that the platform will satisfy its security

requirements and simply continue to monitor the communication between the pieces of code, i.e.,

code run by the consumer and the platform. If the consumer does not trust the platform, it has no

guarantee that the service will satisfy security requirements.

To summarize,

Paradigms Code Contract Policies

Consumer X X X
Provider - - X
Platform - X X
Consumer-provider X(part.) - X
Consumer-platform X(part.) X X
Platform-provider - X(part.) X

 relates the three resources of code, contract, and policies, with the six paradigms presented

above. In particular, it shows the resources that the service consumer can rely on for security

analysis under each configuration. In the table, we assume that the consumer trusts the platform

for providing the contract and does not trust the provider either for providing the contract or for

executing the code. According to these assumptions, it is worth noticing that in some cases (e.g.,

in the provider paradigm), even if the consumer receives a contract from the provider, it has no

evidence about its validity. Clearly, invalid contracts cannot be exploited for security reasons.

Table 1. Available security resources for service consumer under various paradigms

Paradigms Code Contract Policies

Consumer X X X
Provider - - X
Platform - X X
Consumer-provider X(part.) - X
Consumer-platform X(part.) X X
Platform-provider - X(part.) X

CONTRACT-BASED APPROACHES FOR WEB SERVICE SECURITY

Security-by-Contract and Security-by-Contract-with-Trust are two contract-based approaches that

have been developed for dealing with security aspects in a mobile environment. Here, we aim to

present how and when they can be applied for guaranteeing security aspects in Service Oriented

Architecture.

Security-by-Contract

The Security-by-Contract (S×C) (Dragoni et al., 2008) paradigm provides a full characterization

of the contract-based interaction. It combines different functionalities in an integrated way (see

Figure 1). In particular, there is a module for automatically checking the formal correspondence

between the code and the contract (Evidence Checking). If the result is negative then the monitor

runs to enforce the policies (Policy Enforcement), otherwise a matching between the contract and

the policies (Contract & Policy Matching) is performed to establish if the contract is compliant

with the policy. In this case, the code is executed without overhead (EXECUTE CODE),

otherwise the policies are enforced again (Policy Enforcement). Finally, if the previous checks

were positively passed, the code can be executed with no active runtime monitor.

Figure 1. Security-by-Contract process

Referring to the working example, after the consumer’s request, both H and T services send their

contracts. Both contracts are verified by the check evidence function in order to statically probe if

the services adhere to their contracts. If the answer is yes, the contracts are compared with the

policy by the contract-policy matching functionality. If the policy is satisfied, the service is

executed without additional control; otherwise, the policy is enforced during the execution of the

service.

Security-by-Contract-with-Trust

The Security-by-Contract-with-Trust framework (S×C×T) (Costa, Dragoni, Issarny et. al., 2010;

Costa, Dragoni, Lazouski et al., 2010) differs from the Security-by-Contract framework, because

it substitutes the Evidence Checking functionality with a Trust Management mechanism. Indeed,

since services in many cases refuse to release the source code for analysis and validation, only

partial description of the service is often available to the consumer and third parties. Thus, there is

no way to verify that the published contract correctly describes operations of the service. Thus,

Security-by-Contract-with-Trust removes the assumption that verification may be performed and

relies on how much a user trusts the correctness of the published contract.

Figure 2. Security-by-Contract-with-Trust workflow

Security-by-Contract-with-Trust strategy shown in Figure 2 takes place in two phases: at deploy

time, by setting the monitoring state, and at run-time, by applying the contract monitoring

procedure (Contract Monitoring), for adjusting the provider trust level (Trust Evaluation). When

the service code enters the deployment procedure, i.e., before its first execution, the trust module

decides about the trustworthiness of the code by checking its trust level with respect to the fixed

threshold. If this check does not pass i.e., the system rejects the provider’s trustworthiness, then

the code runs within the scope of the policy enforcement mechanism (Policy Enforcement &

Contract Monitoring).

While the policy enforcement process prevents the security violations, the monitoring facility

keeps under control the possible contract violations. When a running code violates its contract,

i.e., it tries to perform in an undeclared way, the system reacts by changing the trust level of the

provider. Otherwise, if the trust check succeeds, the system checks whether the contract complies

with the security policies (Contract & Policy Matching). In case of compliance, the system

executes the code under a contract monitoring setting. It is worth noticing that we assume that

both the policies and the contract are written by using the same language. By the way, the policy

enforcement and the contract monitoring are performed by two different functionalities that

manage them independently.

In order to manage trust, several strategies can be defined according to the considered scenario.

We will define a strategy for dealing with Web service paradigms.

Referring to the working example, after the consumer’s request, the available services are

evaluated according to their trust level. It can be calculated according to several aspects

(explained in the next section). If the trust level of the services is accepted, i.e., it is greater than

the threshold fixed by the consumer, service’s contracts are compared with the policy by the

contract-policy matching functionality. If the policy is satisfied, the service is executed without

additional control; otherwise, the policy is enforced during the execution of the service.

Trust Management and Risk Measures

For proper operation of (S×C×T) we need a proper Trust Management approach. Here, we

propose two simple trust management approaches, although other trust models may be used

(Costa, Dragoni, Lazouski et al., 2010). We assume that a contract may be broken into contract

statements (similar to consumer policies). For example, contract and policies consist of rules

written in ConSpec language (Aktug & Naliuka, 2008), which is used in the Security-by-Contract

framework. Note that if security statements address only specific properties of the service rather

than formalize its complete functionality, we are no longer able to guarantee that the service does

not do anything except what is stated in the policies. We can only check that what is stated in the

policies is fulfilled by the contract.

First, we would like to group the policies and contract statements depending on the information

available to a consumer about their correct fulfillment: Enforced, Monitored, Uncontrolled.

Naturally, a consumer should not care much about the enforced policy or contract statements

since these statements are bound to be satisfied in any case (we assume that enforcement

mechanism is trusted). A provider may fail to satisfy monitored contract statements but a

consumer gets a report about these violations and may take actions according to the contract (e.g.,

fine the provider). Finally, a consumer does not know whether uncontrolled statements were

satisfied. On the other hand, the consumer may get some indirect information about their failure.

For example, assume that a sample contract statement reads “we do not release contact

information to external parties” and the consumer gets an advertisement message from a third

party short after the involvement into the interaction with the service. This advertisement may

indicate that the address of the consumer was given to that third party, i.e., the contract statement

was violated.

Now we are able to propose two trust management approaches for S×C×T. The first approach

uses only the monitored contract statements, while the second one sacrifices objectivity for the

sake of wider application of the approach. In the following, we call the first approach as

“SxCxT”, i.e., it is applied with the usual assumptions for S×C×T. The second approach is

referred to as “SxCxTR”, since the assumption for objective monitoring is relaxed in this case and

we use risk for aggregation of trust values. Naturally, enforced statements should not be taken

into account, since they cannot fail.

We start with a simple and objective approach. The entity running a service gets objective

evidence about the violated contract statements (through contract monitoring) and submits a

report to a trust management entity. The trust management entity computes the trust levels for

every contract statement “i” using the following formula:

,

where Ni is the number of times when the contract statement holds and N is the number of times

the service was involved in cooperation with consumers. By trust level we mean the probability

that a contract statement “i” will not be violated. In order to get the trust value of the service, i.e.,

the probability that the service will not violate any of the declared contract statements, it is

necessary to multiply trust values for all contract statements:

Now, a new consumer simply needs to check whether the received value is higher than a desired

threshold value.

In many Web service paradigms, it is the provider that executes the code. Therefore, there is no

reliable way to receive objective evidence about contract violations. Thus, a consumer must rely

on secondary information about the execution available to it. This information rarely explicitly

indicates that a contract statement was violated by the provider, and must be treated with

uncertainty in mind. Thus, in our second trust management approach the subjective trust value is

computed as follows, using the subjective information provided by consumers and their

reputations (similar to Huynh, Jennings, & Shadbolt (2006)):

where is the reputation of the consumer involved in k-th interaction; is the confidence

of the consumer that a contract statement “i” was satisfied. In other words, may be seen as

the probability that the consumer involved in the k-th interaction provides correct and honest

information about the outcome of the interaction and is the subjective probability assigned

by the consumer “k” reflecting the degree of assurance that a contract statement “i” was satisfied.

Both reputation and confidence are values between 0 and 1 and have all properties of

probabilities.

In order to being more granular, it is possible to consider that the consumer associates a degree of

importance to different policies. Hence, satisfaction of some contract statements is more

important for a consumer (e.g., confidentiality of credit card information) than others (e.g.,

keeping contact information private). In this case we can use risk to aggregate trust levels of

specific contract statements. Risk is usually computed as follows:

where pi is the probability that a contract statement “i” is violated and ci is the impact on the

consumer's business caused by this violation, expressed as a cost.

In S×C×T, the probability is the reverse value to trust. The impact caused by property failure ci is

a business specific value and can be assigned by a consumer only. This impact should be

determined according to the policies, which may fail because of the failure of the contract

statement i.

Thus, the risk value for the service could be computed as follows:

Now, the consumer may compare the computed values with some threshold or with risk values of

other services.

Note that the proposed formulas only outline how exactly the trust rating and risk may be

computed. Naturally, these are the basics of the approaches for trust and risk management and

advanced techniques (e.g., using time window for statistics collection, using number of deals for

increasing credibility of the trust value, introducing bootstrapping strategies), which may be

applied here. For example, other computations of trust value based on witness information may

be applied for “SxCxTR”.

Example 1: Assume that service H has two security statements: 1) confidentiality of credit card

information is preserved and 2) contact information is kept secret. This service was involved in

120 interactions and failed the first statement only once, while the second statement failed five

times.

Thus, if the first approach for trust management “SxCxT” is selected, then:

t1 = 119/120 = 0.9916

t2 = 115/120 = 0.9583

t (trust rating) = 0.95

 If now T would like to know the risk level of H, with the assumption, that c1 = $100000, c2

 =$10000, then:

Risk(H) = 100000*(1-0.9916) + 10000*(1-0.9583) = 840 + 417 = 1257

 Now if the trust threshold for invocation of the service is 0.95, then H can be used without

 enforcement.

Example 2: To exemplify the second trust management approach “SxCxTR”, we consider a

simple example, where only three feedbacks about fulfillment of contract statements of H' (an

alternative service) are available from users U1, U2, U3:

 The reputation of user U1 is = 0.97, U2 is = 0.9, and user U3 is = 0.5.

 The ratings of U1 are: =1 and =0.9; ratings of U2 are =1 and =1; and

 the ratings of U3 are =0.3 and =0.7.

t (trust rating) = 0.7993

 If now T would like to know the risk level of H', with the assumption that c1 = $100000, c2

 =$10000, then:

Risk(H') = 100000*(1-0.8523) + 10000*(1-0.9379) = 14770 + 621 = 15391

 Now if the trust threshold for invocation of the service is 0.7993, then H' can be used without

enforcement.

Summary of Results

Application of S×C and its variants depend on the information available to a consumer, i.e., Web

service paradigms which are in place in a specific situation (

). In this table the columns are the techniques which may be applied in a specific Web service

paradigm (depending on the information a consumer may rely on). The last column shows which

proposed approach is the best to be applied for that paradigm.

Table 2. The techniques available for a service consumer under various paradigms

Paradigms
Verification

(code)

Matching

(contract)

Enforcement/

Monitoring

(policies/contract)

Metrics

Management

(metrics)

Viable

Techniques

Consumer X X X X S×C

Provider - X - X “SxCxT”

Platform X(part.)/X X X X “SxCxT”/ S×C

Consumer-provider X(part.) X X(part.) X “SxCxTR”

Consumer-platform X(part.)/X X X X “SxCxT”/ S×C

Platform-provider X X X(part.) X “SxCxTR”

Table 2 provides a complete picture of necessary conditions for applying the approaches

presented in this chapter for guaranteeing security in Web services. In particular, using different

frameworks, we are able to guarantee security in most of the considered paradigms as follows:

S×C Approach
In the consumer paradigm, the platform paradigm, and the consumer-platform paradigm, we can

apply the Security-by-Contract framework for guaranteeing security. This can be done because,

since we have assumed that the platform is trusted, the consumer (or the platform) has all the

resources (code, contract and policy), so it is able to perform all the functionalities of the SxC

approach. Furthermore, it is possible to differentiate between two types of platforms depending

on whether they can or cannot verify properties.

The reason for doing this is that verification is an operation which requires a large amount of

resources. Moreover, verification is often policy specific, and thus, the platforms should either

restrict the supported interactions allowing only those where policies are of a specific type (see

ANIKETOS project (ANIKETOS, 2013) for example), or assume that some properties cannot be

verified. The Security-by-Contract can be used when the platform is going to perform

verification. In Table 2, some cells have a value separated by a backslash, e.g., “X(part.)/X” for

consumer-platform paradigm in the first column. The first value means whether the

corresponding technique may be applied if the platform does not perform code verification, while

the second value means that the platform is able to perform the check.

S×C×T Approach
In the platform paradigm and in the consumer-platform paradigm, security can be guaranteed by

using the Security-by-Contract-with-Trust approach whenever the platform is not going to

perform verification. Hence, a trust manager substitutes the verification functionality. In both

these cases, the contract verification is not performed because the platform and the consumer do

not have enough information for performing it. The compliance between the code and the

contract is evaluated according to trust measures.

S×C×TR Approach
In paradigms where the provider is involved, the execution of the code is not completely reliable.

In these cases, some risk measures combined with trust ones can be considered in order to

strengthen existing guarantees. Hence, we use a variant of the “SxCxT”, named “SxCxTR”, in

which trust and risk measures are combined.

FUTURE RESEARCH DIRECTIONS

In this chapter, we present our work about security mechanisms for guaranteeing security in Web

service composition. As future work, we plan to extend the presented approach in order to

consider other measures, such as performance, reliability, dependability, and probability of attack

in addition to trust and risk.

Indeed, in the last several years, some research work has been done to consider security in a

quantitative way. It is not always possible to guarantee security as defined in the Boolean way.

However, it is possible to quantify the level of security that can be guaranteed by defining

different enforcement strategies to assure security. As ongoing work, we are studying and

analyzing different scenarios to define ways for comparing several strategies according to

different quantitative aspects.

CONCLUSION

In this chapter, we discussed different Web service architecture paradigms and classified them

according to their security features. Security features depend on whether a paradigm satisfies the

requirements for a certain security technique, e.g., runtime monitoring, to be correctly

implemented. Mostly, requirements have to do with the availability of security resources such as

policies and contracts. Hence, we introduced categories which take into account the resources

according to their reliability.

We presented an overview of the possible threat models affecting each paradigm. In particular,

we consider services as code that can be executed by several components of the system,

consumer, provider, or platform. We distinguish among several cases, in which services are

executed in a centralized way by only one component or in a distributed way by more than one

component. We describe our approaches by using a simple working example.

For all of them, we discussed the possibility of applying the Security-by-Contract approach and

its extension. When not possible, we proposed extensions that can cope with the existing threats.

As a consequence, we detailed the structure of service platforms in terms of the tools they need to

be equipped with in order to implement these techniques.

REFERENCES
Aktug, I., & Naliuka, K. (2008). ConSpec – a formal language for policy specification. Science of

Computer Programming, 74(1-2), 2–12.

ANIKETOS. (2013). ANIKETOS project. Retrieved July 22, 2013, from http://www.aniketos.eu

Bauer, L., Ligatti, J., & Walker, D. (2005).Composing security policies with Polymer. In

Proceedings of the ACM SIGPLAN 2005 Conference on Programming Language Design and

Implementation, pp. 305–314. ACM.

Carminati, B., Ferrari, E., & Hung P.C.K. (2006).Security Conscious Web Service Composition.

In Proceedings of the IEEE International Conference on Web Services, pp.489–496.

Costa, G., Dragoni, N., Issarny, V., Lazouski, A., Martinelli, F., Matteucci, I. ... Massacci, F.

(2010). Security-by-Contract-with-Trust for mobile devices. Journal of Wireless Mobile

Networks, Ubiquitous Computing, and Dependable Applications, 1(4), 75–91.

Costa, G., Dragoni, N., Lazouski, A., Martinelli, F., Massacci, F., & Matteucci, I. (2010).

Extending Security-by-Contract with quantitative trust on mobile devices. In Proceedings of the

Fourth International Conference on Complex, Intelligent and Software Intensive Systems, pp.

872–877. IEEE Computer Society.

http://www.aniketos.eu/

Dragoni, N., & Massacci, F. (2007). Security-by-contract for web services. In Proceedings of the

ACM Workshop on Secure Web Services, pp. 90–98.

Dragoni, N., Martinelli, F., Massacci, F., Mori, P., Schaefer, C.,Walter, T., & Vetillar, E. (2008).

Security-by-contract (SxC) for software and services of mobile systems. In E. Di Nitto, A.-M.

Sassen, P. Traverso, & A. Zwegers (Eds.), At your service, Service-Oriented Computing from an

EU Perspective (pp. 429-455). MITPress.

Gadyatskaya, O., Massacci, F., & Philippov, A. (2012). Security-by-Contract for the OSGi

Platform. In Proceedings of the IFIP TC11Information Security and Privacy Conference, pp.

364–375.

Huynh, T.D., Jennings, N.R., & Shadbolt, N.R. (2006). An integrated trust and reputation model

for open multi-agent systems. Autonomous Agents and Multi-Agent Systems, 13(2), 119-154.

Jones, M., & Hamlen, K.W. (2011). A service-oriented approach to mobile code security.

Procedia Computer Science, 5, 531–538.

Microsoft. (2012). Windows Azure. Retrieved from http://www.windowsazure.com

OSGi Alliance. (2012). OSGi – The Dynamic Module System for Java. Retrieved from

http://www.osgi.org

Papazoglou, M.P. (2007). Web Services: Principles and Technology. Pearson/Prentice Hall.

Phung, P.H., & Sands, D. (2008). Security Policy Enforcement in the OSGi Framework Using

Aspect-Oriented Programming. In Proceedings of the 32
nd

Annual IEEE International Computer

Software and Applications Conference, pp 1076–1082.

SAP. (2012). Netweaver. Retrieved from http://www.sap.com/platform/netweaver/index.epx

Sekar, R., Venkatakrishnan, V.N., Basu, S., Bhatkar, S., & Du Varney, D.C. (2003). Model-

carrying code: a practical approach for safe execution of untrusted applications. In Proceedings of

the nineteenth ACM symposium on Operating systems principles, pp. 15-28.

KEY TERMS AND DEFINITIONS

Contract-based Security: A security framework that combines static analysis based on the

information provided by the contract and run-time enforcement mechanisms in accordance with

the policy in order to guarantee that a system is secure.

Policy: A policy is a security requirement that a consumer wants to apply to a service execution.

Secure Web Service: A Web service whose behavior does not violate the security policy.

Security-by-Contract: A security methodology that implements automatic checking of the

formal correspondence between the code and the contract, i.e., provide evidence checking.

http://www.windowsazure.com/
http://www.osgi.org/
http://www.sap.com/platform/netweaver/index.epx

Security-by-Contract-with-Trust: A security methodology that substitutes the evidence

checking functionality of security-by-contract with a trust management mechanism, and thus

removes the assumption that verification may be performed and relies on how much a user trusts

the correctness of the published contract.

Service Contract: A service contract is a formal description of the service behavior. Contracts

typically describe the service in terms of interaction protocols such as input and output channels,

message syntax, parameter types, encryption algorithms, etc.; and service computation such as

message semantics, service state transitions, and resources usage.

Violation: A violation happens when a service behaves in a way that is not allowed by the

policies.

