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Abstract. Web services composition allows a software designer for com-
bining atomic services, for instance taken from a marketplace, in a com-
plex business process fulfilling a desired functional goal. Moreover, among
a large number of possible compositions, the designer may want to con-
sider only those which satisfy specific non-functional requirements.
In our work we consider verification of security properties and evaluation
quantitative security metrics in a single framework. The main focus of
this article is the verification of a composition with several security met-
rics at once. We provide a general solution for the problem and show how
such verification can be made more efficient in specific cases (e.g., when
a metric is an abstraction of another one). We employ a mathematical
structure called c-semirings granting the generality of our approach.

1 Introduction

Service composition allows a service designer to create a new complex service out
of a set of available services (announced in a Marketplace). Often the result of
such process is a set of alternative compositions, which fulfil the same functional
goal but have different Quality of Service (QoS). Providers of complex services
want to obtain the highest quality services and to guarantee this quality even if
some problems with components arise. Naturally, security is one of such qualities.

A number of techniques were provided to obtain the evidences whether the
service composition satisfies some security properties [1, 2, 3, 4, 5]. Many of
these techniques use formal methods to model a complex service and to proof
the compliance of this model with a security specification. First, it is important
to model services in a “safe” way in order not to miss any security-relevant
behaviour. Secondly, the actual service implementation must comply with its
specification to assure that the results of the analysis are valid.

Some security properties are of quantitative nature and a decision about
whether they are satisfied depends on the concrete requirements of the customer
[6]. Thus, when a service provider advertises the QoS of its service it needs to
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specify the values of security metrics for the service. Some mathematical models
were proposed to analyse service composition with security metric [7, 8].

Since, there is no one reliable security metric which completely and unam-
biguously describes the security level provided by a service [9, 10] several quanti-
tative security requirements could be considered by a service orchestrator at once
([8, 11]). Moreover, the same security qualities may be expressed in a slightly
different manner. Therefore, there is a need for a framework which not only eval-
uates a service composition using several metrics, but also works with different
types of similar metrics.

In this paper we extend our previous work [12, 13] (based on a type and
effect system of Bartoletti et. al. [3]) on secure service orchestration in which
we provided a single framework for analysis of security properties and security
metrics. In this article we show how multi-dimensional security metrics can be
incorporated into our framework without violating a safety property. We apply
n-dimensional c-semirings to preserve generality of our approach. Although we
may not always choose the best/worst option, we show that metric abstraction
can help to do this in some cases. In this paper we focus on security metrics but
the approach may be generalised for other quantitative qualities of services.

This paper is organised as follows. We start with a running example (Sec-
tion 2). Then, we recall some features from our previous work (Section 3). Sec-
tion 4 contains the core ideas on aggregation of different security metrics. We
finish the paper with related work (Section 5) and conclusions (Section 6).

2 Running example

A travel agency BestTravel, which offers a travel planning service, moves a part
of its business to the web. BestTravel exploits existing services for implement-
ing its process, which includes three sub-processes: (i) find a connection, (ii)
find a hotel, (iii) prepare invoice. A service developer starts with creation of an
abstract workflow, which defines the general process but does not assign concrete
services to the defined tasks (e.g., see Figure 1 represented using BPMN [14]).

Reading Figure 1 (from left to right) a process of BestTravel works as follows.

First, BestTravel finds a connection and finds a hotel in parallel (rooted in �).
The find a connection sub-process consists of searching for a direct flight

and booking the direct flight. If the cheap direct flight was not found the
service searches for an itinerary and books the itinerary. An itinerary
also may be a direct flight but it costs more than the direct option considered
before. In parallel BestTravel searches for a hotel and books the hotel. Fi-
nally, BestTravel signs the receipt.

There are 10 concrete services found in a marketplace suitable for the defined
tasks. Table 1 displays these concrete services and their mapping to the abstract
services. All services specify values of several security-relevant parameters. Note,
that sometimes parameters are of different kind. For example, trust value for
Windjet and Ryanair are discrete values from a set {1, 2, 3, 4, 5}, when other
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Fig. 1. Abstract workflow for BestTravel.

Abstract Index Concrete Risk Trust Recovery Time

Search a direct flight
1 Windjet 10 5 75
2 Ryanair 20 4 45

Search an itinerary
3 Lufthansa 5 0.98 fast
4 Airfrance 8 0,95 normal

Booking service
5 Paypal 5 0.95 30
6 Ripplepay 15 0.89 60

Search a hotel
7 HotelBooker 40 0.93 60
8 HotelClub 30 0.92 90

Sign a receipt
9 ESignForms 0.3; 0.6; 0.9 0.73 150
10 VeriSign 0.4; 0.5; 0.8 0.87 200

Table 1. Abstract and concrete services

trust values are from [0;1] interval. In contrast to other services, Lufthansa and
AirFrance express the recovery time as qualitative values. Finally, risk values
of ESignForms and VeriSign represented as triples containing the probability of
not violating integrity, confidentiality and availability.

BestTravel has several security requirements for the created process. First,
BestTravel wants to have risk level of find a flight and find a hotel reservation
sub-processes less than 75 euro (measured as Annualised Loss Expectancy (ALE)
[15]). Furthermore, the two sub-processes must have the overall trust rating not
lower than 0.8 (or not lower than 5 for a discrete scale). The time of recovery of
the sub-processes should not be more than 120 minutes. Finally, the risk value
for sign a receipt must be medium or smaller.

3 Background

3.1 C-Semirings

We exploits the notion of c-semiring [16] for the abstraction of metrics and
operators over metrics to provide a generic framework for all metrics which
could be considered as c-semirings. A c-semiring consists of a domain of values
D, and two types of operators: multiplication (⊗) and addition (⊕). Formally, a
c-semiring is defined as follows (see Bistarelli et al., [16] for details).
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Definition 1. A c-semiring S is a tuple 〈D,⊕,⊗,0,1〉 where

– D is a (possibly infinite) set of elements and 0, 1 ∈ D;
– ⊕, being an addition defined over D, is a binary, commutative, idempotent,

and associative operator, such that 0 is its unit element and 1 is its absorbing
element;

– ⊗, being a multiplication over D, is a binary, commutative, associative, and
distributive over addition operator, such that 1 is its unit element and 0 is its
absorbing element;

Definition 2. ≤S is a partial order relation over D: d1 ≤S d2 iff d1 ⊕ d2 = d2.

In this work we need a reverse operation, which returns the worst possible
value for summation ⊕−1 which is defined as follows.

Definition 3. d1 ⊕−1 d2 = glb(d1, d2);

where glb(d1, d2) = d if and only if (i) d ≤S d1 ∧ d ≤S d2, and (ii) ∀ d′ . d′ ≤S

d1 ∧ d′ ≤S d2 → d′ ≤S d

The definition of the reverse operation returns the opposite value of direct addi-
tion operation when the operation is defined. For the cases in which the addition
operation is undefined, the greatest lower bound (glb) is returned2.

Property 1. Operation ⊕−1 is associative, commutative, idempotent, distributive
over ⊗, monotone3.

Example 1. Regarding to the security targets BestTravel is going to use three
metrics: trust, risk, and recovery time. Trust is often seen as a probability that
a provider behaves according to the contract, i.e., for majority of services in
the marketplace (see Table 1) trust has a value between 0 and 1. The values
are aggregated by multiplication, and the highest values is preferable. Thus,
c-semiring for trust formally is defined as follows: S1 = 〈[0, 1],max,×, 0, 1〉.

Risk is often considered as possible losses and has the domain of posi-
tive natural numbers. Aggregation of risk values is summation of losses, and
a lower risk is better than a higher one. Thus, c-semiring for risk is S2 =
〈N+ ∪ {∞},min,+,∞, 0〉.

Recovery time denotes the time required for the service to recover after an
incident (e.g., after a successful DOS attack). For majority of services in the
marketplace (see Table 1) time has domain of positive real numbers. Aggregation
of recovery time values is a maximising operation, while a lower time of recovery
is considered better than a higher one. Thus, c-semiring for recovery time is
S3 = 〈N+ ∪ {∞},min,max,∞, 0〉.
2 Note that the existence of glb is granted by the presence of top element in our

domains.
3 A link with proofs: http://wwwold.iit.cnr.it/staff/artsiom.yautsiukhin/

Resources/Proofs-SBP.pdf.
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H,H ′::= ε | h | α(r) | H ·H ′ | H +H ′ | H | H ′ | d̄#H | ϕ[H] | γ 〈H〉 | µh.H

Table 2. Syntax of history expressions.

HBT =

γ〈(H1 +H2) ·

 (H5 +H6)
+

((H3 +H4) · (H5 +H6))

〉∣∣∣∣∣∣ γ
〈 (H5 +H6)

·
(H7 +H8)

〉
· γ 〈µh.((H9 +H10) · h+ ε)〉

Fig. 2. History expression for BestTravel.

3.2 History expressions and services

In our previous paper [12] we have described how history expressions, originally
proposed to model the behaviour of complex services [17], can be suitably en-
riched with metric annotations. Also, History expressions can be adopted for
verification of temporal properties by checking whether they satisfy a corre-
sponding specification (e.g., a LTL formula or a security automaton). History
expressions can be inferred from service implementation by means of a suitable
type and effect system which grants the soundness, namely type safety, of the
resulting expressions. Here we do not detail the type and effect inference process
and we refer the interested reader to [12] and to [17].

In this paper we assume the history expression inference process for service
implementation as given. We only recall the inference rule for access events
below. Also, we (informally) recall the type safety theorem stated in [12].

Theorem 1. If the type and effect system infers a history expression H from a
service e, then every possible execution trace of e is denoted by H.

The syntax of the history expression is shown in Table 2. Intuitively, history
expressions can be empty (i.e. ε), variables (ranged over by h, h′) or access
operations (access α to a resource r, in symbols α(r)). Also, a history expression
can be a sequence H · H ′, a choice H + H ′, a parallel composition H | H ′
or a recursion µh.H. Finally, history expressions can be annotated with metric
vectors, e.g., d̄#H, security framings, e.g., ϕ[H], and metric framings, e.g., γ 〈H〉.
Their meaning is straightforward. The annotation4 d̄#H says that (the service
associated to the history expression) H can originate metric vectors which are
bounded by d̄. A security framing ϕ[H] says that, over the execution histories
produced by H, the security policy ϕ holds. Similarly, γ 〈H〉 applies a metric
policy γ to H.

Example 2. Using the type and effect inference presented in [12], we associate
the history expression of Figure 2 to the BestTravel service (see Figure 1) and
in Example 5 we will add metric values to these expressions.

4 Here we go ahead a bit and use vectors of values instead of simple values. In the
following we show that such substitution is just.
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H ≡ 1#H d̄1#d̄2#H ≡ d̄2#d̄1#H ≡ d̄1 ⊗ d̄2#H

d̄1#H1 · d̄2#H2 ≡ d̄1 ⊗ d̄2#(H1 ·H2) ϕ
[
d̄#H

]
≡ d̄#ϕ[H]

d̄1#H1 + d̄2#H2 ≡ d̄1 ⊕−1 d̄2#(H1 +H2) d̄1#H1 | d̄2#H2 ≡ d̄1 ⊗ d̄2#(H1 | H2)

γ
〈
d̄#H

〉
≡ d̄′#γ 〈H〉 where γ = T ≥T d̄′′ and d̄′ = d̄⊕−1 d̄′′

µh.H ≡ d̄′′#µh.H ′ where d̄′′ =
⊕
n

−1Φn(0) and Φ(d̄) = d̄′ ⇔


H[d̄#h/h] ≡ d̄′#H ′

∧
d̄′#H ′ is in MNF

Table 3. Equational rules.

We proposed to aggregate metrics (specified as c-semirings) according to the
business process of complex web services using equational rules (see Table 4).
In short, security and trust metrics are expressed as c-semirings and assigned
to specific history expressions (i.e., d̄#H, called metric normal form (MNF)) in
the history expression for the composite service (similar to Figure 2). Then the
equational rules are consequently applied to find the values of metrics for the
complete process. In fact, Table 4 states, that multiplication operator is used for
aggregation of values for parallel (d̄1#H1 | d̄2#H2), sequential (d̄1#H1 · d̄2#H2)
and cyclic (µh.H) execution of services, while reverse addition is used for non-
deterministic choice (d̄1#H1+d̄2#H2) and selection of the worst alternative [12].
Such an aggregation process results can be used to advertise the level of security
provided by the composite web service. Also, in [12] we proved that ≡ is an
equivalence relation for history expressions semantics. Hence, although security
is not a compositional property in general, security analysis can be safely carried
out on the aggregation of history expressions.

4 Aggregation of several security metrics with c-semirings

In practice, several security parameters are required to assess a service. In this
case we should use an n-dimensional c-semiring ([18]):

Definition 4. Assume that we have n c-semirings Si, 0 < i ≤ n (we also add
upper index i to every parameter of a semiring, i.e., Si = 〈Di,⊕i,⊗i,0i,1i〉).
An n-dimensional c-semiring is S̄ = 〈D̄,⊕,⊗, 0̄, 1̄〉, where D̄ = (D1, ..., Dn),
including 0̄ = (01, ...,0n) and 1̄ = (11, ...,1n). For any two vectors of values d̄1

and d̄2 of S̄ the multiplication operations is defined as follows: d̄1⊗d̄2 = (d1
1 ⊗1

d1
2, ..., d

n
1 ⊗n dn2 ). The additional operation is defined using Pareto-optimality:

d̄1⊕d̄2 = d̄2 iff ∀i di1 ⊕i di2 = di2.

In the article we use upper indexes to denote different c-semirings, which
compose an n-dimensional c-semiring, while the lower indexes denote different
instances of a c-semiring. For the sake of presentation, we also specify an n-
dimensional c-semiring as a vector of c-semirings, e.g., S̄ = (S1, S2, ..., Sn). Note,



General Framewhork for Secure Service Orchestration 7

H ≡ 1#H d1#d2#H ≡ d2#d1#H ≡ d1 ⊗ d2#H d1#H1·d2#H2 ≡ d1 ⊗ d2#(H1 ·H2)

d1#H1+d2#H2 ≡ d1 ⊕−1 d2#(H1 +H2) d1#H1 | d2#H2 ≡ d1 ⊗ d2#(H1 | H2) ϕ[d#H] ≡ d#ϕ[H]

γ 〈d#H〉 ≡ d̄#γ 〈H〉 where γ = T ≥T d′ and d̄ = d⊕−1 d′

µh.H ≡ d̄#µh.H ′ where d̄ =
⊕
n

−1Φn(0) and Φ(d) = d′ ⇔


H[d#h/h] ≡ d′#H ′

∧
d′#H ′ is in MNF

Table 4. Equational rules.

that n-dimensional c-semiring is a c-semiring as well [16]. This means that all our
formulas written for the quantitative analysis of a composite service presented
in [12] are relevant for the new c-semiring structure.

Metric annotations are used to label a history expression with metric values
which are expected to be produced dynamically. However, metric annotations
are locally associated with parts of a history expression while, in general, it
would be preferable to have a single value labelling the whole expression. In
particular, we are interested in a procedure which turns a history expression
into a corresponding normal form.

Definition 5. A history expression H is said to be in metric normal form
(MNF), iff H = d#H ′ and H ′ contains no metric annotations.

In Table 4 we propose a set of equivalences that we use to move and compose
metric annotations appearing in history expressions. The rules in Table 4 define
the correspondence between the history expressions and the semiring operators.
In particular, we can always add a multiplication-neutral annotation to a his-
tory expression, nested annotations are commutative and can be reduced to a
semiring multiplication and choice correspond to the inverse of a semiring ad-
dition, namely a subtraction. Also parallel composition can be annotated with
the (result of the) multiplication between the two subexpressions annotations. A
security framing is orthogonal to metric annotation, i.e., they do not affect each
other. Instead, metric checks have a precise effect on annotations. As a matter of
fact, we can remove a metric check by forcing its target to be annotated with the
difference (⊕−1) between the inner annotation and the threshold of γ. Finally,
a recursion is annotated with the least fix point of the function Φ that extracts
the metric annotation from the inner history expression after annotating the
bounded variable h.

A crucial property we want to prove on the equation rules of Table 4 is that
they do not invalidate the semantics of history expressions. Such property guar-
antees that history expression transformations do not affect the safety property
stated by theorem 1.

Property 2. For all history expressions H and H ′ if H ≡ H ′ then ∀δ.sHδ = sH ′δ
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H1 = d̄1#H ′1 = (10, 5, 75)#H ′1 H6 = d̄6#H ′6 = (15, 0.89, 60)#H ′6
H2 = d̄2#H ′2 = (20, 4, 45)#H ′2 H7 = d̄7#H ′7 = (40, 0.93, 60)#H ′7
H3 = d̄3#H ′3 = (5, 0.98, fast)#H ′3 H8 = d̄8#H ′8 = (30, 0.92, 90)#H ′8
H4 = d̄4#H ′4 = (8, 0.95, normal)#H ′4 H9 = d̄9#H ′9 = ((0.3; 0.6; 0.9), 0.73, 150)#H ′9
H5 = d̄5#H ′5 = (5, 0.95, 30)#H ′5 H10 = d̄10#H ′10 = ((0.4; 0.5; 0.8), 0.87, 200)#H ′10

Table 5. Metric annotation of concrete sub-services.

Example 3. Having in mind that ⊕−1 is max for Risk , consider the history
expression H2 of Example ??

H2 = (0#search flight for(AIRPORT)) · (0#reserve(FLIGHT No) + 15#reserve(NO FLIGHT))

H2 ≡ 0⊗ (0⊕−1 15)#(search flight for(AIRPORT) · (reserve(FLIGHT No) + reserve(NO FLIGHT)))

Note, that the right side of the previous equivalence is in MNF. According
to the operations of the semiring Risk , the resulting annotation value is 15.

Example 4. We write the MNF of the history expressions of Example ??. For
brevity, we write Hi ≡ di#H

′
i to emphasise the metric annotation of the MNF

without showing the structure of H ′i.

H1 ≡ 20#H ′1 H2 ≡ 15#H ′2 H3 ≡ 25#H ′3 H4 ≡ 15#H ′4 H5 ≡ 40#H ′5
H6 ≡ 50#H ′6 H7 ≡ 28#H ′7 H8 ≡ 25#H ′8 H9 ≡ 1#H ′9 H10 ≡ 0#H ′10

Intuitively, Example 4 shows that every history expression appearing in our
working example has an equivalent MNF. In general, we know that all the history
expressions can be reduced to a corresponding MNF as stated by the following
property.

Property 3. For each history expression H there exists H ′ such that H ≡ H ′ and
H ′ is in MNF.

The last property we show is metric safety, which characterizes the most
important quality of the metric annotations we generate.

Theorem 2. If Γ ` e : t . H and H ≡ d̄#H ′ such that d̄#H ′ is in MNF, then
for each execution η, d, e π η

′, d′, e′ holds that d′ ≤T d⊗ d̄.

Similarly to type safety, this theorem guarantees that metric annotations
produced by our equational theory provide an upper bound to the metric values
generated by the execution of a term. As each of them has a corresponding MNF,
this theorem can be universally applied to any history expression. Referring to
our working example, the theorem above guarantees that we can always build
a table like Table 1 starting from the implementation of the involved services
(see [12] for details about the automatic assignment of metric annotations to
history expressions).
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Example 5. In Figure 2, HBT denotes the behaviour of BestTravel. In particular,
we use Hi as an abbreviation for the history expression of sub-service i and d̄i for
the annotating metric. The structure of each history expression Hi is reported
in Table 5. Each history expression Hi has the form d̄i#H

′
i where H ′i has no

further metric annotations, that is, Hi is in metric normal form.

Example 6. In our running example the n-dimensional c-semiring for the
find a hotel sub-process, can be specified as follows: S̄ = (S1, S2, S3) (see Exam-
ple 1) We have two alternatives for search a hotel (see Table 1):
(40, 0.93, 60)#H ′7 + (30, 0.92, 90)#H ′8, and two alternatives for book a hotel:
(5, 0.95, 30)#H ′5 + (15, 0.89, 60)#H ′6. We see that d̄5 ⊕−1 d̄6 = d̄6 and these
values (d̄6) the BestTravel is able to guarantee if at least one of the two
services is available. Unfortunately, d̄7 ⊕−1 d̄8 cannot be solved, since 40 >
30, but 0.93 > 0.92 and 60 < 90 and we have to propagate the glb for
search a hotel activity further. The whole find a hotel sub-process has (Hf h)
the result (55, 0.8188, 90)#H ′f h. Note, that the result satisfies0 the requirements
specified in Section 2.

4.1 Runtime Analysis

REWRITE Since the last two instances fail the restriction the dynamic analysis
is required. Note, that the hotel reservation part of the process may use services
H5 and H8 with the overall risk level 65 < 75. Therefore, during the execution we
guard the second and the third instances to guarantee the low risk level values.
There is no need to guard the first instance, since it satisfies the restriction
in any case. Imagine, that during the execution H6 service has been selected.
Before executing the next step the guard must check the resulting value, using
the same rules as for the static analysis. In case H8 is selected the execution is
allowed (75 ≤ 75). Otherwise, if H7 is chosen the restriction fails (78 > 75) and
the execution is halted (or another action is performed, e.g., a report about the
failure is sent to the customer and provider).

4.2 Aggregation of similar metrics

Sometimes the same property is measured in different ways. For example, se-
curity risk level is measured by quantitative (e.g., using natural numbers) and
qualitative (e.g., using high, medium, and low levels) methods. Also trust may be
computed either as a values in [0;1] interval (similar to eBay reputation system)
or as a discrete value (e.g., {-1, 0, 1, 2, 3, 4} [19]).

In order to make our analysis work with different types of metrics we first
need to link a more concrete metric and a more abstract one. Such a link must
satisfy the conditions for Galois insertion to correctly approximate a concrete
metric in abstract domain and vice versa (see [16] for details):

Definition 6. Let we have two sets Dc and Da and two operations vS and ≤S

which define the order in the two sets correspondingly (we write (Dc,vS) and
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(Da,≤S) to denote these posets). A Galois insertion 〈α, γ〉 : (Dc,vS)
 (Da,≤S)
is a pair of mapping functions: α : Dc → Da and γ : Da → Dc such that:

1. α and γ are monotone,
2. ∀dc ∈ Dc, dc vS γ(α(dc)), and
3. ∀da ∈ Da, α(γ(da)) = da

If we can prove that α abstraction satisfies the order-preserving property
[18], we can transform all concrete metrics to abstract ones and find the optimal
solutions using only one (abstract) set of metrics (see [18] for the proof). Note,
that in this case the optimal solution for a more abstract metric may be referred
to several concrete solutions.

Definition 7. The abstraction α is order-preserving if for any two sets Dc
1 and

Dc
2 of concrete elements the following observation holds:⊗̃

d∈Dc
1

α(d) vS

⊗̃
d∈Dc

2

α(d) =⇒
⊗
d∈Dc

1

d ≤S

⊗
d∈Dc

2

d

where
⊗̃

and
⊗

are multiplicative operations for abstract and concrete c-
semirings correspondingly.

Example 7. Without loss of generality we consider recovery time metric in isola-
tion. In the marketplace (see Table 1) there are two alternatives for
search for an itinerary (Lufthansa and AirFrance) which have values fast
and medium from c-semiring 〈{very fast, fast, normal, slow, very slow},min,
max, very slow, very fast〉. Note, that booking services (PayPal and Ripple-
pay) have values 30 and 60 from a different c-semiring 〈N+∪{∞},min,max,∞, 0〉.
The α abstraction in this case is defined as the following mapping: [0, 15] 7→
veryfast, (15, 50] 7→ fast, (50, 100] 7→ normal, (100, 300] 7→ slow, [300,+∞] 7→
veryslow. The backward transformation γ: very fast 7→ 15; fast 7→ 50;
normal 7→ 100; slow 7→ 300; very slow 7→ +∞.

Thus, the value of the first option for booking activity (PayPal) is mapped
to fast in the more abstract c-semiring, when the second option (Ripplepay)
has medium value. To be in a safe position we consider the worst case, getting
medium value for the sub-process.

Unfortunately, many abstractions do not have such property and we have to
use glb for aggregation.

In many cases a service may define a metric only in one c-semiring, while
another service defines a similar metric with another c-semiring. In order to
aggregate or select a value in such situation we can assign the best value (i.e., 1)
to the undefined c-semiring without changing the result. We can do this, since
1 is a unit element for ⊗ and ⊕−1, i.e., ∀d 1⊗ d = d and 1⊕−1 d = d.

Example 8. The trust metric for search a direct flight services is of a dif-
ferent c-semiring than others: S4 = 〈{1, 2, 3, 4, 5},max,min, 1, 5〉. The Galois
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insertions between S4 and S3 we used for trust so far (see Example 1) is de-
fined as follows: α: [0, 0.2) 7→ 1; [0.2, 0.4) 7→ 2; [0.4, 0.6) 7→ 3; [0.6, 0.8) 7→ 4;
[0.8, 1] 7→ 5; and γ: 1 7→ 0; 2 7→ 0.2; 3 7→ 0.4; 4 7→ 0.6; 5 7→ 0.8.

Since, we cannot make a final choice about the selected candidate for
search a direct flight subprocess H12 we should propagate the glb of them
(10, 5, 75)#H ′1 and (20, 4, 45)#H ′2, which is (20, 4, 75)#H ′12. The result of the
check for the following non-deterministic choice (H11) is equal to
(23, 0.8455, normal)#H ′11: the branch of booking an itinerary has the worst
value (after aggregation of the worst alternatives for search an itinerary

(8, 0.95, normal)#H ′4 and book an itinerary (15, 0.89, fast)#H ′6). In order
to aggregate values of d̄12 and d̄11 we need to have two dimensions for two
types of trust metrics. Thus, our n-dimensional c-semiring transforms to S̄

′
=

(S1, S2, S4, S3). The c-semirings under consideration are transformed to
(20, 1, 4, 75)′#H ′12, and (23, 0.8455, 5, normal)′#H ′11. Now, we can easily aggre-
gate the c-semirings. The result for find a flight sub-process (Hf f ) is
(43, 0.8455, 4, normal)′#H ′f f .

Finally, at the end of the aggregation process we can use abstraction to a
metric common for different components of n-dimensional c-semiring for selecting
the worst alternative. Note, that adding 1 at a place of an absent component
does not change the result of the aggregation at the abstract level. First, such
addition does not change the result of aggregation and selection, as shown above.
Second, even if no aggregation or selection is needed, abstraction maps 1 in a
concrete c-semiring to 1 in an abstract c-semiring (see [18]) and thus, does not
affect the result of aggregation on the abstract level.

Example 9. We continue Example 8. Now we can transform the more concrete
value to the abstract one using α: 0.8455 7→ 5, and aggregate the values of
trust c-semirings S2 and S4 using aggregation operation of abstract metric:
min(4, 5) = 4. Thus, the result is (43, 4, normal)#H ′f f . We see, that this sub-
process may violate the policy of having the trust value at least 5. On the
other hand, for order-preserving abstractions we may do the backward mapping
γ to find the lowest bound for recovery time and, this means, that the final
value of the recovery time metric does not violate the policy (see Example 7):
normal 7→ 100 < 120.

Finally, the abstraction may be used to compare metrics even if an abstract
metric is not a component of the n-dimensional c-semiring at all.

Example 10. Now, consider the prepare invoice sub-process, which consists of one
activity only, i.e., sign a receipt. For the sake of simplicity, we consider only
risk metric, since there are no other requirements for this sub-process.

There are two concrete services with assigned 3-dimensional c-semirings. The
metrics of the 3-dimensional c-semiring denote the probability of not violating
of integrity, confidentiality and availability, which could be seen as probabilistic
semirings: S5 = 〈[0; 1];max;×; 0; 1〉. We have 2 alternatives with the (S5, S5, S5)
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c-semirings: (0.3, 0.6, 0.9)#H ′9 +(0.7, 0.9, 0.6)#H ′10. These values cannot be sim-
ply compared, but we can use an abstractions to qualitative risk value: for in-
tegrity αint:[0, 0.333) 7→ high, [0.333, 0.666) 7→ medium, [0.666, 1] 7→ low; for
confidentiality αconf : [0, 0.666) 7→ medium, [0.6661] 7→ low; for availability αav:
[0, 0.666) 7→ medium, [0.666, 1] 7→ low. Here we assumed, that integrity has
high impact, while confidentiality and availability - medium impact and used
the Risk-Level Matrix from [20]5.

Now, we are able to compare the alternatives using a c-semiring for quali-
tative risk: Sr = 〈{low,medium, high},min,max, low, high〉. The results of the
abstraction are: (high,medium, low)r#H ′9+(low, low,medium)r#H ′10 (d̄r9, d̄

r
10 ∈

(Sr, Sr, Sr)). We aggregate values for every c-semiring separately and see that
the risk value for ESignForms is high and violates the requirement.

5 Related work

Many authors proposed formal languages for specifying and verifying agree-
ments, also called contracts, between a service provider and a customer. Some
authors [5, 21] propose formal languages for defining service contracts. Such
languages rely on process algebra-like syntax and exploit automatic verification
techniques for generating service orchestrations. In [22] Martinelli and Matteucci
describe how to synthesise a secure orchestrator, i.e., an agent which drives the
interaction between two services respects a certain security policy. History ex-
pressions have been applied to model and verify service compositions by Bar-
toletti et al. [3]. They apply local policies through a security framing operator
and find service orchestrations respecting all of them. Although, the proposals
described above use contracts for the specification and analysis of history-based
service properties, none of them allow for the definition of security metrics and
restrictions on them as we do in this work.

Jaeger et. al. [23] proposed to aggregate quantitative service qualities taking
into account workflow of services. Such metrics as mean cost and mean repu-
tation were considered. Yu et. al. [8] extended the application of the ideas of
Jaeger at. al. to select a composition with the best values of a considered quan-
titative metric. The authors also defined a set of aggregation functions for some
specific metrics and applied algorithms for solving multidimensional multiple
choice knapsack problem to find the best alternative which satisfies the consid-
ered constraints. Security specific metrics were taken into account by Massacci
and Yautsiukhin [7]. The authors created a directed graph using the workflow
of a process and defined the aggregation algorithm for monotonic metrics.

All these methods lack of generality since the algorithms should be changed
when a new metric is considered. Moreover, most of these proposals consider a
single metric at a time. Yu et. al. [8] proposed a specific weighted function in
order to compute a single combined metric and then use it for service selection.
Massacci and Yautsiukhin also extended their framework to perform the analysis

5 In this example, we also assume, that security breaches are independent
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with several metrics using Pareto-optimality principle [11]. Although, our work
uses the same principle, we also have shown that we can apply abstraction to
combine similar metrics more efficiently and without using weighted functions,
which are hard to define precisely. Moreover, our metric analysis is merged in
a unique framework with security property checks and can be preformed at
the same time. Finally, our framework determines the values of QoS the service
developer may guarantee even if all best services are not available at the moment.

6 Conclusion

In the paper we provided a framework which allows for checking several quanti-
tative security requirements at the same time. We have found that few changes
are required to extend our framework for multidimensional analysis. We also
found that when metrics satisfy the order-preserving property we are able to use
only the abstract metric for analysis. In case this property fails, we still are able
the lower value we can guarantee. In both cases, the proposed method allows
eliminating alternatives from the consideration in one run avoiding unnecessary
aggregation of these values, making the analysis more efficient. Naturally, the
proposed method depends on the correct definitions of c-semirings and abstrac-
tion functions. Since both definitions are metric-specific, it is enough to specify
them once and reuse them in any scenario afterwards. As a future work, we
consider implementation of our framework and testing it in a real scenario.
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